1
|
Li W, Jin D, Takai S, Inoue N, Yamanishi K, Tanaka Y, Okamura H. IL-18 primes T cells with an antigen-inexperienced memory phenotype for proliferation and differentiation into effector cells through Notch signaling. J Leukoc Biol 2024:qiae172. [PMID: 39213165 DOI: 10.1093/jleuko/qiae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Indexed: 09/04/2024] Open
Abstract
Recent studies have revealed that a subset of CD8+ T cells exhibit innate features and can be activated by cytokines. However, the precise mechanisms underlying the proliferation and differentiation of these cells remain unclear. Here, we demonstrated that CD44highCD8+ T cells in the mouse spleen express functional interleukin-18 (IL-18) receptors, whereas CD44lowCD8+ T cells do not. In response to IL-18 stimulation, these cells activated various metabolic pathways, upregulated the expression of surface molecules, such as c-Kit (CD117), CD25, and PD-1, and induced progression through the G1/S phase in the cell cycle. IL-18-primed cells, expressing a high-affinity receptor for IL-2, exhibited robust proliferation in response to IL-2 and underwent differentiation into effector cells. The splenic CD44highCD8+ T cells exhibited high expression levels of CD122, CD62L, CCR7, and CXCR3, along with CD5, indicating their potential for migration to the lymph nodes, where they could undergo expansion and terminal differentiation into effector cells. Additionally, in a tumor model, administration of IL-18 increased the accumulation of CD8+ T cells in both the lymph nodes and tumors. It is noteworthy that stimulation of CD44highCD8+ T cells with IL-18 upregulated the Notch-1 receptor and c-Myc. Moreover, inclusion of γ-secretase inhibitors attenuated the effect of IL-18 on both proliferation and interferon-γ production in the cells. These results demonstrate that IL-18 primes CD44highCD122highCXCR3highCD62LhighCD8+ T cells for expansion and differentiation into effector cells in a Notch signaling-dependent manner.
Collapse
Affiliation(s)
- Wen Li
- Department of Innovation Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-cho, Takatsuki, Osaka 569-8686, Japan
- International Cooperation for Medical Innovation Co., Ltd., 1-5-2 Minami-machi, Minatojima, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Denan Jin
- Department of Innovation Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-cho, Takatsuki, Osaka 569-8686, Japan
| | - Shinji Takai
- Department of Innovation Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-cho, Takatsuki, Osaka 569-8686, Japan
| | - Natsuko Inoue
- Department of Innovation Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-cho, Takatsuki, Osaka 569-8686, Japan
| | - Kyosuke Yamanishi
- Department of Neuropsychiatry, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Haruki Okamura
- Department of Innovation Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-cho, Takatsuki, Osaka 569-8686, Japan
- International Cooperation for Medical Innovation Co., Ltd., 1-5-2 Minami-machi, Minatojima, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
2
|
Dhyani V, Chann AS, Giri L, Russell SM, Charnley M. A Pipeline for Dynamic Analysis of Mitochondrial Content in Developing T Cells: Bridging the Gap Between High-Throughput Flow Cytometry and Single-Cell Microscopy Analysis. Methods Mol Biol 2024; 2800:167-187. [PMID: 38709484 DOI: 10.1007/978-1-0716-3834-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Analyzing the dynamics of mitochondrial content in developing T cells is crucial for understanding the metabolic state during T cell development. However, monitoring mitochondrial content in real-time needs a balance of cell viability and image resolution. In this chapter, we present experimental protocols for measuring mitochondrial content in developing T cells using three modalities: bulk analysis via flow cytometry, volumetric imaging in laser scanning confocal microscopy, and dynamic live-cell monitoring in spinning disc confocal microscopy. Next, we provide an image segmentation and centroid tracking-based analysis pipeline for automated quantification of a large number of microscopy images. These protocols together offer comprehensive approaches to investigate mitochondrial dynamics in developing T cells, enabling a deeper understanding of their metabolic processes.
Collapse
Affiliation(s)
- Vaibhav Dhyani
- Bioimaging and Data Analysis Lab, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
- Optical Science Centre, Faculty of Science, Engineering & Technology, Swinburne University of Technology, Hawthorn, Australia
| | - Anchi S Chann
- Optical Science Centre, Faculty of Science, Engineering & Technology, Swinburne University of Technology, Hawthorn, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, USA
| | - Lopamudra Giri
- Bioimaging and Data Analysis Lab, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Sarah M Russell
- Optical Science Centre, Faculty of Science, Engineering & Technology, Swinburne University of Technology, Hawthorn, Australia.
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia.
| | - Mirren Charnley
- Optical Science Centre, Faculty of Science, Engineering & Technology, Swinburne University of Technology, Hawthorn, Australia.
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
| |
Collapse
|
3
|
Samanta P, Bhowmik A, Biswas S, Sarkar R, Ghosh R, Pakhira S, Mondal M, Sen S, Saha P, Hajra S. Therapeutic Effectiveness of Anticancer Agents Targeting Different Signaling Molecules Involved in Asymmetric Division of Cancer Stem Cell. Stem Cell Rev Rep 2023:10.1007/s12015-023-10523-3. [PMID: 36952080 DOI: 10.1007/s12015-023-10523-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2023] [Indexed: 03/24/2023]
Abstract
Intra-tumoral heterogeneity is maintained by cancer stem cells (CSCs) with dysregulated self-renewal and asymmetric cell division (ACD). According to the cancer stem cell theory, by ACD a CSC can generate two daughter progenies with different fates such as one cancer stem cell and one differentiated cell. Therefore, this type of mitotic division supports vital process of the maintenance of CSC population. But this CSC pool reservation by ACD complicates the treatment of cancer patients, as CSCs give rise to aggressive clones which are prone to metastasis and drug-insensitivity. Hence, identification of therapeutic modalities which can target ACD of cancer stem cell is an intriguing part of cancer research. In this review, other than the discussion about the extrinsic inducers of ACD role of different proteins, miRNAs and lncRNAs in this type of cell division is also mentioned. Other than these, mode of action of the proven and potential drugs targeting ACD of CSC is also discussed here.
Collapse
Affiliation(s)
- Priya Samanta
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Arijit Bhowmik
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India.
| | - Souradeep Biswas
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Rupali Sarkar
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Rituparna Ghosh
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Shampa Pakhira
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Mrinmoyee Mondal
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Soummadeep Sen
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Prosenjit Saha
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Subhadip Hajra
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India.
| |
Collapse
|
4
|
Charnley M, Allam AH, Newton LM, Humbert PO, Russell SM. E-cadherin in developing murine T cells controls spindle alignment and progression through β-selection. SCIENCE ADVANCES 2023; 9:eade5348. [PMID: 36652509 DOI: 10.1126/sciadv.ade5348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
A critical stage of T cell development is β-selection; at this stage, the T cell receptor β (TCRβ) chain is generated, and the developing T cell starts to acquire antigenic specificity. Progression through β-selection is assisted by low-affinity interactions between the nascent TCRβ chain and peptide presented on stromal major histocompatibility complex and cues provided by the niche. In this study, we identify a cue within the developing T cell niche that is critical for T cell development. E-cadherin mediates cell-cell interactions and influences cell fate in many developmental systems. In developing T cells, E-cadherin contributed to the formation of an immunological synapse and the alignment of the mitotic spindle with the polarity axis during division, which facilitated subsequent T cell development. Collectively, these data suggest that E-cadherin facilitates interactions with the thymic niche to coordinate the β-selection stage of T cell development.
Collapse
Affiliation(s)
- Mirren Charnley
- Optical Sciences Centre, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Amr H Allam
- Optical Sciences Centre, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Lucas M Newton
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
- Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Patrick O Humbert
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
- Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria 3086, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Victoria 3010, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Sarah M Russell
- Optical Sciences Centre, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
5
|
Ortega-Campos SM, García-Heredia JM. The Multitasker Protein: A Look at the Multiple Capabilities of NUMB. Cells 2023; 12:333. [PMID: 36672267 PMCID: PMC9856935 DOI: 10.3390/cells12020333] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/08/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
NUMB, a plasma membrane-associated protein originally described in Drosophila, is involved in determining cell function and fate during early stages of development. It is secreted asymmetrically in dividing cells, with one daughter cell inheriting NUMB and the other inheriting its antagonist, NOTCH. NUMB has been proposed as a polarizing agent and has multiple functions, including endocytosis and serving as an adaptor in various cellular pathways such as NOTCH, Hedgehog, and the P53-MDM2 axis. Due to its role in maintaining cellular homeostasis, it has been suggested that NUMB may be involved in various human pathologies such as cancer and Alzheimer's disease. Further research on NUMB could aid in understanding disease mechanisms and advancing the field of personalized medicine and the development of new therapies.
Collapse
Affiliation(s)
- Sara M. Ortega-Campos
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41013 Sevilla, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José Manuel García-Heredia
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41013 Sevilla, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
6
|
Duke-Cohan JS, Akitsu A, Mallis RJ, Messier CM, Lizotte PH, Aster JC, Hwang W, Lang MJ, Reinherz EL. Pre-T cell receptor self-MHC sampling restricts thymocyte dedifferentiation. Nature 2023; 613:565-574. [PMID: 36410718 PMCID: PMC9851994 DOI: 10.1038/s41586-022-05555-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/11/2022] [Indexed: 11/22/2022]
Abstract
Programming T cells to distinguish self from non-self is a vital, multi-step process that occurs in the thymus1-4. Signalling through the pre-T cell receptor (preTCR), a CD3-associated heterodimer comprising an invariant pTα chain and a clone-specific β chain, is a critical early checkpoint in thymocyte development within the αβ T cell lineage5,6. PreTCRs arrayed on CD4-CD8- double-negative thymocytes ligate peptides bound to major histocompatibility complex molecules (pMHC) on thymic stroma, similar to αβ T cell receptors that appear on CD4+CD8+ double-positive thymocytes, but via a different molecular docking strategy7-10. Here we show the consequences of these distinct interactions for thymocyte progression using synchronized fetal thymic progenitor cultures that differ in the presence or absence of pMHC on support stroma, and single-cell transcriptomes at key thymocyte developmental transitions. Although major histocompatibility complex (MHC)-negative stroma fosters αβ T cell differentiation, the absence of preTCR-pMHC interactions leads to deviant thymocyte transcriptional programming associated with dedifferentiation. Highly proliferative double-negative and double-positive thymocyte subsets emerge, with antecedent characteristics of T cell lymphoblastic and myeloid malignancies. Compensatory upregulation of diverse MHC class Ib proteins in B2m/H2-Ab1 MHC-knockout mice partially safeguards in vivo thymocyte progression, although disseminated double-positive thymic tumours may develop with ageing. Thus, as well as promoting β chain repertoire broadening for subsequent αβ T cell receptor utilization, preTCR-pMHC interactions limit cellular plasticity to facilitate normal thymocyte differentiation and proliferation that, if absent, introduce developmental vulnerabilities.
Collapse
Affiliation(s)
- Jonathan S Duke-Cohan
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Aoi Akitsu
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Robert J Mallis
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Cameron M Messier
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Patrick H Lizotte
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jon C Aster
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Wonmuk Hwang
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, USA
- Department of Physics and Astronomy, Texas A&M University, College Station, TX, USA
| | - Matthew J Lang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Ellis L Reinherz
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Chann AS, Charnley M, Newton LM, Newbold A, Wiede F, Tiganis T, Humbert PO, Johnstone RW, Russell SM. Stepwise progression of β-selection during T cell development involves histone deacetylation. Life Sci Alliance 2022; 6:6/1/e202201645. [PMID: 36283704 PMCID: PMC9595210 DOI: 10.26508/lsa.202201645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/26/2022] Open
Abstract
During T cell development, the first step in creating a unique T cell receptor (TCR) is genetic recombination of the TCRβ chain. The quality of the new TCRβ is assessed at the β-selection checkpoint. Most cells fail this checkpoint and die, but the coordination of fate at the β-selection checkpoint is not yet understood. We shed new light on fate determination during β-selection using a selective inhibitor of histone deacetylase 6, ACY1215. ACY1215 disrupted the β-selection checkpoint. Characterising the basis for this disruption revealed a new, pivotal stage in β-selection, bookended by up-regulation of TCR co-receptors, CD28 and CD2, respectively. Within this "DN3bPre" stage, CD5 and Lef1 are up-regulated to reflect pre-TCR signalling, and their expression correlates with proliferation. These findings suggest a refined model of β-selection in which a coordinated increase in expression of pre-TCR, CD28, CD5 and Lef1 allows for modulating TCR signalling strength and culminates in the expression of CD2 to enable exit from the β-selection checkpoint.
Collapse
Affiliation(s)
- Anchi S Chann
- Optical Sciences Centre, School of Science, Swinburne University of Technology, Hawthorn, Australia,Peter MacCallum Cancer Centre, Melbourne, Australia,Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Mirren Charnley
- Optical Sciences Centre, School of Science, Swinburne University of Technology, Hawthorn, Australia,Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Lucas M Newton
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Andrea Newbold
- Peter MacCallum Cancer Centre, Melbourne, Australia,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Florian Wiede
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Tony Tiganis
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Patrick O Humbert
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia,Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Australia,Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Australia,Department of Clinical Pathology, University of Melbourne, Melbourne, Australia
| | - Ricky W Johnstone
- Peter MacCallum Cancer Centre, Melbourne, Australia,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Sarah M Russell
- Optical Sciences Centre, School of Science, Swinburne University of Technology, Hawthorn, Australia .,Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
8
|
Alhashem Z, Camargo-Sosa K, Kelsh RN, Linker C. Trunk Neural Crest Migratory Position and Asymmetric Division Predict Terminal Differentiation. Front Cell Dev Biol 2022; 10:887393. [PMID: 35756992 PMCID: PMC9214262 DOI: 10.3389/fcell.2022.887393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
The generation of complex structures during embryogenesis requires the controlled migration and differentiation of cells from distant origins. How these processes are coordinated and impact each other to form functional structures is not fully understood. Neural crest cells migrate extensively giving rise to many cell types. In the trunk, neural crest cells migrate collectively forming chains comprised of cells with distinct migratory identities: one leader cell at the front of the group directs migration, while followers track the leader forming the body of the chain. Herein we analysed the relationship between trunk neural crest migratory identity and terminal differentiation. We found that trunk neural crest migration and fate allocation is coherent. Leader cells that initiate movement give rise to the most distal derivativities. Interestingly, the asymmetric division of leaders separates migratory identity and fate. The distal daughter cell retains the leader identity and clonally forms the Sympathetic Ganglia. The proximal sibling migrates as a follower and gives rise to Schwann cells. The sympathetic neuron transcription factor phox2bb is strongly expressed by leaders from early stages of migration, suggesting that specification and migration occur concomitantly and in coordination. Followers divide symmetrically and their fate correlates with their position in the chain.
Collapse
Affiliation(s)
- Zain Alhashem
- Randall Centre for Cell and Molecular Biophysics, Guy's Campus, King's College London, London, United Kingdom
| | - Karen Camargo-Sosa
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Robert N Kelsh
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Claudia Linker
- Randall Centre for Cell and Molecular Biophysics, Guy's Campus, King's College London, London, United Kingdom
| |
Collapse
|
9
|
Zhang Y, Hernandez M, Gower J, Winicki N, Morataya X, Alvarez S, Yuan JXJ, Shyy J, Thistlethwaite PA. JAGGED-NOTCH3 signaling in vascular remodeling in pulmonary arterial hypertension. Sci Transl Med 2022; 14:eabl5471. [PMID: 35507674 DOI: 10.1126/scitranslmed.abl5471] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Within the pulmonary arterial tree, the NOTCH3 pathway is crucial in controlling vascular smooth muscle cell proliferation and maintaining smooth muscle cells in an undifferentiated state. Pulmonary arterial hypertension (PAH) is a fatal disease without cure, characterized by elevated pulmonary vascular resistance due to vascular smooth muscle cell proliferation in precapillary arteries, perivascular inflammation, and asymmetric neointimal hyperplasia. Here, we show that human PAH is characterized by overexpression of the NOTCH ligand JAGGED-1 (JAG-1) in small pulmonary artery smooth muscle cells and that JAG-1 selectively controls NOTCH3 signaling and cellular proliferation in an autocrine fashion. In contrast, the NOTCH ligand DELTA-LIKE 4 is minimally expressed in small pulmonary artery smooth muscle cells from individuals with PAH, inhibits NOTCH3 cleavage and signaling, and retards vascular smooth muscle cell proliferation. A new monoclonal antibody for the treatment of PAH, which blocks JAG-1 cis- and trans-induced cleavage of the NOTCH3 receptor in the pulmonary vasculature, was developed. Inhibition of JAG-1-induced NOTCH3 signaling in the lung reverses clinical and pathologic pulmonary hypertension in two rodent models of disease, without toxic side effects associated with nonspecific NOTCH inhibitors. Our data suggest opposing roles of NOTCH ligands in the pulmonary vasculature in pulmonary hypertension. We propose that selectively targeting JAG-1 activation of NOTCH3 may be an effective, safe strategy to treat PAH.
Collapse
Affiliation(s)
- Yu Zhang
- Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - Moises Hernandez
- Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jonathan Gower
- Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nolan Winicki
- Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xena Morataya
- Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sebastian Alvarez
- Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jason X-J Yuan
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - John Shyy
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
10
|
Peired AJ, Lazzeri E, Guzzi F, Anders HJ, Romagnani P. From kidney injury to kidney cancer. Kidney Int 2021; 100:55-66. [PMID: 33794229 DOI: 10.1016/j.kint.2021.03.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/04/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
Epidemiologic studies document strong associations between acute or chronic kidney injury and kidney tumors. However, whether these associations are linked by causation, and in which direction, is unclear. Accumulating data from basic and clinical research now shed light on this issue and prompt us to propose a new pathophysiological concept with immanent implications in the management of patients with kidney disease and patients with kidney tumors. As a central paradigm, this review proposes the mechanisms of kidney damage and repair that are active during acute kidney injury but also during persistent injuries in chronic kidney disease as triggers of DNA damage, promoting the expansion of (pre-)malignant cell clones. As renal progenitors have been identified by different studies as the cell of origin for several benign and malignant kidney tumors, we discuss how the different types of kidney tumors relate to renal progenitors at specific sites of injury and to germline or somatic mutations in distinct signaling pathways. We explain how known risk factors for kidney cancer rather represent risk factors for kidney injury as an upstream cause of cancer. Finally, we propose a new role for nephrologists in kidney cancer (i.e., the primary and secondary prevention and treatment of kidney injury to reduce incidence, prevalence, and recurrence of kidney cancer).
Collapse
Affiliation(s)
- Anna Julie Peired
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies, University of Florence, Florence, Italy; Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Elena Lazzeri
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies, University of Florence, Florence, Italy; Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Francesco Guzzi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Hans-Joachim Anders
- Division of Nephrology, Medizinische Klinik and Poliklinik IV, Ludwig Maximilian University Klinikum, Munich, Germany
| | - Paola Romagnani
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies, University of Florence, Florence, Italy; Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy; Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence, Italy.
| |
Collapse
|
11
|
Song Y, Soto J, Wang P, An Q, Zhang X, Hong S, Lee LP, Fan G, Yang L, Li S. Asymmetric Cell Division of Fibroblasts is An Early Deterministic Step to Generate Elite Cells during Cell Reprogramming. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003516. [PMID: 33854891 PMCID: PMC8025021 DOI: 10.1002/advs.202003516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/28/2020] [Indexed: 05/30/2023]
Abstract
Cell reprogramming is considered a stochastic process, and it is not clear which cells are prone to be reprogrammed and whether a deterministic step exists. Here, asymmetric cell division (ACD) at the early stage of induced neuronal (iN) reprogramming is shown to play a deterministic role in generating elite cells for reprogramming. Within one day, fibroblasts underwent ACD, with one daughter cell being converted into an iN precursor and the other one remaining as a fibroblast. Inhibition of ACD significantly inhibited iN conversion. Moreover, the daughter cells showed asymmetric DNA segregation and histone marks during cytokinesis, and the cells inheriting newly replicated DNA strands during ACD became iN precursors. These results unravel a deterministic step at the early phase of cell reprogramming and demonstrate a novel role of ACD in cell phenotype change. This work also supports a novel hypothesis that daughter cells with newly replicated DNA strands are elite cells for reprogramming, which remains to be tested in various reprogramming processes.
Collapse
Affiliation(s)
- Yang Song
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCA90095USA
| | - Jennifer Soto
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCA90095USA
| | - Pingping Wang
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCA90095USA
| | - Qin An
- Department of Human GeneticsUniversity of California Los AngelesLos AngelesCA90095USA
| | - Xuexiang Zhang
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCA90095USA
| | - SoonGweon Hong
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Luke P. Lee
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
- Department of BioengineeringDepartment of Electrical Engineering and Computer ScienceUniversity of California at BerkeleyBerkeleyCAUSA
- Institute of Quantum BiophysicsDepartment of BiophysicsSungkyunkwan UniversitySuwon16419Korea
| | - Guoping Fan
- Department of Human GeneticsUniversity of California Los AngelesLos AngelesCA90095USA
| | - Li Yang
- College of BioengineeringChongqing UniversityChongqing400044China
| | - Song Li
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCA90095USA
- Department of MedicineUniversity of California Los AngelesLos AngelesCA90095USA
| |
Collapse
|
12
|
Allam AH, Charnley M, Pham K, Russell SM. Developing T cells form an immunological synapse for passage through the β-selection checkpoint. J Cell Biol 2021; 220:e201908108. [PMID: 33464309 PMCID: PMC7814350 DOI: 10.1083/jcb.201908108] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/22/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
The β-selection checkpoint of T cell development tests whether the cell has recombined its genomic DNA to produce a functional T cell receptor β (TCRβ). Passage through the β-selection checkpoint requires the nascent TCRβ protein to mediate signaling through a pre-TCR complex. In this study, we show that developing T cells at the β-selection checkpoint establish an immunological synapse in in vitro and in situ, resembling that of the mature T cell. The immunological synapse is dependent on two key signaling pathways known to be critical for the transition beyond the β-selection checkpoint, Notch and CXCR4 signaling. In vitro and in situ analyses indicate that the immunological synapse promotes passage through the β-selection checkpoint. Collectively, these data indicate that developing T cells regulate pre-TCR signaling through the formation of an immunological synapse. This signaling platform integrates cues from Notch, CXCR4, and MHC on the thymic stromal cell to allow transition beyond the β-selection checkpoint.
Collapse
Affiliation(s)
- Amr H. Allam
- Optical Sciences Centre, Faculty of Science, Engineering & Technology, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
| | - Mirren Charnley
- Optical Sciences Centre, Faculty of Science, Engineering & Technology, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
| | - Kim Pham
- Optical Sciences Centre, Faculty of Science, Engineering & Technology, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
- Department of Pathology, The University of Melbourne, Australia
| | - Sarah M. Russell
- Optical Sciences Centre, Faculty of Science, Engineering & Technology, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
- Department of Pathology, The University of Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Australia
| |
Collapse
|
13
|
Zohorsky K, Mequanint K. Designing Biomaterials to Modulate Notch Signaling in Tissue Engineering and Regenerative Medicine. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:383-410. [PMID: 33040694 DOI: 10.1089/ten.teb.2020.0182] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The design of cell-instructive biomaterials for tissue engineering and regenerative medicine is at a crossroads. Although the conventional tissue engineering approach is top-down (cells seeded to macroporous scaffolds and mature to form tissues), bottom-up tissue engineering strategies are becoming appealing. With such developments, we can study cell signaling events, thus enabling functional tissue assembly in physiologic and diseased models. Among many important signaling pathways, the Notch signaling pathway is the most diverse in its influence during tissue morphogenesis and repair following injury. Although Notch signaling is extensively studied in developmental biology and cancer biology, our knowledge of designing biomaterial-based Notch signaling platforms and incorporating Notch signaling components into engineered tissue systems is limited. By incorporating Notch signaling to tissue engineering scaffolds, we can direct cell-specific responses and improve engineered tissue maturation. This review will discuss recent progress in the development of Notch signaling biomaterials as a promising target to control cellular fate decisions, including the influences of ligand identity, biophysical material cues, ligand presentation strategies, and mechanotransduction. Notch signaling is consequently of interest to direct, control, and reprogram cellular behavior on a biomaterial surface. We anticipate that discussions in this article will allow for enhanced knowledge and insight into designing Notch targeted biomaterials for various tissue engineering and cell fate determinations. Impact statement Notch signaling is recognized as an important pathway in tissue engineering and regenerative medicine; however, there is no systematic review on this topic. The comprehensive review and perspectives presented here provide an in-depth discussion on ligand presentation strategies both in 2D and in 3D cell culture environments involving biomaterials/scaffolds. In addition, this review article provides insight into the challenges in designing cell surrogate biomaterials capable of providing Notch signals. To the best of the authors' knowledge, this is the first review relevant to the fields of tissue engineering.
Collapse
Affiliation(s)
- Kathleen Zohorsky
- School of Biomedical Engineering and The University of Western Ontario, London, Canada
| | - Kibret Mequanint
- School of Biomedical Engineering and The University of Western Ontario, London, Canada.,Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Canada
| |
Collapse
|
14
|
Lee BJ, Mace EM. From stem cell to immune effector: how adhesion, migration, and polarity shape T-cell and natural killer cell lymphocyte development in vitro and in vivo. Mol Biol Cell 2020; 31:981-991. [PMID: 32352896 PMCID: PMC7346728 DOI: 10.1091/mbc.e19-08-0424] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/10/2020] [Accepted: 03/10/2020] [Indexed: 12/14/2022] Open
Abstract
Lymphocyte development is a complex and coordinated pathway originating from pluripotent stem cells during embryogenesis and continuing even as matured lymphocytes are primed and educated in adult tissue. Hematopoietic stem cells develop in a specialized niche that includes extracellular matrix and supporting stromal and endothelial cells that both maintain stem cell pluripotency and enable the generation of differentiated cells. Cues for lymphocyte development include changes in integrin-dependent cell motility and adhesion which ultimately help to determine cell fate. The capacity of lymphocytes to adhere and migrate is important for modulating these developmental signals both by regulating the cues that the cell receives from the local microenvironment as well as facilitating the localization of precursors to tissue niches throughout the body. Here we consider how changing migratory and adhesive phenotypes contribute to human natural killer (NK)- and T-cell development as they undergo development from precursors to mature, circulating cells and how our understanding of this process is informed by in vitro models of T- and NK cell generation.
Collapse
Affiliation(s)
- Barclay J. Lee
- Department of Bioengineering, Rice University, Houston, TX 77005
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Emily M. Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
15
|
First person – Mirren Charnley. J Cell Sci 2019. [DOI: 10.1242/jcs.239764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Mirren Charnley is first author on ‘A new role for Notch in the control of polarity and asymmetric cell division of developing T cells’, published in JCS. Mirren is a postdoc in the lab of Prof. Sarah Russell at Swinburne University of Technology, Melbourne, Australia, investigating the use of microfabricated cell culture platforms to determine how cell fate is regulated during T cell development.
Collapse
|