1
|
Rabah N, Ait Mohand FE, Kravchenko-Balasha N. Understanding Glioblastoma Signaling, Heterogeneity, Invasiveness, and Drug Delivery Barriers. Int J Mol Sci 2023; 24:14256. [PMID: 37762559 PMCID: PMC10532387 DOI: 10.3390/ijms241814256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The most prevalent and aggressive type of brain cancer, namely, glioblastoma (GBM), is characterized by intra- and inter-tumor heterogeneity and strong spreading capacity, which makes treatment ineffective. A true therapeutic answer is still in its infancy despite various studies that have made significant progress toward understanding the mechanisms behind GBM recurrence and its resistance. The primary causes of GBM recurrence are attributed to the heterogeneity and diffusive nature; therefore, monitoring the tumor's heterogeneity and spreading may offer a set of therapeutic targets that could improve the clinical management of GBM and prevent tumor relapse. Additionally, the blood-brain barrier (BBB)-related poor drug delivery that prevents effective drug concentrations within the tumor is discussed. With a primary emphasis on signaling heterogeneity, tumor infiltration, and computational modeling of GBM, this review covers typical therapeutic difficulties and factors contributing to drug resistance development and discusses potential therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Nataly Kravchenko-Balasha
- The Institute of Biomedical and Oral Research, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (N.R.); (F.-E.A.M.)
| |
Collapse
|
2
|
Lin B, Ziebro J, Smithberger E, Skinner KR, Zhao E, Cloughesy TF, Binder ZA, O’Rourke DM, Nathanson DA, Furnari FB, Miller CR. EGFR, the Lazarus target for precision oncology in glioblastoma. Neuro Oncol 2022; 24:2035-2062. [PMID: 36125064 PMCID: PMC9713527 DOI: 10.1093/neuonc/noac204] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The Lazarus effect is a rare condition that happens when someone seemingly dead shows signs of life. The epidermal growth factor receptor (EGFR) represents a target in the fatal neoplasm glioblastoma (GBM) that through a series of negative clinical trials has prompted a vocal subset of the neuro-oncology community to declare this target dead. However, an argument can be made that the core tenets of precision oncology were overlooked in the initial clinical enthusiasm over EGFR as a therapeutic target in GBM. Namely, the wrong drugs were tested on the wrong patients at the wrong time. Furthermore, new insights into the biology of EGFR in GBM vis-à-vis other EGFR-driven neoplasms, such as non-small cell lung cancer, and development of novel GBM-specific EGFR therapeutics resurrects this target for future studies. Here, we will examine the distinct EGFR biology in GBM, how it exacerbates the challenge of treating a CNS neoplasm, how these unique challenges have influenced past and present EGFR-targeted therapeutic design and clinical trials, and what adjustments are needed to therapeutically exploit EGFR in this devastating disease.
Collapse
Affiliation(s)
- Benjamin Lin
- Department of Pathology, Division of Neuropathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Julia Ziebro
- Department of Pathology, Division of Neuropathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Erin Smithberger
- Department of Pathology, Division of Neuropathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Pathobiology and Translational Sciences Program, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kasey R Skinner
- Department of Pathology, Division of Neuropathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Neurosciences Curriculum, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Eva Zhao
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Timothy F Cloughesy
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Zev A Binder
- Department of Neurosurgery and Glioblastoma Translational Center of Excellence, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Donald M O’Rourke
- Department of Neurosurgery and Glioblastoma Translational Center of Excellence, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David A Nathanson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Frank B Furnari
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, San Diego, California, USA
- Ludwig Cancer Research, San Diego, California, USA
| | - C Ryan Miller
- Department of Pathology, Division of Neuropathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
3
|
Włodarczyk A, Tręda C, Rutkowska A, Grot D, Dobrewa W, Kierasińska A, Węgierska M, Wasiak T, Strózik T, Rieske P, Stoczyńska-Fidelus E. Phenotypical Flexibility of the EGFRvIII-Positive Glioblastoma Cell Line and the Multidirectional Influence of TGFβ and EGF on These Cells—EGFRvIII Appears as a Weak Oncogene. Int J Mol Sci 2022; 23:ijms232012129. [PMID: 36292985 PMCID: PMC9603514 DOI: 10.3390/ijms232012129] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022] Open
Abstract
Background: The biological role of EGFRvIII (epidermal growth factor receptor variant three) remains unclear. Methods: Three glioblastoma DK-MG sublines were tested with EGF (epidermal growth factor) and TGFβ (transforming growth factor β). Sublines were characterized by an increased percentage of EGFRvIII-positive cells and doubling time (DK-MGlow to DK-MGextra-high), number of amplicons, and EGFRvIII mRNA expression. The influence of the growth factors on primary EGFRvIII positive glioblastomas was assessed. Results: The overexpression of exoEGFRvIII in DK-MGhigh did not convert them into DK-MGextra-high, and this overexpression did not change DK-MGlow to DK-MGhigh; however, the overexpression of RASG12V increased the proliferation of DK-MGlow. Moreover, the highest EGFRvIII phosphorylation in DK-MGextra-high did not cause relevant AKT (known as protein kinase B) and ERK (extracellular signal-regulated kinase) activation. Further analyses indicate that TGFβ is able to induce apoptosis of DK-MGhigh cells. This subline was able to convert to DK-MGextra-high, which appeared resistant to this proapoptotic effect. EGF acted as a pro-survival factor and stimulated proliferation; however, simultaneous senescence induction in DK-MGextra-high cells was ambiguous. Primary EGFRvIII positive (and SOX2 (SRY-Box Transcription Factor 2) positive or SOX2 negative) glioblastoma cells differentially responded to EGF and TGFβ. Conclusions: The roles of TGFβ and EGF in the EGFRvIII context remain unclear. EGFRvIII appears as a weak oncogene and not a marker of GSC (glioma stem cells). Hence, it may not be a proper target for CAR-T (chimeric antigen receptor T cells).
Collapse
Affiliation(s)
- Aneta Włodarczyk
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
- Department of Research and Development, Celther Polska LTD, Inwestycyjna 7 St., 95-050 Konstantynow Lodzki, Poland
- Department of Research and Development, Personather LTD, Inwestycyjna 7 St., 95-050 Konstantynow Lodzki, Poland
| | - Cezary Tręda
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
- Department of Research and Development, Celther Polska LTD, Inwestycyjna 7 St., 95-050 Konstantynow Lodzki, Poland
- Department of Research and Development, Personather LTD, Inwestycyjna 7 St., 95-050 Konstantynow Lodzki, Poland
| | - Adrianna Rutkowska
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
- Department of Research and Development, Celther Polska LTD, Inwestycyjna 7 St., 95-050 Konstantynow Lodzki, Poland
- Department of Research and Development, Personather LTD, Inwestycyjna 7 St., 95-050 Konstantynow Lodzki, Poland
| | - Dagmara Grot
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
- Department of Research and Development, Celther Polska LTD, Inwestycyjna 7 St., 95-050 Konstantynow Lodzki, Poland
- Department of Research and Development, Personather LTD, Inwestycyjna 7 St., 95-050 Konstantynow Lodzki, Poland
| | - Weronika Dobrewa
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
| | - Amelia Kierasińska
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
- Department of Research and Development, Celther Polska LTD, Inwestycyjna 7 St., 95-050 Konstantynow Lodzki, Poland
| | - Marta Węgierska
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
- Department of Research and Development, Celther Polska LTD, Inwestycyjna 7 St., 95-050 Konstantynow Lodzki, Poland
| | - Tomasz Wasiak
- Department of Molecular Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
| | - Tadeusz Strózik
- Department of Molecular Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
| | - Piotr Rieske
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
- Department of Research and Development, Celther Polska LTD, Inwestycyjna 7 St., 95-050 Konstantynow Lodzki, Poland
- Department of Research and Development, Personather LTD, Inwestycyjna 7 St., 95-050 Konstantynow Lodzki, Poland
| | - Ewelina Stoczyńska-Fidelus
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
- Department of Research and Development, Celther Polska LTD, Inwestycyjna 7 St., 95-050 Konstantynow Lodzki, Poland
- Department of Research and Development, Personather LTD, Inwestycyjna 7 St., 95-050 Konstantynow Lodzki, Poland
- Correspondence: ; Tel.: +48-426-393-221
| |
Collapse
|
4
|
Abstract
The epidermal growth factor (EGF) system has allowed chemists, biologists, and clinicians to improve our understanding of cell production and cancer therapy. The discovery of EGF led to the recognition of cell surface receptors capable of controlling the proliferation and survival of cells. The detailed structures of the EGF-like ligand and the responses of their receptors (EGFR-family) has revealed the conformational and aggregation changes whereby ligands activate the intracellular kinase domains. Biophysical analysis has revealed the preformed clustering of different EGFR-family members and the processes which occur on ligand binding. Understanding these receptor activation processes and the consequential cytoplasmic signaling has allowed the development of inhibitors which are revolutionizing cancer therapy. This Review describes the recent progress in our understanding of the activation of the EGFR-family, the effects of signaling from the EGFR-family on cell proliferation, and the targeting of the EGFR-family in cancer treatment.
Collapse
Affiliation(s)
- Antony W Burgess
- Honorary Laboratory Head, Personalized Oncology Division, WEHI, Parkville3050, Australia.,Professor Emeritus, Departments of Medical Biology and Surgery (Royal Melbourne Hospital), University of Melbourne, Melbourne3052, Australia.,The Brain Cancer Centre at WEHI, Parkville3052, Australia
| |
Collapse
|
5
|
Monteleone L, Marengo B, Musumeci F, Grossi G, Carbone A, Valenti GE, Domenicotti C, Schenone S. Anti-Survival Effect of SI306 and Its Derivatives on Human Glioblastoma Cells. Pharmaceutics 2022; 14:pharmaceutics14071399. [PMID: 35890294 PMCID: PMC9318396 DOI: 10.3390/pharmaceutics14071399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma (GBM) is the most common adult brain tumor and, although many efforts have been made to find valid therapies, the onset of resistance is the main cause of recurrence. Therefore, it is crucial to identify and target the molecular mediators responsible for GBM malignancy. In this context, the use of Src inhibitors such as SI306 (C1) and its prodrug (C2) showed promising results, suggesting that SI306 could be the lead compound useful to derivate new anti-GBM drugs. Therefore, a new prodrug of SI306 (C3) was synthesized and tested on CAS-1 and U87 human GBM cells by comparing its effect to that of C1 and C2. All compounds were more effective on CAS-1 than U87 cells, while C2 was the most active on both cell lines. Moreover, the anti-survival effect was associated with a reduction in the expression of epidermal growth factor receptor (EGFR)WT and EGFR-vIII in U87 and CAS-1 cells, respectively. Collectively, our findings demonstrate that all tested compounds are able to counteract GBM survival, further supporting the role of SI306 as progenitor of promising new drugs to treat malignant GBM.
Collapse
Affiliation(s)
- Lorenzo Monteleone
- Department of Experimental Medicine (DIMES), General Pathology Section, University of Genoa, 16132 Genoa, Italy; (L.M.); (B.M.); (G.E.V.)
| | - Barbara Marengo
- Department of Experimental Medicine (DIMES), General Pathology Section, University of Genoa, 16132 Genoa, Italy; (L.M.); (B.M.); (G.E.V.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Francesca Musumeci
- Department of Pharmacy, University of Genoa, 16132 Genoa, Italy; (F.M.); (G.G.); (A.C.); (S.S.)
| | - Giancarlo Grossi
- Department of Pharmacy, University of Genoa, 16132 Genoa, Italy; (F.M.); (G.G.); (A.C.); (S.S.)
| | - Anna Carbone
- Department of Pharmacy, University of Genoa, 16132 Genoa, Italy; (F.M.); (G.G.); (A.C.); (S.S.)
| | - Giulia E. Valenti
- Department of Experimental Medicine (DIMES), General Pathology Section, University of Genoa, 16132 Genoa, Italy; (L.M.); (B.M.); (G.E.V.)
| | - Cinzia Domenicotti
- Department of Experimental Medicine (DIMES), General Pathology Section, University of Genoa, 16132 Genoa, Italy; (L.M.); (B.M.); (G.E.V.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
- Correspondence: ; Tel.: +39-010-353-8830
| | - Silvia Schenone
- Department of Pharmacy, University of Genoa, 16132 Genoa, Italy; (F.M.); (G.G.); (A.C.); (S.S.)
| |
Collapse
|
6
|
Uribe ML, Marrocco I, Yarden Y. EGFR in Cancer: Signaling Mechanisms, Drugs, and Acquired Resistance. Cancers (Basel) 2021; 13:cancers13112748. [PMID: 34206026 PMCID: PMC8197917 DOI: 10.3390/cancers13112748] [Citation(s) in RCA: 179] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) has served as the founding member of the large family of growth factor receptors harboring intrinsic tyrosine kinase function. High abundance of EGFR and large internal deletions are frequently observed in brain tumors, whereas point mutations and small insertions within the kinase domain are common in lung cancer. For these reasons EGFR and its preferred heterodimer partner, HER2/ERBB2, became popular targets of anti-cancer therapies. Nevertheless, EGFR research keeps revealing unexpected observations, which are reviewed herein. Once activated by a ligand, EGFR initiates a time-dependent series of molecular switches comprising downregulation of a large cohort of microRNAs, up-regulation of newly synthesized mRNAs, and covalent protein modifications, collectively controlling phenotype-determining genes. In addition to microRNAs, long non-coding RNAs and circular RNAs play critical roles in EGFR signaling. Along with driver mutations, EGFR drives metastasis in many ways. Paracrine loops comprising tumor and stromal cells enable EGFR to fuel invasion across tissue barriers, survival of clusters of circulating tumor cells, as well as colonization of distant organs. We conclude by listing all clinically approved anti-cancer drugs targeting either EGFR or HER2. Because emergence of drug resistance is nearly inevitable, we discuss the major evasion mechanisms.
Collapse
|