1
|
Wu YC, Lehtonen Š, Trontti K, Kauppinen R, Kettunen P, Leinonen V, Laakso M, Kuusisto J, Hiltunen M, Hovatta I, Freude K, Dhungana H, Koistinaho J, Rolova T. Human iPSC-derived pericyte-like cells carrying APP Swedish mutation overproduce beta-amyloid and induce cerebral amyloid angiopathy-like changes. Fluids Barriers CNS 2024; 21:78. [PMID: 39334385 PMCID: PMC11438249 DOI: 10.1186/s12987-024-00576-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Patients with Alzheimer's disease (AD) frequently present with cerebral amyloid angiopathy (CAA), characterized by the accumulation of beta-amyloid (Aβ) within the cerebral blood vessels, leading to cerebrovascular dysfunction. Pericytes, which wrap around vascular capillaries, are crucial for regulating cerebral blood flow, angiogenesis, and vessel stability. Despite the known impact of vascular dysfunction on the progression of neurodegenerative diseases, the specific role of pericytes in AD pathology remains to be elucidated. METHODS To explore this, we generated pericyte-like cells from human induced pluripotent stem cells (iPSCs) harboring the Swedish mutation in the amyloid precursor protein (APPswe) along with cells from healthy controls. We initially verified the expression of classic pericyte markers in these cells. Subsequent functional assessments, including permeability, tube formation, and contraction assays, were conducted to evaluate the functionality of both the APPswe and control cells. Additionally, bulk RNA sequencing was utilized to compare the transcriptional profiles between the two groups. RESULTS Our study reveals that iPSC-derived pericyte-like cells (iPLCs) can produce Aβ peptides. Notably, cells with the APPswe mutation secreted Aβ1-42 at levels ten-fold higher than those of control cells. The APPswe iPLCs also demonstrated a reduced ability to support angiogenesis and maintain barrier integrity, exhibited a prolonged contractile response, and produced elevated levels of pro-inflammatory cytokines following inflammatory stimulation. These functional changes in APPswe iPLCs correspond with transcriptional upregulation in genes related to actin cytoskeleton and extracellular matrix organization. CONCLUSIONS Our findings indicate that the APPswe mutation in iPLCs mimics several aspects of CAA pathology in vitro, suggesting that our iPSC-based vascular cell model could serve as an effective platform for drug discovery aimed to ameliorate vascular dysfunction in AD.
Collapse
Affiliation(s)
- Ying-Chieh Wu
- Neuroscience Center, University of Helsinki, 00014, Helsinki, Finland
| | - Šárka Lehtonen
- Neuroscience Center, University of Helsinki, 00014, Helsinki, Finland.
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.
| | - Kalevi Trontti
- Neuroscience Center, University of Helsinki, 00014, Helsinki, Finland
| | - Riitta Kauppinen
- Neuroscience Center, University of Helsinki, 00014, Helsinki, Finland
| | - Pinja Kettunen
- Neuroscience Center, University of Helsinki, 00014, Helsinki, Finland
| | - Ville Leinonen
- NeuroCenter, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Johanna Kuusisto
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicine and Clinical Research, Kuopio University Hospital, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Iiris Hovatta
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kristine Freude
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark
| | - Hiramani Dhungana
- Neuroscience Center, University of Helsinki, 00014, Helsinki, Finland
| | - Jari Koistinaho
- Helsinki Institute of Life Science, University of Helsinki, 00014, Helsinki, Finland.
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, University of Helsinki, 00014, Helsinki, Finland.
| | - Taisia Rolova
- Neuroscience Center, University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
2
|
Diao B, Sun C, Yu P, Zhao Z, Yang P. LAMA5 promotes cell proliferation and migration in ovarian cancer by activating Notch signaling pathway. FASEB J 2023; 37:e23109. [PMID: 37527216 DOI: 10.1096/fj.202300306r] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/18/2023] [Accepted: 07/12/2023] [Indexed: 08/03/2023]
Abstract
LAMA5 (laminin α5) is a member of the laminin family. Despite the recent research implicating LAMA5 in cancer, the function of LAMA5 has remained uncertain in the progression of ovarian cancer (OC). Here, we investigated the functional influences of LAMA5 knockdown on OC in vitro and in vivo. In this study, we used immunohistochemistry (IHC) analysis to detect the relative expression of LAMA5 in OC and non-cancer tissues, and we analyzed its connection with the overall survival (OS) of OC patients. To prove the role of LAMA5 in cell proliferation, migration, and invasion, LAMA5 expression in OC cell lines was inhibited by lentivirus. Compared with normal fallopian tube tissue, epithelial ovarian cancer (EOC) tissue showed critically higher LAMA5 expression levels; additionally, high LAMA5 levels were a poor predictor of OS. We found that cell progression was restrained in LAMA5-knockdown OC cell lines in vivo and in vitro. Finally, LAMA5 might be a commanding inducer of the expression of epithelial-mesenchymal transition (EMT) and Notch signaling pathway-related markers. Together, our research indicates that LAMA5 is highly connected to OC progression as it may play a role in the EMT process through the Notch signaling pathway.
Collapse
Affiliation(s)
- Bowen Diao
- Department of Gynecology, First Affiliated Hospital, Shihezi University, Shihezi, China
- The NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University, Shihezi, China
| | - Chongfeng Sun
- Department of Gynecology, First Affiliated Hospital, Shihezi University, Shihezi, China
- The NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University, Shihezi, China
| | - Panpan Yu
- Department of Gynecology, First Affiliated Hospital, Shihezi University, Shihezi, China
- The NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University, Shihezi, China
| | - Zouyu Zhao
- Department of Gynecology, First Affiliated Hospital, Shihezi University, Shihezi, China
- The NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University, Shihezi, China
| | - Ping Yang
- Department of Gynecology, First Affiliated Hospital, Shihezi University, Shihezi, China
- The NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University, Shihezi, China
| |
Collapse
|
3
|
Khademi R, Malekzadeh H, Bahrami S, Saki N, Khademi R, Villa-Diaz LG. Regulation and Functions of α6-Integrin (CD49f) in Cancer Biology. Cancers (Basel) 2023; 15:3466. [PMID: 37444576 DOI: 10.3390/cancers15133466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Over the past decades, our knowledge of integrins has evolved from being understood as simple cell surface adhesion molecules to receptors that have a complex range of intracellular and extracellular functions, such as delivering chemical and mechanical signals to cells. Consequently, they actively control cellular proliferation, differentiation, and apoptosis. Dysregulation of integrin signaling is a major factor in the development and progression of many tumors. Many reviews have covered the broader integrin family in molecular and cellular studies and its roles in diseases. Nevertheless, further understanding of the mechanisms specific to an individual subunit of different heterodimers is more useful. Thus, we describe the current understanding of and exploratory investigations on the α6-integrin subunit (CD49f, VLA6; encoded by the gene itga6) in normal and cancer cells. The roles of ITGA6 in cell adhesion, stemness, metastasis, angiogenesis, and drug resistance, and as a diagnosis biomarker, are discussed. The role of ITGA6 differs based on several features, such as cell background, cancer type, and post-transcriptional alterations. In addition, exosomal ITGA6 also implies metastatic organotropism. The importance of ITGA6 in the progression of a number of cancers, including hematological malignancies, suggests its potential usage as a novel prognostic or diagnostic marker and useful therapeutic target for better clinical outcomes.
Collapse
Affiliation(s)
- Rahele Khademi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (Immuno_TACT), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
| | - Hossein Malekzadeh
- Department of Oral Medicine, Faculty of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
| | - Sara Bahrami
- Resident of Restorative Dentistry, Qazvin University of Medical Sciences, Qazvin 3419759811, Iran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
| | - Reyhane Khademi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (Immuno_TACT), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
- Department of Medical Laboratory Sciences, School of Para-Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz 6135715794, Iran
| | - Luis G Villa-Diaz
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
4
|
Ehnes DD, Alghadeer A, Hanson-Drury S, Zhao YT, Tilmes G, Mathieu J, Ruohola-Baker H. Sci-Seq of Human Fetal Salivary Tissue Introduces Human Transcriptional Paradigms and a Novel Cell Population. FRONTIERS IN DENTAL MEDICINE 2022; 3:887057. [PMID: 36540608 PMCID: PMC9762771 DOI: 10.3389/fdmed.2022.887057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
Multiple pathologies and non-pathological factors can disrupt the function of the non-regenerative human salivary gland including cancer and cancer therapeutics, autoimmune diseases, infections, pharmaceutical side effects, and traumatic injury. Despite the wide range of pathologies, no therapeutic or regenerative approaches exist to address salivary gland loss, likely due to significant gaps in our understanding of salivary gland development. Moreover, identifying the tissue of origin when diagnosing salivary carcinomas requires an understanding of human fetal development. Using computational tools, we identify developmental branchpoints, a novel stem cell-like population, and key signaling pathways in the human developing salivary glands by analyzing our human fetal single-cell sequencing data. Trajectory and transcriptional analysis suggest that the earliest progenitors yield excretory duct and myoepithelial cells and a transitional population that will yield later ductal cell types. Importantly, this single-cell analysis revealed a previously undescribed population of stem cell-like cells that are derived from SD and expresses high levels of genes associated with stem cell-like function. We have observed these rare cells, not in a single niche location but dispersed within the developing duct at later developmental stages. Our studies introduce new human-specific developmental paradigms for the salivary gland and lay the groundwork for the development of translational human therapeutics.
Collapse
Affiliation(s)
- Devon Duron Ehnes
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Ammar Alghadeer
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Sesha Hanson-Drury
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States
| | - Yan Ting Zhao
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States
| | - Gwen Tilmes
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Julie Mathieu
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - Hannele Ruohola-Baker
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
5
|
Abstract
Vascular transplantation is an effective and common treatment for cardiovascular disease (CVD). However, the low biocompatibility of implants is a major problem that hinders its clinical application. Surface modification of implants with extracellular matrix (ECM) coatings is an effective approach to improve the biocompatibility of cardiovascular materials. The complete ECM seems to have better biocompatibility, which may give cardiovascular biomaterials a more functional surface. The use of one or several ECM proteins to construct a surface allows customization of coating composition and structure, possibly resulting in some unique functions. ECM is a complex three-dimensional structure composed of a variety of functional biological macromolecules, and changes in the composition will directly affect the function of the coating. Therefore, understanding the chemical composition of the ECM and its interaction with cells is beneficial to provide new approaches for coating surface modification. This article reviews novel ECM coatings, including coatings composed of intact ECM and biomimetic coatings tailored from several ECM proteins, and introduces new advances in coating fabrication. These ECM coatings are effective in improving the biocompatibility of vascular grafts.
Collapse
|
6
|
Gpx3 and Egr1 Are Involved in Regulating the Differentiation Fate of Cardiac Fibroblasts under Pressure Overload. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3235250. [PMID: 35799890 PMCID: PMC9256463 DOI: 10.1155/2022/3235250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/21/2022] [Accepted: 06/03/2022] [Indexed: 12/04/2022]
Abstract
Objectives Although myocardial fibrosis is a common pathophysiological process associated with many heart diseases, the molecular mechanisms regulating the development of fibrosis have not been fully determined. Recently, single cell RNA sequencing (scRNA-seq) analysis has been used to examine cellular fate and function during cellular differentiation and has contributed to elucidating the mechanisms of various diseases. The main purpose of this study was to characterize the fate of cardiac fibroblasts (CFs) and the dynamic gene expression patterns in a model of cardiac pressure overload using scRNA-seq analysis. Methods The public scRNA-seq dataset of the transverse aortic coarctation (TAC) model in mice was downloaded from the GEO database, GSE155882. First, we performed quality control, dimensionality reduction, clustering, and annotation of the data through the Seurat R package (v4.0.5). Then, we constructed the pseudotime trajectory of cell development and identified key regulatory genes using the Monocle R package (v2.22.0). Different cell fates and groups were fully characterized by Gene Set Enrichment Analysis (GSEA) analysis and Transcription factor (TF) activity analysis. Finally, we used Cytoscape (3.9.1) to extensively examine the gene regulatory network related to cell fate. Results Pseudotime analysis showed that CFs differentiated into two distinct cell fates, one of which produced activated myofibroblasts, and the other which produced protective cells that were associated with reduced fibrosis levels, increased antioxidative stress responses, and the ability to promote angiogenesis. In the TAC model, activated CFs were significantly upregulated, while protective cells were downregulated. Treatment with the bromodomain inhibitor JQ1 reversed this change and improved fibrosis. Analysis of dynamic gene expression revealed that Gpx3 was significantly upregulated during cell differentiation into protective cells. Gpx3 expression was affected by JQ1 treatment. Furthermore, Gpx3 expression levels were negatively correlated with the different levels of fibrosis observed in the various treatment groups. Finally, we found that transcription factors Jun, Fos, Atf3, and Egr1 were upregulated in protective cells, especially Egr1 was predicted to be involved in the regulation of genes related to antioxidant stress and angiogenesis, suggesting a role in promoting differentiation into this cell phenotype. Conclusions The scRNA-seq analysis was used to characterize the dynamic changes associated with fibroblast differentiation and identified Gpx3 as a factor that might be involved in the regulation of myocardial fibrosis under cardiac pressure overload. These findings will help to further understanding of the mechanism of fibrosis and provide potential intervention targets.
Collapse
|
7
|
Wu C, Liu Y, Wei D, Tao L, Yuan L, Jing T, Wang B. Gene Coexpression Network Characterizing Microenvironmental Heterogeneity and Intercellular Communication in Pancreatic Ductal Adenocarcinoma: Implications of Prognostic Significance and Therapeutic Target. Front Oncol 2022; 12:840474. [PMID: 35719923 PMCID: PMC9198606 DOI: 10.3389/fonc.2022.840474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/26/2022] [Indexed: 11/20/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is characterized by intensive stromal involvement and heterogeneity. Pancreatic cancer cells interact with the surrounding tumor microenvironment (TME), leading to tumor development, unfavorable prognosis, and therapy resistance. Herein, we aim to clarify a gene network indicative of TME features and find a vulnerability for combating pancreatic cancer. Methods Single-cell RNA sequencing data processed by the Seurat package were used to retrieve cell component marker genes (CCMGs). The correlation networks/modules of CCMGs were determined by WGCNA. Neural network and risk score models were constructed for prognosis prediction. Cell–cell communication analysis was achieved by NATMI software. The effect of the ITGA2 inhibitor was evaluated in vivo by using a KrasG12D-driven murine pancreatic cancer model. Results WGCNA categorized CCMGs into eight gene coexpression networks. TME genes derived from the significant networks were able to stratify PDAC samples into two main TME subclasses with diverse prognoses. Furthermore, we generated a neural network model and risk score model that robustly predicted the prognosis and therapeutic outcomes. A functional enrichment analysis of hub genes governing gene networks revealed a crucial role of cell junction molecule–mediated intercellular communication in PDAC malignancy. The pharmacological inhibition of ITGA2 counteracts the cancer-promoting microenvironment and ameliorates pancreatic lesions in vivo. Conclusion By utilizing single-cell data and WGCNA to deconvolute the bulk transcriptome, we exploited novel PDAC prognosis–predicting strategies. Targeting the hub gene ITGA2 attenuated tumor development in a PDAC mouse model. These findings may provide novel insights into PDAC therapy.
Collapse
Affiliation(s)
- Chengsi Wu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yizhen Liu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Yizhen Liu, ; Tiantian Jing, ; Boshi Wang,
| | - Dianhui Wei
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Tao
- Emergency Department, 305 Hospital of People’s Liberation Army, Beijing, China
| | - Lili Yuan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiantian Jing
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yizhen Liu, ; Tiantian Jing, ; Boshi Wang,
| | - Boshi Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yizhen Liu, ; Tiantian Jing, ; Boshi Wang,
| |
Collapse
|
8
|
Contribution of Endothelial Laminin-Binding Integrins to Cellular Processes Associated with Angiogenesis. Cells 2022; 11:cells11050816. [PMID: 35269439 PMCID: PMC8909174 DOI: 10.3390/cells11050816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/14/2022] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
Endothelial cells engage extracellular matrix and basement membrane components through integrin-mediated adhesion to promote angiogenesis. Angiogenesis involves the sprouting of endothelial cells from pre-existing vessels, their migration into surrounding tissue, the upregulation of angiogenesis-associated genes, and the formation of new endothelial tubes. To determine whether the endothelial laminin-binding integrins, α6β4, and α3β1 contribute to these processes, we employed RNAi technology in organotypic angiogenesis assays, as well in migration assays, in vitro. The endothelial depletion of either α6β4 or α3β1 inhibited endothelial sprouting, indicating that these integrins have non-redundant roles in this process. Interestingly, these phenotypes were accompanied by overlapping and distinct changes in the expression of angiogenesis-associated genes. Lastly, depletion of α6β4, but not α3β1, inhibited migration. Taken together, these results suggest that laminin-binding integrins regulate processes associated with angiogenesis by distinct and overlapping mechanisms.
Collapse
|
9
|
Valdoz JC, Johnson BC, Jacobs DJ, Franks NA, Dodson EL, Sanders C, Cribbs CG, Van Ry PM. The ECM: To Scaffold, or Not to Scaffold, That Is the Question. Int J Mol Sci 2021; 22:12690. [PMID: 34884495 PMCID: PMC8657545 DOI: 10.3390/ijms222312690] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
The extracellular matrix (ECM) has pleiotropic effects, ranging from cell adhesion to cell survival. In tissue engineering, the use of ECM and ECM-like scaffolds has separated the field into two distinct areas-scaffold-based and scaffold-free. Scaffold-free techniques are used in creating reproducible cell aggregates which have massive potential for high-throughput, reproducible drug screening and disease modeling. Though, the lack of ECM prevents certain cells from surviving and proliferating. Thus, tissue engineers use scaffolds to mimic the native ECM and produce organotypic models which show more reliability in disease modeling. However, scaffold-based techniques come at a trade-off of reproducibility and throughput. To bridge the tissue engineering dichotomy, we posit that finding novel ways to incorporate the ECM in scaffold-free cultures can synergize these two disparate techniques.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Pam M. Van Ry
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA; (J.C.V.); (B.C.J.); (D.J.J.); (N.A.F.); (E.L.D.); (C.S.); (C.G.C.)
| |
Collapse
|
10
|
Effect of LAMA4 on Prognosis and Its Correlation with Immune Infiltration in Gastric Cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6428873. [PMID: 34414238 PMCID: PMC8370814 DOI: 10.1155/2021/6428873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/28/2021] [Indexed: 12/11/2022]
Abstract
Background Laminin alpha 4 (LAMA4) is widely distributed in the basement membranes of various tissues. It can regulate cancer cell proliferation and migration. We investigated the effects of LAMA4 in gastric cancer (GC). Methods LAMA4 expression patterns were analyzed in GC using the Gene Expression Omnibus (GEO), Gene Expression Profiling Interactive Analysis (GEPIA), and UALCAN. Correlations between LAMA4 expression and clinicopathological characteristics were evaluated using data from The Cancer Genome Atlas (TCGA). The survival analysis was examined using the Kaplan-Meier plotter and GEPIA and ascertained by multivariate Cox analysis. Genetic alterations and DNA methylation of LAMA4 were analyzed using cBioPortal and MethSurv. LinkedOmics was applied to identify coexpressed genes of LAMA4. The association between LAMA4 and infiltration of immune cells was explored using Tumor Immune Estimation Resource (TIMER) and GEPIA. Results LAMA4 was highly expressed in GC, and its upregulation significantly correlated with T classification (P = 0.040). LAMA4 expression was an independent risk factor for overall survival (OS, P = 0.033). Patients with genetic alterations of LAMA4 showed a significantly better disease-free survival (DFS, P = 0.022). Ten CpG sites of LAMA4 were significantly associated with prognosis in GC. The functions of LAMA4 and coexpression genes were mainly involved in extracellular matrix (ECM) receptor interaction. LAMA4 expression significantly correlated with infiltration of macrophages (P < 0.001), CD4+ T cells (P < 0.001), and dendritic cells (P < 0.001). Furthermore, LAMA4 expression was significantly associated with markers of M2 and tumor-associated macrophages (TAMs). Conclusion LAMA4 expression was linked to GC prognosis and immune cell infiltration, indicating its potential use as a prognostic biomarker and therapeutic target.
Collapse
|
11
|
Kenney J, Ndoye A, Lamar JM, DiPersio CM. Comparative use of CRISPR and RNAi to modulate integrin α3β1 in triple negative breast cancer cells reveals that some pro-invasive/pro-metastatic α3β1 functions are independent of global regulation of the transcriptome. PLoS One 2021; 16:e0254714. [PMID: 34270616 PMCID: PMC8284828 DOI: 10.1371/journal.pone.0254714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/01/2021] [Indexed: 12/13/2022] Open
Abstract
Integrin receptors for the extracellular matrix play critical roles at all stages of carcinogenesis, including tumor growth, tumor progression and metastasis. The laminin-binding integrin α3β1 is expressed in all epithelial tissues where it has important roles in cell survival, migration, proliferation, and gene expression programs during normal and pathological tissue remodeling. α3β1 signaling and adhesion functions promote tumor growth and metastasis in a number of different types of cancer cells. Previously, we used RNA interference (RNAi) technology to suppress the expression of the ITGA3 gene (encoding the α3 subunit) in the triple-negative breast cancer cell line, MDA-MB-231, thereby generating variants of this line with reduced expression of integrin α3β1. This approach revealed that α3β1 promotes pro-tumorigenic functions such as cell invasion, lung metastasis, and gene regulation. In the current study, we used CRISPR technology to knock out the ITGA3 gene in MDA-MB-231 cells, thereby ablating expression of integrin α3β1 entirely. RNA-seq analysis revealed that while the global transcriptome was altered substantially by RNAi-mediated suppression of α3β1, it was largely unaffected following CRISPR-mediated ablation of α3β1. Moreover, restoring α3β1 to the latter cells through inducible expression of α3 cDNA failed to alter gene expression substantially, suggesting that use of CRISPR to abolish α3β1 led to a decoupling of the integrin from its ability to regulate the transcriptome. Interestingly, both cell invasion in vitro and metastatic colonization in vivo were reduced when α3β1 was abolished using CRISPR, as we observed previously using RNAi to suppress α3β1. Taken together, our results show that pro-invasive/pro-metastatic roles for α3β1 are not dependent on its ability to regulate the transcriptome. Moreover, our finding that use of RNAi versus CRISPR to target α3β1 produced distinct effects on gene expression underlines the importance of using multiple approaches to obtain a complete picture of an integrin’s functions in cancer cells.
Collapse
Affiliation(s)
- James Kenney
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, United States of America
| | - Abibatou Ndoye
- Department of Surgery, Albany Medical College, Albany, New York, United States of America
| | - John M. Lamar
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, United States of America
| | - C. Michael DiPersio
- Department of Surgery, Albany Medical College, Albany, New York, United States of America
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
12
|
Lu JH, Wu YH, Juan TJ, Lin HY, Lin RJ, Chueh KS, Lee YC, Chang CY, Juan YS. Autophagy Alters Bladder Angiogenesis and Improves Bladder Hyperactivity in the Pathogenesis of Ketamine-Induced Cystitis in a Rat Model. BIOLOGY 2021; 10:biology10060488. [PMID: 34070854 PMCID: PMC8228861 DOI: 10.3390/biology10060488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/23/2022]
Abstract
Simple Summary Long-term ketamine abuse may increase urinary frequency, nocturia, urgency, bladder pain, dysuria, and sometimes hematuria. Evaluation of the pathophysiological mechanism of bladder voiding dysfunction in ketamine-induced cystitis (KIC) patients is a critical step for therapy. This study uses autophagy inducer (rapamycin, mTOR inhibitor) and inhibitor (wortmannin, PI3K-III inhibitor) to identify the role of autophagy in bladder angiogenesis alteration and bladder hyperactivity improvement. Abstract The present study attempts to elucidate whether autophagy alters bladder angiogenesis, decreases inflammatory response, and ameliorates bladder hyperactivity—thereby influencing bladder function in ketamine-induced cystitis (KIC). In our methodology, female Sprague-Dawley (S-D) rats were randomly divided into the control group, the ketamine group, the ketamine+rapamycin group, and the ketamine+wortmannin group. The bladder function, contractile activity of detrusor smooth muscle, distribution of autophagosome and autolysosome, total white blood cells (WBCs) and leukocyte differential counts, the expressions of autophagy-associated protein, angiogenesis markers, and signaling pathway molecules involved in KIC were tested, respectively. The data revealed that treatment with ketamine significantly results in bladder overactivity, enhanced interstitial fibrosis, impaired endothelium, induced eosinophil-mediated inflammation, swelling, and degraded mitochondria and organelles, inhibited angiogenesis, and elevated the phosphorylation of Akt. However, treatment with rapamycin caused an inhibitory effect on vascular formation, removed ketamine metabolites, decreased the eosinophil-mediated inflammation, and ameliorated bladder hyperactivity, leading to improve bladder function in KIC. Moreover, wortmannin treatment reduced basophil-mediated inflammatory response, improved bladder angiogenesis by increasing capillary density and VEGF expression, to reverse antiangiogenic effect to repair KIC. In conclusion, these findings suggested that autophagy could modulate inflammatory responses and angiogenesis, which improved bladder function in KIC.
Collapse
Affiliation(s)
- Jian-He Lu
- Emerging Compounds Research Center, Department of Environmental Science and Engineering, College of Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
| | - Yi-Hsuan Wu
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tai-Jui Juan
- Department of Medicine, National Defense Medical College, Taipei 11490, Taiwan;
| | - Hung-Yu Lin
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 84001, Taiwan;
- Division of Urology, Department of Surgery, E-Da Cancer Hospital, Kaohsiung 82445, Taiwan
- Division of Urology, Department of Surgery, E-Da Hospital, Kaohsiung 82445, Taiwan
| | - Rong-Jyh Lin
- Department of Parasitology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-C.L.); (C.-Y.C.)
| | - Kuang-Shun Chueh
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80661, Taiwan
| | - Yi-Chen Lee
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-C.L.); (C.-Y.C.)
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chao-Yuan Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-C.L.); (C.-Y.C.)
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yung-Shun Juan
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80661, Taiwan
- Correspondence: ; Tel.: +886-7-312-1101; Fax: +886-7-350-6269
| |
Collapse
|
13
|
Ren H, Zhu J, Yu H, Bazhin AV, Westphalen CB, Renz BW, Jacob SN, Lampert C, Werner J, Angele MK, Bösch F. Angiogenesis-Related Gene Expression Signatures Predicting Prognosis in Gastric Cancer Patients. Cancers (Basel) 2020; 12:cancers12123685. [PMID: 33302481 PMCID: PMC7763234 DOI: 10.3390/cancers12123685] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/27/2020] [Accepted: 12/04/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary To elucidate the role of angiogenesis as a prognostic signature in gastric cancer, we analyzed the expression level of 36 angiogenesis-related genes (ARGs) from Stomach Adenocarcinoma (STAD) from The Cancer Genome Atlas (TCGA). Consensus clustering analysis showed two major angiogenesis-related types: one related to more aggressive clinicopathological characteristics and worse survival, and the other related to lower tumor, lymph node, metastasis (TNM) stage and better outcomes. Our analysis of TCGA with a least absolute shrinkage and selection operator (LASSO) regression model identified 10 genes associated with overall survival in gastric cancer patients. With this gene signature, we computed angiogenesis-related gene signature risk scores for individual cancer patients that predicted overall and disease-free survival, which were further validated in the independent dataset Asian Cancer Research Group (ACRG). Moreover, an overall survival (OS)-related nomogram was established and had better performance in prognosis prediction than TNM stage. Our analysis provides a comprehensive map of ARGs that can be serve as useful biomarkers for gastric cancer. Abstract Increasing evidence indicates that angiogenesis is crucial in the development and progression of gastric cancer (GC). This study aimed to develop a prognostic relevant angiogenesis-related gene (ARG) signature and a nomogram. The expression profile of the 36 ARGs and clinical information of 372 GC patients were extracted from The Cancer Genome Atlas (TCGA). Consensus clustering was applied to divide patients into clusters 1 and 2. Least absolute shrinkage and selection operator (LASSO) Cox regression analyses were used to identify the survival related ARGs and establish prognostic gene signatures, respectively. The Asian Cancer Research Group (ACRG) (n = 300) was used for external validation. Risk score of ARG signatures was calculated, and a prognostic nomogram was developed. Gene set enrichment analysis of the ARG model risk score was performed. Cluster 2 patients had more advanced clinical stage and shorter survival rates. ARG signatures carried prognostic relevance in both cohorts. Moreover, ARG-risk score was proved as an independent prognostic factor. The predictive value of the nomogram incorporating the risk score and clinicopathological features was superior to tumor, lymph node, metastasis (TNM) staging. The high-risk score group was associated with several cancer and metastasis-related pathways. The present study suggests that ARG-based nomogram could serve as effective prognostic biomarkers and allow a more precise risk stratification.
Collapse
Affiliation(s)
- Haoyu Ren
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, D-81377 Munich, Germany; (H.R.); (H.Y.); (A.V.B.); (B.W.R.); (S.N.J.); (C.L.); (J.W.); (M.K.A.)
| | - Jiang Zhu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China;
| | - Haochen Yu
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, D-81377 Munich, Germany; (H.R.); (H.Y.); (A.V.B.); (B.W.R.); (S.N.J.); (C.L.); (J.W.); (M.K.A.)
| | - Alexandr V. Bazhin
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, D-81377 Munich, Germany; (H.R.); (H.Y.); (A.V.B.); (B.W.R.); (S.N.J.); (C.L.); (J.W.); (M.K.A.)
| | - Christoph Benedikt Westphalen
- Department of Medicine 3 and Comprehensive Cancer Center, Ludwig-Maximilians-University Munich, D-81377 Munich, Germany;
| | - Bernhard W. Renz
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, D-81377 Munich, Germany; (H.R.); (H.Y.); (A.V.B.); (B.W.R.); (S.N.J.); (C.L.); (J.W.); (M.K.A.)
| | - Sven N. Jacob
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, D-81377 Munich, Germany; (H.R.); (H.Y.); (A.V.B.); (B.W.R.); (S.N.J.); (C.L.); (J.W.); (M.K.A.)
| | - Christopher Lampert
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, D-81377 Munich, Germany; (H.R.); (H.Y.); (A.V.B.); (B.W.R.); (S.N.J.); (C.L.); (J.W.); (M.K.A.)
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, D-81377 Munich, Germany; (H.R.); (H.Y.); (A.V.B.); (B.W.R.); (S.N.J.); (C.L.); (J.W.); (M.K.A.)
| | - Martin K. Angele
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, D-81377 Munich, Germany; (H.R.); (H.Y.); (A.V.B.); (B.W.R.); (S.N.J.); (C.L.); (J.W.); (M.K.A.)
| | - Florian Bösch
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, D-81377 Munich, Germany; (H.R.); (H.Y.); (A.V.B.); (B.W.R.); (S.N.J.); (C.L.); (J.W.); (M.K.A.)
- Correspondence: ; Tel.:+49-89-4400-72781; Fax: +49-89-4400-75474
| |
Collapse
|