1
|
Ma CIJ, Steinfeld N, Wang WA, Maxfield FR. A high-content microscopy drug screening platform for regulators of the extracellular digestion of lipoprotein aggregates by macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615160. [PMID: 39605493 PMCID: PMC11601252 DOI: 10.1101/2024.09.26.615160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The recruitment of macrophages to the intima of arteries is a critical event in atherosclerotic progression. These macrophages accumulate excessive lipid droplets and become "foam cells", a hallmark of atherosclerosis. Most studies focus on lipid accumulation through macrophage interaction with modified monomeric low-density lipoprotein (LDL). However, in the intima, macrophages predominantly encounter aggregated LDL (agLDL), an interaction that has been studied far less. Macrophages digest agLDL and generate free cholesterol in an extracellular, acidic, hydrolytic compartment. They form a tight seal around agLDL through actin polymerization and deliver lysosomal contents into this space in a process termed digestive exophagy. There is some evidence that inhibiting digestive exophagy to slow cholesterol accumulation in macrophages protects them from becoming foam cells and slows the progression of atherosclerotic lesions. Thus, understanding the mechanisms of digestive exophagy is critical. Here, we describe a high-content microscopy screen on a library of repurposed drugs for compounds that inhibit lysosome exocytosis during digestive exophagy. We identified many hit compounds and further characterized the effects that five of these compounds have on various aspects of digestive exophagy. In addition, three of the five compounds do not inhibit oxidized LDL-induced foam cell formation, indicating the two pathways to foam cell formation can be targeted independently. We demonstrate that this high-content screening platform has great potential as a drug discovery tool with the ability to effectively and efficiently screen for modulators of digestive exophagy.
Collapse
Affiliation(s)
- Cheng-I J Ma
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Noah Steinfeld
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Weixiang A Wang
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | | |
Collapse
|
2
|
Wang W, Xu M, Diao H, Long Q, Gan F, Mao Y. Effects of grape seed proanthocyanidin extract on cholesterol metabolism and antioxidant status in finishing pigs. Sci Rep 2024; 14:21117. [PMID: 39256553 PMCID: PMC11387843 DOI: 10.1038/s41598-024-72075-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
Grape seed proanthocyanidin extract (GSPE) is a natural polyphenolic compound, which plays an important role in anti-inflammatory and antioxidant. The present study aimed to investigate the effects of GSPE supplementation on the cholesterol metabolism and antioxidant status of finishing pigs. In longissimus dorse (LD) muscle, the data showed that GSPE significantly decreased the contents of total cholesterol (T-CHO) and triglyceride (TG), and decreased the mRNA expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoAR) and Fatty acid synthase (FAS), while increased the mRNA expression of carnitine palmitoyl transferase-1b (CPT1b), peroxisome proliferator-activated receptors (PPARα) and peroxisome proliferator activated receptor-γ coactivator-1α (PGC-1α). GSPE also reduced the enzyme activities of HMG-CoAR and FAS, and meanwhile amplified the activity of CPT1b in LD muscle of finishing pigs. Furthermore, dietary GSPE supplementation increased the serum catalase (CAT) and total antioxidant capacity (T-AOC), serum and liver total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-Px) levels, while reduced serum and liver malondialdehyde (MDA) level in finishing pigs. In the liver, Superoxide Dismutase 1 (SOD1), catalase (CAT), glutathione peroxidase 1 (GPX1), Nuclear Factor erythroid 2-Related Factor 2 (NRF2) mRNA levels were increased by GSPE. In conclusion, this study showed that GSPE might be an effective dietary supplement for improving cholesterol metabolism and antioxidant status in finishing pigs.
Collapse
Affiliation(s)
- Wenjing Wang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Meng Xu
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China.
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, 610041, China.
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China.
| | - Hui Diao
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtche Group Co. Ltd, Chengdu, 610066, China
| | - Qingtao Long
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Fang Gan
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Yi Mao
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| |
Collapse
|
3
|
Ganjali Koli M, Fogolari F. Exploring the role of cyclodextrins as a cholesterol scavenger: a molecular dynamics investigation of conformational changes and thermodynamics. Sci Rep 2023; 13:21765. [PMID: 38066228 PMCID: PMC10709460 DOI: 10.1038/s41598-023-49217-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
This study presents a comprehensive analysis of the cholesterol binding mechanism and conformational changes in cyclodextrin (CD) carriers, namely βCD, 2HPβCD, and MβCD. The results revealed that the binding of cholesterol to CDs was spontaneous and thermodynamically favorable, with van der Waals interactions playing a dominant role, while Coulombic interactions have a negligible contribution. The solubility of cholesterol/βCD and cholesterol/MβCD complexes was lower compared to cholesterol/2HPβCD complex due to stronger vdW and Coulombic repulsion between water and CDs. Hydrogen bonding was found to have a minor role in the binding process. The investigation of mechanisms and kinetics of binding demonstrated that cholesterol permeates into the CD cavities completely. Replicas consideration indicated that while the binding to 2HPβCD occurred perpendicularly and solely through positioning cholesterol's oxygen toward the primary hydroxyl rim (PHR), the mechanism of cholesterol binding to βCD and MβCD could take place with the orientation of oxygen towards both rims. Functionalization resulted in decreased cavity polarity, increased constriction tendency, and altered solubility and configuration of the carrier. Upon cholesterol binding, the CDs expanded, increasing the cavity volume in cholesterol-containing systems. The effects of cholesterol on the relative shape anisotropy (κ2) and asphericity parameter (b) in cyclodextrins were investigated. βCD exhibited a spherical structure regardless of cholesterol presence, while 2HPβCD and MβCD displayed more pronounced non-sphericity in the absence of cholesterol. Loading cholesterol transformed 2HPβCD and MβCD into more spherical shapes, with increased probabilities of higher κ2. MβCD showed a higher maximum peak of κ2 compared to 2HPβCD after cholesterol loading, while 2HPβCD maintained a significant maximum peak at 0.2 for b.
Collapse
Affiliation(s)
- Mokhtar Ganjali Koli
- Department of Chemistry, University of Kurdistan, Sanandaj, Iran.
- Computational Chemistry Laboratory, Kask Afrand Exire Ltd., Sanandaj, Iran.
| | - Federico Fogolari
- Dipartimento di Scienze Matematiche Informatiche e Fisiche (DMIF), University of Udine, Via delle Scienze 206, 33100, Udine, Italy
| |
Collapse
|
4
|
Dabravolski SA, Sukhorukov VN, Melnichenko AA, Khotina VA, Orekhov AN. Oligosaccharides as Potential Therapeutics against Atherosclerosis. Molecules 2023; 28:5452. [PMID: 37513323 PMCID: PMC10386248 DOI: 10.3390/molecules28145452] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Atherosclerosis is the major cause of cardiovascular-disease-related death worldwide, resulting from the subendothelial accumulation of lipoprotein-derived cholesterol, ultimately leading to chronic inflammation and the formation of clinically significant atherosclerotic plaques. Oligosaccharides have been widely used in biomedical research and therapy, including tissue engineering, wound healing, and drug delivery. Moreover, oligosaccharides have been consumed by humans for centuries, and are cheap, and available in large amounts. Given the constantly increasing number of obesity, diabetes, and hyperlipidaemia cases, there is an urgent need for novel therapeutics that can economically and effectively slow the progression of atherosclerosis. In this review, we address the current state of knowledge in oligosaccharides research, and provide an update of the recent in vitro and in vivo experiments that precede clinical studies. The application of oligosaccharides could help to eliminate the residual risk after the application of other cholesterol-lowering medicines, and provide new therapeutic opportunities to reduce the associated burden of premature deaths because of atherosclerosis.
Collapse
Affiliation(s)
- Siarhei A Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, P.O. Box 78, Karmiel 2161002, Israel
| | - Vasily N Sukhorukov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia
| | - Alexandra A Melnichenko
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia
| | - Victoria A Khotina
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia
| | - Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia
| |
Collapse
|
5
|
Galindo CL, Khan S, Zhang X, Yeh YS, Liu Z, Razani B. Lipid-laden foam cells in the pathology of atherosclerosis: shedding light on new therapeutic targets. Expert Opin Ther Targets 2023; 27:1231-1245. [PMID: 38009300 PMCID: PMC10843715 DOI: 10.1080/14728222.2023.2288272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/22/2023] [Indexed: 11/28/2023]
Abstract
INTRODUCTION Lipid-laden foam cells within atherosclerotic plaques are key players in all phases of lesion development including its progression, necrotic core formation, fibrous cap thinning, and eventually plaque rupture. Manipulating foam cell biology is thus an attractive therapeutic strategy at early, middle, and even late stages of atherosclerosis. Traditional therapies have focused on prevention, especially lowering plasma lipid levels. Despite these interventions, atherosclerosis remains a major cause of cardiovascular disease, responsible for the largest numbers of death worldwide. AREAS COVERED Foam cells within atherosclerotic plaques are comprised of macrophages, vascular smooth muscle cells, and other cell types which are exposed to high concentrations of lipoproteins accumulating within the subendothelial intimal layer. Macrophage-derived foam cells are particularly well studied and have provided important insights into lipid metabolism and atherogenesis. The contributions of foam cell-based processes are discussed with an emphasis on areas of therapeutic potential and directions for drug development. EXERT OPINION As key players in atherosclerosis, foam cells are attractive targets for developing more specific, targeted therapies aimed at resolving atherosclerotic plaques. Recent advances in our understanding of lipid handling within these cells provide insights into how they might be manipulated and clinically translated to better treat atherosclerosis.
Collapse
Affiliation(s)
- Cristi L. Galindo
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Saifur Khan
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Xiangyu Zhang
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Yu-Sheng Yeh
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Ziyang Liu
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Babak Razani
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
- Pittsburgh VA Medical Center, Pittsburgh, PA
| |
Collapse
|
6
|
Xu Q, Ding S, Qi W, Zhang X, Zhang M, Xing J, Ju A, Zhou L, Ye L. JAK3/STAT5b/PPARγ Pathway Mediates the Association between Di(2-ethylhexyl) Phthalate Exposure and Lipid Metabolic Disorder in Chinese Adolescent Students. Chem Res Toxicol 2023; 36:725-733. [PMID: 37093692 DOI: 10.1021/acs.chemrestox.2c00365] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Our previous studies found that di (2-ethylhexyl) phthalate (DEHP) could disorder lipid metabolism in adolescents but the mechanisms underlying this association remained unclear. This study was undertaken to clarify the mediating effect of JAK3/STAT5/PPARγ on disorder lipid levels induced by DEHP in adolescents. We recruited 478 adolescent students (median age 18.1 years). The mRNA expression and DNA methylation levels of JAK3/STAT5/PPARγ were detected by real-time PCR and the MethylTarget, respectively. We used multiple linear regression to analyze the association between DEHP metabolites (MEHP, MEOHP, MEHHP, MECPP, MCMHP, and ΣDEHP) levels, mRNA expression, and DNA methylation levels. The mediating effect of JAK3/STAT5/PPARγ mRNA expression levels was examined by mediation analysis. We found that all DEHP metabolite levels were positively correlated with TC/HDL-C and LDL-C/HDL-C (P < 0.05). The MEOHP level was negatively associated with DNA methylation levels and positively associated with mRNA levels of PPARγ and STAT5b (P < 0.05). The MEHP level was negatively associated with the DNA methylation level and positively associated with the mRNA level of JAK3 (P < 0.05). Higher MEOHP was associated with a higher level of TC/HDL-C, the mediation analysis showed the mediation effect was 17.18% for the JAK3 level, 10.76% for the STAT5b level, and 11% for the PPARγ level. Higher MEHP was associated with a higher level of LDL-C/HDL-C, the mediation effect was 14.49% for the JAK3 level. In conclusion, DEHP metabolites decreased the DNA methylation levels, inducing the increase of the mRNA levels of JAK3/STAT5/PPARγ. In addition, the mRNA levels mediated the association between DEHP exposure and disorder lipid levels.
Collapse
Affiliation(s)
- Qi Xu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China
| | - Shuang Ding
- Experimental Teaching Center for Preventive Medicine, School of Public Health, Jilin University, Changchun 130021, China
| | - Wen Qi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China
| | - Xueting Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China
| | - Meng Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China
| | - Jiqiang Xing
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China
| | - Aipeng Ju
- Department of Anatomy, College of Basic Medicine Sciences, Jilin University, Changchun 130021, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China
| |
Collapse
|
7
|
Maxfield FR, Steinfeld N, Ma CIJ. The formation and consequences of cholesterol-rich deposits in atherosclerotic lesions. Front Cardiovasc Med 2023; 10:1148304. [PMID: 36926046 PMCID: PMC10011067 DOI: 10.3389/fcvm.2023.1148304] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Cardiovascular diseases remain the leading cause of death throughout the world. Accumulation of lipoprotein-associated lipids and their interaction with macrophages are early steps in the development of atherosclerotic lesions. For decades, it has been known that aggregates of lipoproteins in the subendothelial space are found in early plaques, and these aggregates are tightly associated with extracellular matrix fibers. Additionally, most of the cholesterol in these subendothelial aggregates is unesterified, in contrast to the core of low-density lipoproteins (LDL), in which cholesteryl esters predominate. This suggests that the hydrolysis of cholesteryl esters occurs extracellularly. At the cellular level, macrophages in early plaques engage with the LDL and ingest large amounts of cholesterol, which is esterified and stored in lipid droplets. When excessive lipid droplets have accumulated, endoplasmic reticulum stress responses are activated, leading to cell death. The cholesterol-laden dead cells must be cleared by other macrophages. For many years, it was unclear how unesterified (free) cholesterol could be formed extracellularly in early lesions. Papers in the past decade have shown that macrophages form tightly sealed extracellular attachments to aggregates of LDL. These sealed regions become acidified, and lysosomal contents are secreted into these compartments. Lysosomal acid lipase hydrolyzes the cholesteryl esters, and the free cholesterol is transported into the macrophages. High concentrations of cholesterol can also lead to formation of crystals of cholesterol hydrate, and these crystals have been observed in atherosclerotic blood vessels. Characterization of this process may lead to novel therapies for the prevention and treatment of atherosclerosis.
Collapse
|
8
|
Juhl AD, Wüstner D. Pathways and Mechanisms of Cellular Cholesterol Efflux-Insight From Imaging. Front Cell Dev Biol 2022; 10:834408. [PMID: 35300409 PMCID: PMC8920967 DOI: 10.3389/fcell.2022.834408] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/04/2022] [Indexed: 12/24/2022] Open
Abstract
Cholesterol is an essential molecule in cellular membranes, but too much cholesterol can be toxic. Therefore, mammalian cells have developed complex mechanisms to remove excess cholesterol. In this review article, we discuss what is known about such efflux pathways including a discussion of reverse cholesterol transport and formation of high-density lipoprotein, the function of ABC transporters and other sterol efflux proteins, and we highlight their role in human diseases. Attention is paid to the biophysical principles governing efflux of sterols from cells. We also discuss recent evidence for cholesterol efflux by the release of exosomes, microvesicles, and migrasomes. The role of the endo-lysosomal network, lipophagy, and selected lysosomal transporters, such as Niemann Pick type C proteins in cholesterol export from cells is elucidated. Since oxysterols are important regulators of cellular cholesterol efflux, their formation, trafficking, and secretion are described briefly. In addition to discussing results obtained with traditional biochemical methods, focus is on studies that use established and novel bioimaging approaches to obtain insight into cholesterol efflux pathways, including fluorescence and electron microscopy, atomic force microscopy, X-ray tomography as well as mass spectrometry imaging.
Collapse
Affiliation(s)
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, PhyLife, Physical Life Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
9
|
Mahjoubin-Tehran M, Kovanen PT, Xu S, Jamialahmadi T, Sahebkar A. Cyclodextrins: Potential therapeutics against atherosclerosis. Pharmacol Ther 2020; 214:107620. [PMID: 32599008 DOI: 10.1016/j.pharmthera.2020.107620] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022]
Abstract
Atherosclerosis is an inflammatory disease resulting from subendothelial accumulation of lipoprotein-derived cholesterol in susceptible arterial segments, ultimately leading to the formation of clinically significant atherosclerotic plaques. Despite significant advances in the treatment of atherosclerosis, atherosclerotic cardiovascular diseases remain the leading cause of death and disabilities worldwide. Accordingly, there is an urgent need for novel therapies. Cyclodextrins are cyclic oligosaccharides produced from many sources of starch by enzymatic degradation. The frequently used cyclodextrins are α-, β-, and γ-cyclodextrins, which are composed of six, seven, and eight glucose moieties, respectively. Especially β-cyclodextrin can entrap hydrophobic compounds, such as cholesterol, into its hydrophobic cavity and form stable inclusion complexes with cholesterol. This inherent affinity of cyclodextrins has been exploited to extract excess cholesterol from cultured cells, as well as intra- and extracellular cholesterol stores present in atherosclerotic lesions of experimental animals. Accordingly, cyclodextrins could be considered as potentially effective therapeutic agents for the treatment of atherosclerosis. In this review, we address recent advances and the current status of the development of cyclodextrins and provide an update of the latest in vitro and in vivo experiments that pave the way to clinical studies. The emerging therapeutic opportunities by using cyclodextrins could aid us in our efforts to ultimately eradicate the residual risk after other cholesterol-lowering pharmacotherapies, and also reduce the associated burden of premature deaths due to atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Petri T Kovanen
- Wihuri Research Institute, Biomedicum Helsinki 1, 00290 Helsinki, Finland
| | - Suowen Xu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Tannaz Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.
| |
Collapse
|