1
|
Goławski K, Soczewica R, Kacperczyk-Bartnik J, Mańka G, Kiecka M, Lipa M, Warzecha D, Spaczyński R, Piekarski P, Banaszewska B, Jakimiuk A, Issat T, Rokita W, Młodawski J, Szubert M, Sieroszewski P, Raba G, Szczupak K, Kluz T, Kluza M, Wielgoś M, Koc-Żórawska E, Żórawski M, Laudański P. The Role of Cadherin 12 (CDH12) in the Peritoneal Fluid among Patients with Endometriosis and Endometriosis-Related Infertility. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191811586. [PMID: 36141853 PMCID: PMC9517443 DOI: 10.3390/ijerph191811586] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 05/27/2023]
Abstract
Cadherin 12 (CDH 12) can play a role in the pathogenesis of endometriosis. The aim of this study was to compare the levels of cadherin 12 in the peritoneal fluid between women with and without endometriosis. This was a multicenter cross-sectional study. Eighty-two patients undergoing laparoscopic procedures were enrolled in the study. Cadherin 12 concentrations were determined using the enzyme-linked immunosorbent assay. The level of statistical significance was set at p < 0.05. No differences in cadherin 12 concentrations between patients with and without endometriosis were observed (p = 0.4). Subgroup analyses showed that CDH 12 concentrations were significantly higher in patients with infertility or primary infertility and endometriosis in comparison with patients without endometriosis and without infertility or primary infertility (p = 0.02) and also higher in patients with stage I or II endometriosis and infertility or primary infertility than in patients without endometriosis and infertility or primary infertility (p = 0.03, p = 0.048, respectively). In total, CDH 12 levels were significantly higher in patients diagnosed with infertility or primary infertility (p = 0.0092, p = 0.009, respectively) than in fertile women. Cadherin 12 can possibly play a role in the pathogenesis of infertility, both in women with and without endometriosis.
Collapse
Affiliation(s)
- Ksawery Goławski
- 1st Department of Obstetrics and Gynecology, Medical University of Warsaw, 02-015 Warsaw, Poland
| | - Robert Soczewica
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, 02-097 Warsaw, Poland
| | - Joanna Kacperczyk-Bartnik
- 2nd Department of Obstetrics and Gynecology, Medical University of Warsaw, 00-315 Warsaw, Poland
- Club 35, Polish Society of Gynecologists and Obstetricians, 53-125 Wrocław, Poland
| | | | | | - Michał Lipa
- 1st Department of Obstetrics and Gynecology, Medical University of Warsaw, 02-015 Warsaw, Poland
- Club 35, Polish Society of Gynecologists and Obstetricians, 53-125 Wrocław, Poland
| | - Damian Warzecha
- 1st Department of Obstetrics and Gynecology, Medical University of Warsaw, 02-015 Warsaw, Poland
| | - Robert Spaczyński
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 60-572 Poznan, Poland
| | - Piotr Piekarski
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 60-572 Poznan, Poland
| | - Beata Banaszewska
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 60-572 Poznan, Poland
| | - Artur Jakimiuk
- Department of Reproductive Health, Insitute of Mother and Child in Warsaw, 01-211 Warsaw, Poland
- Department of Obstetrics and Gynecology, Central Clinical Hospital of the Ministry of Interior, 02-507 Warsaw, Poland
| | - Tadeusz Issat
- Department of Reproductive Health, Insitute of Mother and Child in Warsaw, 01-211 Warsaw, Poland
- Department of Obstetrics and Gynecology, Central Clinical Hospital of the Ministry of Interior, 02-507 Warsaw, Poland
| | - Wojciech Rokita
- Collegium Medicum, Jan Kochanowski University in Kielce, 25-369 Kielce, Poland
- Clinic of Obstetrics and Gynecology, Provincial Combined Hospital in Kielce, 25-736 Kielce, Poland
| | - Jakub Młodawski
- Collegium Medicum, Jan Kochanowski University in Kielce, 25-369 Kielce, Poland
- Clinic of Obstetrics and Gynecology, Provincial Combined Hospital in Kielce, 25-736 Kielce, Poland
| | - Maria Szubert
- Club 35, Polish Society of Gynecologists and Obstetricians, 53-125 Wrocław, Poland
- Department of Gynecology and Obstetrics, Medical University of Lodz, 90-419 Lodz, Poland
- Department of Surgical Gynecology and Oncology, Medical University of Lodz, 90-419 Lodz, Poland
| | - Piotr Sieroszewski
- Department of Gynecology and Obstetrics, Medical University of Lodz, 90-419 Lodz, Poland
- Department of Fetal Medicine and Gynecology, Medical University of Lodz, 90-419 Lodz, Poland
| | - Grzegorz Raba
- Clinic of Obstetrics and Gynecology in Przemysl, 37-700 Przemysl, Poland
- Department of Obstetrics and Gynecology, University of Rzeszow, 35-310 Rzeszow, Poland
| | - Kamil Szczupak
- Clinic of Obstetrics and Gynecology in Przemysl, 37-700 Przemysl, Poland
- Department of Obstetrics and Gynecology, University of Rzeszow, 35-310 Rzeszow, Poland
| | - Tomasz Kluz
- Department of Gynecology, Gynecology Oncology and Obstetrics, Institute of Medical Sciences, Medical College of Rzeszow University, 35-310 Rzeszow, Poland
| | - Marek Kluza
- Department of Gynecology, Gynecology Oncology and Obstetrics, Institute of Medical Sciences, Medical College of Rzeszow University, 35-310 Rzeszow, Poland
| | - Mirosław Wielgoś
- 1st Department of Obstetrics and Gynecology, Medical University of Warsaw, 02-015 Warsaw, Poland
| | - Ewa Koc-Żórawska
- 2nd Department of Nephrology and Hypertension with Dialysis Unit, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Marcin Żórawski
- Department of Clinical Medicine, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Piotr Laudański
- 1st Department of Obstetrics and Gynecology, Medical University of Warsaw, 02-015 Warsaw, Poland
- OVIklinika Infertility Center, 01-377 Warsaw, Poland
| |
Collapse
|
2
|
Fu TY, Wang SH, Lin TY, Shen PC, Chang SC, Lin YH, Chou CJ, Yu YH, Yang KT, Huang CW, Shaw SW, Peng SY. The Exploration of miRNAs From Porcine Fallopian Tube Stem Cells on Porcine Oocytes. Front Vet Sci 2022; 9:869217. [PMID: 35615247 PMCID: PMC9125035 DOI: 10.3389/fvets.2022.869217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
Fallopian tube is essential to fertilization and embryonic development. Extracellular vesicles (EVs) from Fallopian tube containing biological regulatory factors, such as lipids, proteins and microRNAs (miRNAs) serve as the key role. At present, studies on oocytes from porcine oviduct and components from EVs remain limited. We aim to explore the effect of EVs secreted by porcine fallopian tube stem cells (PFTSCs) on oocyte. When the fifth-generation PFTSCs reached 80–90% of confluency, the pig in vitro maturation medium was utilized, and the conditioned medium collected for oocyte incubations. To realize the functions of EVs, several proteins were used to determine whether extracted EVs were cell-free. Field emission scanning electron microscope and nanoparticle tracking analyzer were used to observe the morphology. By next generation sequencing, 267 miRNAs were identified, and those with higher expression were selected to analyze the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment maps. The selected miR-152-3p, miR-148a-3p, miR-320a-3p, let-7f-5p, and miR-22-3p, were predicted to target Cepb1 gene affecting MAPK pathway. Of the five miRNAs, miR-320a-3p showed significant difference in maturation rate in vitro maturation. The blastocyst rate of pig embryos was also significantly enhanced by adding 50 nM miR-320a-3p. In vitro culture with miR-320a-3p, the blastocyst rate was significantly higher, but the cleavage rate and cell numbers were not. The CM of PFTSCs effectively improves porcine oocyte development. The miRNAs in EVs are sequenced and identified. miR-320a-3p not only helps the maturation, but also increases the blastocyst rates.
Collapse
Affiliation(s)
- Tzu-Yen Fu
- Department of Animal Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shu-Hsuan Wang
- Department of Animal Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Tzu-Yi Lin
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Perng-Chih Shen
- Department of Animal Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shen-Chang Chang
- Kaohsiung Animal Propagation Station, Livestock Research Institute, Council of Agriculture, Executive Yuan, Pingtung, Taiwan
| | - Yu-Han Lin
- Department of Animal Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chih-Jen Chou
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Yu-Hsiang Yu
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan
| | - Kuo-Tai Yang
- Department of Animal Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chao-Wei Huang
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Steven W. Shaw
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan
- Prenatal Cell and Gene Therapy Group, Institute for Women's Health, University College London, London, United Kingdom
- *Correspondence: Steven W. Shaw
| | - Shao-Yu Peng
- Department of Animal Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Shao-Yu Peng
| |
Collapse
|
3
|
Gefitinib reduces oocyte quality by disturbing meiotic progression. Toxicology 2021; 452:152705. [PMID: 33548356 DOI: 10.1016/j.tox.2021.152705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 12/16/2022]
Abstract
Gefitinib is a first-line anti-cancer drug for the treatment of advanced non-small cell lung cancer (NSCLC). It has been reported that gefitinib can generate several drug-related adverse effects, including nausea, peripheral edema, decreased appetite and rash. However, the reproductive toxicity of gefitinib has not been clearly defined until now. Here we assessed the effects of gefitinib on oocyte quality by examining the critical events and molecular changes of oocyte maturation. Gefitinib at 1, 2, 5 or 10 μM concentration was added to culture medium (M2). We found that gefitinib at its median peak concentration of 1 μM did not affect oocyte maturation, but 5 μM gefitinib severely blocked oocyte meiotic progression as indicated by decreased rates of germinal vesicle breakdown (GVBD) and polar body extrusion (PBE). We further showed that gefitinib treatment increased phosphorylation of CDK1 at the site of Try15, inhibited cyclin B1 entry into the nucleus, and disrupted normal spindle assembly, chromosome alignment and mitochondria dynamics, finally leading to the generation of aneuploidy and early apoptosis of oocytes. Our study reported here provides valuable evidence for reproductive toxicity of gefitinib administration employed for the treatment of cancer patients.
Collapse
|
4
|
Wang Y, Fan LH, Yue W, Ouyang YC, Wang ZB, Hou Y, Schatten H, Sun QY. CENP-W regulates kinetochore-microtubule attachment and meiotic progression of mouse oocytes. Biochem Biophys Res Commun 2020; 527:8-14. [PMID: 32446395 DOI: 10.1016/j.bbrc.2020.04.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/05/2020] [Indexed: 10/24/2022]
Abstract
Oocyte meiotic maturation failure and unfaithful chromosome segregation are major causes for female infertility. Here, we showed that CENP-W, a relatively novel member of the kinetochore protein family, was expressed in mouse oocytes from the germinal vesicle (GV) to metaphase II (MII) stages. Confocal microscopy revealed that CENP-W was localized in the germinal vesicle in the GV stage, and then became concentrated on kinetochores during oocyte maturation. Knockdown of CENP-W by specific siRNA injection in vitro caused kinetochore-microtubule detachment, resulting in severely defective spindles and misaligned chromosomes, leading to metaphase I arrest and failure of first polar body (PB1) extrusion. Correspondingly, spindle assembly checkpoint (SAC) activation was observed in CENP-W knockdown oocytes even after 10h of culture. Our results suggest that CENP-W acts as a kinetochore protein, which takes part in kinetochore-microtubule attachment, thus mediating the progression of oocyte meiotic maturation.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Hua Fan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Yue
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|