1
|
de Lange EM, Mol FN, van der Klei IJ, Vlijm R. STED super-resolution microscopy unveils the dynamics of Atg30 on yeast Pex3-labeled peroxisomes. iScience 2024; 27:110481. [PMID: 39156652 PMCID: PMC11326945 DOI: 10.1016/j.isci.2024.110481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/26/2024] [Accepted: 07/08/2024] [Indexed: 08/20/2024] Open
Abstract
Peroxisomes are dynamic organelles with important metabolic functions. Yeast Pex3 is a multifunctional membrane protein aiding in peroxisomal biogenesis, inheritance, and degradation (pexophagy), by interacting with process-specific factors. Using multicolor (live-cell) stimulated emission depletion (STED) nanoscopy, we studied the localization of Pex3 and its binding partners in Hansenula polymorpha. Unlike confocal microscopy, STED allows resolving the membrane of tiny peroxisomes, enabling accurate measurements of the size of all Pex3-labeled peroxisomes. We localized Pex3 and its binding partners at peroxisome-repressing and -inducing conditions and during pexophagy. In-depth quantitative analysis of Pex3 and pexophagy receptor Atg30 showed dynamic changes in their (co)localization. One remarkable response of Atg30 was the shift in position from being sandwiched between clustered peroxisomes at proliferation conditions, to the cytosolically exposed parts of peroxisome clusters upon pexophagy induction. Summarizing, we show that STED allows characterizing dynamics of the localization of peroxisomal proteins in yeast cells.
Collapse
Affiliation(s)
- Eline M.F. de Lange
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
- Molecular Biophysics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Frank N. Mol
- Molecular Biophysics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Ida J. van der Klei
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Rifka Vlijm
- Molecular Biophysics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| |
Collapse
|
2
|
Chen H, de Boer R, Krikken AM, Wu F, van der Klei I. Hansenula polymorpha cells lacking the ER-localized peroxins Pex23 or Pex29 show defects in mitochondrial function and morphology. Biol Open 2024; 13:bio060271. [PMID: 38682287 PMCID: PMC11139031 DOI: 10.1242/bio.060271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/23/2024] [Indexed: 05/01/2024] Open
Abstract
Pex23 family proteins localize to the endoplasmic reticulum and play a role in peroxisome and lipid body formation. The yeast Hansenula polymorpha contains four members: Pex23, Pex24, Pex29 and Pex32. We previously showed that loss of Pex24 or Pex32 results in severe peroxisomal defects, caused by reduced peroxisome-endoplasmic reticulum contact sites. We now analyzed the effect of the absence of all four Pex23 family proteins on other cell organelles. Vacuoles were normal in all four deletion strains. The number of lipid droplets was reduced in pex23 and pex29, but not in pex24 and pex32 cells, indicating that peroxisome and lipid droplet formation require different Pex23 family proteins in H. polymorpha. In pex23 and pex29 cells mitochondria were fragmented and clustered accompanied by reduced levels of the fusion protein Fzo1. Deletion of DNM1 suppressed the morphological phenotype of pex23 and pex29 cells, suggesting that mitochondrial fusion is affected. pex23 and pex29 cells showed retarded growth and reduced mitochondrial activities. The growth defect was partially suppressed by DNM1 deletion as well as by an artificial mitochondrion-endoplasmic reticulum tether. Hence, the absence of Pex23 family proteins may influence mitochondrion-endoplasmic reticulum contact sites.
Collapse
Affiliation(s)
- Haiqiong Chen
- Molecular Cell Biology — Groningen Biomolecular Sciences and Biotechnology Institute, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Rinse de Boer
- Molecular Cell Biology — Groningen Biomolecular Sciences and Biotechnology Institute, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Arjen M. Krikken
- Molecular Cell Biology — Groningen Biomolecular Sciences and Biotechnology Institute, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Fei Wu
- Molecular Cell Biology — Groningen Biomolecular Sciences and Biotechnology Institute, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Ida van der Klei
- Molecular Cell Biology — Groningen Biomolecular Sciences and Biotechnology Institute, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
3
|
Bittner E, Stehlik T, Lam J, Dimitrov L, Heimerl T, Schöck I, Harberding J, Dornes A, Heymons N, Bange G, Schuldiner M, Zalckvar E, Bölker M, Schekman R, Freitag J. Proteins that carry dual targeting signals can act as tethers between peroxisomes and partner organelles. PLoS Biol 2024; 22:e3002508. [PMID: 38377076 PMCID: PMC10906886 DOI: 10.1371/journal.pbio.3002508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/01/2024] [Accepted: 01/19/2024] [Indexed: 02/22/2024] Open
Abstract
Peroxisomes are organelles with crucial functions in oxidative metabolism. To correctly target to peroxisomes, proteins require specialized targeting signals. A mystery in the field is the sorting of proteins that carry a targeting signal for peroxisomes and as well as for other organelles, such as mitochondria or the endoplasmic reticulum (ER). Exploring several of these proteins in fungal model systems, we observed that they can act as tethers bridging organelles together to create contact sites. We show that in Saccharomyces cerevisiae this mode of tethering involves the peroxisome import machinery, the ER-mitochondria encounter structure (ERMES) at mitochondria and the guided entry of tail-anchored proteins (GET) pathway at the ER. Our findings introduce a previously unexplored concept of how dual affinity proteins can regulate organelle attachment and communication.
Collapse
Affiliation(s)
- Elena Bittner
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Thorsten Stehlik
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Jason Lam
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
| | - Lazar Dimitrov
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
| | - Thomas Heimerl
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
- Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
| | - Isabelle Schöck
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Jannik Harberding
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Anita Dornes
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
- Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
| | - Nikola Heymons
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Gert Bange
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
- Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Einat Zalckvar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Bölker
- Department of Biology, Philipps-University Marburg, Marburg, Germany
- Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
| | - Randy Schekman
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
| | - Johannes Freitag
- Department of Biology, Philipps-University Marburg, Marburg, Germany
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
| |
Collapse
|
4
|
Freitag J, Stehlik T, Bange G. Mitochondria, Peroxisomes and Beyond-How Dual Targeting Regulates Organelle Tethering. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241264254. [PMID: 39364173 PMCID: PMC11447717 DOI: 10.1177/25152564241264254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/14/2024] [Accepted: 05/31/2024] [Indexed: 10/05/2024]
Abstract
Eukaryotic cells feature distinct membrane-enclosed organelles such as mitochondria and peroxisomes, each playing vital roles in cellular function and organization. These organelles are linked at membrane contact sites, facilitating interorganellar molecule and ion exchange. Most contact-forming proteins identified to date are membrane proteins or membrane-associated proteins, which can form very stable contacts. Recent findings suggest additional mechanistically distinct tethering events that arise from dual protein targeting. Proteins bearing targeting signals for multiple organelles, such as an N-terminal signal for mitochondria and a C-terminal signal for peroxisomes, function as tethers, fostering contacts by engaging targeting factors at both organelles. A number of dually targeted membrane proteins can contribute to contact site formation and transit from one organelle to the other as well. These interactions may enable the fine-tuning of organelle proximity, hence, adapting connections to meet varying physiological demands.
Collapse
Affiliation(s)
- Johannes Freitag
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Thorsten Stehlik
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
- Molecular Physiology of Microbes, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
5
|
de Boer R, van der Klei IJ. Correlative Light- and Electron Microscopy in Peroxisome Research. Methods Mol Biol 2023; 2643:93-104. [PMID: 36952180 DOI: 10.1007/978-1-0716-3048-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Correlative light and electron microscopy (CLEM) combines the advantages of protein localization by fluorescence microscopy with the high resolution of electron microscopy. Here, we describe a protocol that we developed for yeast peroxisome research. First, cells are fixed, using conditions that preserve the properties of fluorescent proteins and avoid the introduction of autofluorescence. Next, cryosections are prepared and imaged by fluorescence microscopy. The same sections are used for electron microscopy. Both images are aligned and merged, allowing to localize fluorescent proteins in electron microscopy images. This method was successfully used for peroxisomal membrane contact site research and allows to precisely localize contact site resident proteins at regions where membranes are closely associated at distances far below the resolution of conventional fluorescence microscopy.
Collapse
Affiliation(s)
- Rinse de Boer
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Ida J van der Klei
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
6
|
Bittner E, Stehlik T, Freitag J. Sharing the wealth: The versatility of proteins targeted to peroxisomes and other organelles. Front Cell Dev Biol 2022; 10:934331. [PMID: 36225313 PMCID: PMC9549241 DOI: 10.3389/fcell.2022.934331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Peroxisomes are eukaryotic organelles with critical functions in cellular energy and lipid metabolism. Depending on the organism, cell type, and developmental stage, they are involved in numerous other metabolic and regulatory pathways. Many peroxisomal functions require factors also relevant to other cellular compartments. Here, we review proteins shared by peroxisomes and at least one different site within the cell. We discuss the mechanisms to achieve dual targeting, their regulation, and functional consequences. Characterization of dual targeting is fundamental to understand how peroxisomes are integrated into the metabolic and regulatory circuits of eukaryotic cells.
Collapse
Affiliation(s)
| | | | - Johannes Freitag
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
7
|
Wu F, van der Klei IJ. Structure–function analysis of the ER-peroxisome contact site protein Pex32. Front Cell Dev Biol 2022; 10:957871. [PMID: 36016650 PMCID: PMC9395739 DOI: 10.3389/fcell.2022.957871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
In the yeast Hansenula polymorpha, the ER protein Pex32 is required for associating peroxisomes to the ER. Here, we report on a structure–function analysis of Pex32. Localization studies of various Pex32 truncations showed that the N-terminal transmembrane domain of Pex32 is responsible for sorting. Moreover, this part of the protein is sufficient for the function of Pex32 in peroxisome biogenesis. The C-terminal DysF domain is required for concentrating Pex32 at ER-peroxisome contact sites and has the ability to bind to peroxisomes. In order to better understand the role of Pex32 in peroxisome biogenesis, we analyzed various peroxisomal proteins in pex32 cells. This revealed that Pex11 levels are strongly reduced in pex32 cells. This may explain the strong reduction in peroxisome numbers in pex32 cells, which also occurs in cells lacking Pex11.
Collapse
|
8
|
Yuan W, Akşit A, de Boer R, Krikken AM, van der Klei IJ. Yeast Vps13 is Crucial for Peroxisome Expansion in Cells With Reduced Peroxisome-ER Contact Sites. Front Cell Dev Biol 2022; 10:842285. [PMID: 35252206 PMCID: PMC8891532 DOI: 10.3389/fcell.2022.842285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/28/2022] [Indexed: 12/22/2022] Open
Abstract
In the yeast Hansenula polymorpha the peroxisomal membrane protein Pex11 and three endoplasmic reticulum localized proteins of the Pex23 family (Pex23, Pex24 and Pex32) are involved in the formation of peroxisome-ER contact sites. Previous studies suggested that these contacts are involved in non-vesicular lipid transfer and important for expansion of the peroxisomal membrane. The absence of Pex32 results in a severe peroxisomal phenotype, while cells lacking Pex11, Pex23 or Pex24 show milder defects and still are capable to form peroxisomes and grow on methanol. We performed transposon mutagenesis on H. polymorpha pex11 cells and selected mutants that lost the capacity to grow on methanol and are severely blocked in peroxisome formation. This strategy resulted in the identification of Vps13, a highly conserved contact site protein involved in bulk lipid transfer. Our data show that peroxisome formation and function is normal in cells of a vps13 single deletion strain. However, Vps13 is essential for peroxisome biogenesis in pex11. Notably, Vps13 is also required for peroxisome formation in pex23 and pex24 cells. These data suggest that Vps13 is crucial for peroxisome formation in cells with reduced peroxisome-endoplasmic reticulum contact sites and plays a redundant function in lipid transfer from the ER to peroxisomes.
Collapse
|
9
|
Carmichael RE, Schrader M. Determinants of Peroxisome Membrane Dynamics. Front Physiol 2022; 13:834411. [PMID: 35185625 PMCID: PMC8853631 DOI: 10.3389/fphys.2022.834411] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Organelles within the cell are highly dynamic entities, requiring dramatic morphological changes to support their function and maintenance. As a result, organelle membranes are also highly dynamic, adapting to a range of topologies as the organelle changes shape. In particular, peroxisomes—small, ubiquitous organelles involved in lipid metabolism and reactive oxygen species homeostasis—display a striking plasticity, for example, during the growth and division process by which they proliferate. During this process, the membrane of an existing peroxisome elongates to form a tubule, which then constricts and ultimately undergoes scission to generate new peroxisomes. Dysfunction of this plasticity leads to diseases with developmental and neurological phenotypes, highlighting the importance of peroxisome dynamics for healthy cell function. What controls the dynamics of peroxisomal membranes, and how this influences the dynamics of the peroxisomes themselves, is just beginning to be understood. In this review, we consider how the composition, biophysical properties, and protein-lipid interactions of peroxisomal membranes impacts on their dynamics, and in turn on the biogenesis and function of peroxisomes. In particular, we focus on the effect of the peroxin PEX11 on the peroxisome membrane, and its function as a major regulator of growth and division. Understanding the roles and regulation of peroxisomal membrane dynamics necessitates a multidisciplinary approach, encompassing knowledge across a range of model species and a number of fields including lipid biochemistry, biophysics and computational biology. Here, we present an integrated overview of our current understanding of the determinants of peroxisome membrane dynamics, and reflect on the outstanding questions still remaining to be solved.
Collapse
Affiliation(s)
- Ruth E Carmichael
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, United Kingdom
| | - Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
10
|
Joshi AS. Peroxisomal Membrane Contact Sites in Yeasts. Front Cell Dev Biol 2021; 9:735031. [PMID: 34869317 PMCID: PMC8640217 DOI: 10.3389/fcell.2021.735031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Peroxisomes are ubiquitous, single membrane-bound organelles that play a crucial role in lipid metabolism and human health. While peroxisome number is maintained by the division of existing peroxisomes, nascent peroxisomes can be generated from the endoplasmic reticulum (ER) membrane in yeasts. During formation and proliferation, peroxisomes maintain membrane contacts with the ER. In addition to the ER, contacts between peroxisomes and other organelles such as lipid droplets, mitochondria, vacuole, and plasma membrane have been reported. These membrane contact sites (MCS) are dynamic and important for cellular function. This review focuses on the recent developments in peroxisome biogenesis and the functional importance of peroxisomal MCS in yeasts.
Collapse
Affiliation(s)
- Amit S Joshi
- Department of Biochemistry and Cell and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
11
|
Ferreira JV, Carvalho P. Pex30-like proteins function as adaptors at distinct ER membrane contact sites. J Cell Biol 2021; 220:212563. [PMID: 34402813 PMCID: PMC8374871 DOI: 10.1083/jcb.202103176] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/19/2021] [Accepted: 07/20/2021] [Indexed: 12/20/2022] Open
Abstract
Membrane lipids and proteins synthesized in the ER are used for de novo assembly of organelles, such as lipid droplets and peroxisomes. After assembly, the growth of these organelles is supported by ER-derived lipids transferred at membrane contact sites (MCSs). How ER sites for organelle biogenesis and lipid transfer are established and regulated is unclear. Here, we investigate how the ER membrane protein Pex30 and its family members Pex28, Pex29, Pex31, and Pex32 target and function at multiple MCSs. We show that different Pex30 complexes function at distinct ER domains and MCSs. Pex30 targets ER–peroxisome MCSs when bound to Pex28 and Pex32, organizes the nuclear–vacuolar junction when bound to Pex29, and promotes the biogenesis of lipid droplets independently of other family members. Importantly, the reticulon homology domain (RHD) mediates the assembly of the various Pex30 complexes. Given the role of RHD in membrane shaping, our findings offer a mechanistic link between MCS and regulation of membrane curvature.
Collapse
Affiliation(s)
| | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Joshi AS, Ragusa JV, Prinz WA, Cohen S. Multiple C2 domain-containing transmembrane proteins promote lipid droplet biogenesis and growth at specialized endoplasmic reticulum subdomains. Mol Biol Cell 2021; 32:1147-1157. [PMID: 33826368 PMCID: PMC8351558 DOI: 10.1091/mbc.e20-09-0590] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Lipid droplets (LDs) are neutral lipid-containing organelles enclosed in a single monolayer of phospholipids. LD formation begins with the accumulation of neutral lipids within the bilayer of the endoplasmic reticulum (ER) membrane. It is not known how the sites of formation of nascent LDs in the ER membrane are determined. Here we show that multiple C2 domain-containing transmembrane proteins, MCTP1 and MCTP2, are at sites of LD formation in specialized ER subdomains. We show that the transmembrane domain (TMD) of these proteins is similar to a reticulon homology domain. Like reticulons, these proteins tubulate the ER membrane and favor highly curved regions of the ER. Our data indicate that the MCTP TMDs promote LD biogenesis, increasing LD number. MCTPs colocalize with seipin, a protein involved in LD biogenesis, but form more stable microdomains in the ER. The MCTP C2 domains bind charged lipids and regulate LD size, likely by mediating ER-LD contact sites. Together, our data indicate that MCTPs form microdomains within ER tubules that regulate LD biogenesis, size, and ER-LD contacts. Interestingly, MCTP punctae colocalized with other organelles as well, suggesting that these proteins may play a general role in linking tubular ER to organelle contact sites.
Collapse
Affiliation(s)
- Amit S. Joshi
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Biochemistry, Cell and Molecular Biology, University of Tennessee, Knoxville, TN 37916
| | - Joey V. Ragusa
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - William A. Prinz
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20814
| | - Sarah Cohen
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
13
|
Jansen RLM, Santana-Molina C, van den Noort M, Devos DP, van der Klei IJ. Comparative Genomics of Peroxisome Biogenesis Proteins: Making Sense of the PEX Proteins. Front Cell Dev Biol 2021; 9:654163. [PMID: 34095119 PMCID: PMC8172628 DOI: 10.3389/fcell.2021.654163] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/21/2021] [Indexed: 11/29/2022] Open
Abstract
PEX genes encode proteins involved in peroxisome biogenesis and proliferation. Using a comparative genomics approach, we clarify the evolutionary relationships between the 37 known PEX proteins in a representative set of eukaryotes, including all common model organisms, pathogenic unicellular eukaryotes and human. A large number of previously unknown PEX orthologs were identified. We analyzed all PEX proteins, their conservation and domain architecture and defined the core set of PEX proteins that is required to make a peroxisome. The molecular processes in peroxisome biogenesis in different organisms were put into context, showing that peroxisomes are not static organelles in eukaryotic evolution. Organisms that lack peroxisomes still contain a few PEX proteins, which probably play a role in alternative processes. Finally, the relationships between PEX proteins of two large families, the Pex11 and Pex23 families, were analyzed, thereby contributing to the understanding of their complicated and sometimes incorrect nomenclature. We provide an exhaustive overview of this important eukaryotic organelle.
Collapse
Affiliation(s)
- Renate L M Jansen
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Carlos Santana-Molina
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Seville, Spain
| | - Marco van den Noort
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Seville, Spain
| | - Ida J van der Klei
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
14
|
Azadi AS, Carmichael RE, Kovacs WJ, Koster J, Kors S, Waterham HR, Schrader M. A Functional SMAD2/3 Binding Site in the PEX11β Promoter Identifies a Role for TGFβ in Peroxisome Proliferation in Humans. Front Cell Dev Biol 2020; 8:577637. [PMID: 33195217 PMCID: PMC7644849 DOI: 10.3389/fcell.2020.577637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/01/2020] [Indexed: 01/10/2023] Open
Abstract
In mammals, peroxisomes perform crucial functions in cellular metabolism, signaling and viral defense which are essential to the viability of the organism. Molecular cues triggered by changes in the cellular environment induce a dynamic response in peroxisomes, which manifests itself as a change in peroxisome number, altered enzyme levels and adaptations to the peroxisomal morphology. How the regulation of this process is integrated into the cell's response to different stimuli, including the signaling pathways and factors involved, remains unclear. Here, a cell-based peroxisome proliferation assay has been applied to investigate the ability of different stimuli to induce peroxisome proliferation. We determined that serum stimulation, long-chain fatty acid supplementation and TGFβ application all increase peroxisome elongation, a prerequisite for proliferation. Time-resolved mRNA expression during the peroxisome proliferation cycle revealed a number of peroxins whose expression correlated with peroxisome elongation, including the β isoform of PEX11, but not the α or γ isoforms. An initial map of putative regulatory motif sites in the respective promoters showed a difference between binding sites in PEX11α and PEX11β, suggesting that these genes may be regulated by distinct pathways. A functional SMAD2/3 binding site in PEX11β points to the involvement of the TGFβ signaling pathway in expression of this gene and thus peroxisome proliferation/dynamics in humans.
Collapse
Affiliation(s)
- Afsoon S Azadi
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Ruth E Carmichael
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Werner J Kovacs
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology in Zürich (ETH Zürich), Zurich, Switzerland
| | - Janet Koster
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, Netherlands
| | - Suzan Kors
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, Netherlands
| | - Michael Schrader
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
15
|
Krikken AM, Wu H, de Boer R, Devos DP, Levine TP, van der Klei IJ. Peroxisome retention involves Inp1-dependent peroxisome-plasma membrane contact sites in yeast. J Cell Biol 2020; 219:152028. [PMID: 32805027 PMCID: PMC7659721 DOI: 10.1083/jcb.201906023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 03/15/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Retention of peroxisomes in yeast mother cells requires Inp1, which is recruited to the organelle by the peroxisomal membrane protein Pex3. Here we show that Hansenula polymorpha Inp1 associates peroxisomes to the plasma membrane. Peroxisome-plasma membrane contact sites disappear upon deletion of INP1 but increase upon INP1 overexpression. Analysis of truncated Inp1 variants showed that the C terminus is important for association to the peroxisome, while a stretch of conserved positive charges and a central pleckstrin homology-like domain are important for plasma membrane binding. In cells of a PEX3 deletion, strain Inp1-GFP localizes to the plasma membrane, concentrated in patches near the bud neck and in the cortex of nascent buds. Upon disruption of the actin cytoskeleton by treatment of the cells with latrunculin A, Inp1-GFP became cytosolic, indicating that Inp1 localization is dependent on the presence of an intact actin cytoskeleton.
Collapse
Affiliation(s)
- Arjen M Krikken
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Huala Wu
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Rinse de Boer
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas, Pablo de Olavide University, Seville, Spain
| | - Tim P Levine
- Institute of Ophthalmology, University College London, London, UK
| | - Ida J van der Klei
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
16
|
Silva BSC, DiGiovanni L, Kumar R, Carmichael RE, Kim PK, Schrader M. Maintaining social contacts: The physiological relevance of organelle interactions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118800. [PMID: 32712071 PMCID: PMC7377706 DOI: 10.1016/j.bbamcr.2020.118800] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/12/2020] [Accepted: 07/19/2020] [Indexed: 02/07/2023]
Abstract
Membrane-bound organelles in eukaryotic cells form an interactive network to coordinate and facilitate cellular functions. The formation of close contacts, termed "membrane contact sites" (MCSs), represents an intriguing strategy for organelle interaction and coordinated interplay. Emerging research is rapidly revealing new details of MCSs. They represent ubiquitous and diverse structures, which are important for many aspects of cell physiology and homeostasis. Here, we provide a comprehensive overview of the physiological relevance of organelle contacts. We focus on mitochondria, peroxisomes, the Golgi complex and the plasma membrane, and discuss the most recent findings on their interactions with other subcellular organelles and their multiple functions, including membrane contacts with the ER, lipid droplets and the endosomal/lysosomal compartment.
Collapse
Affiliation(s)
- Beatriz S C Silva
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK
| | - Laura DiGiovanni
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Rechal Kumar
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK
| | - Ruth E Carmichael
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK.
| | - Peter K Kim
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| | - Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK.
| |
Collapse
|