1
|
Liao Z, Tang X, Yang B, Yang J. Dopamine receptors and organ fibrosis. Biochem Biophys Rep 2025; 41:101910. [PMID: 39867679 PMCID: PMC11761258 DOI: 10.1016/j.bbrep.2024.101910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/12/2024] [Revised: 12/19/2024] [Accepted: 12/26/2024] [Indexed: 01/28/2025] Open
Abstract
Organ fibrosis, considered as a major global health concern, is a pathological condition often occurring after tissue injury in various organs. The pathogenesis of fibrosis involves multiple phases and multiple cell types. Dopamine is involved in various life activities by activating five receptors (D1, D2, D3, D4, D5). Activation or loss of function of dopamine receptors has been reported to be associated with the fibrosis of several organs, such as ocular, lung, liver, heart, and kidney. In this paper, we review dopamine receptors' potential roles in organ fibrosis and mechanisms by which organ fibrosis develops or decreases when dopamine receptors function is activated or perturbed.
Collapse
Affiliation(s)
- ZhongLi Liao
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 400030, China
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - XueFeng Tang
- Department of Pathology, Chongqing General Hospital, Chongqing University, Chongqing, 400030, China
| | - Bin Yang
- Department of Anesthesiology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Fujian, 361000, China
| | - Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 400030, China
| |
Collapse
|
2
|
Link PA, Meridew JA, Caporarello N, Gao AY, Peters V, Rojas M, Tschumperlin DJ. A Redox-Shifted Fibroblast Subpopulation Emerges in the Fibrotic Lung. Am J Respir Cell Mol Biol 2024; 71:718-729. [PMID: 38959411 PMCID: PMC11622638 DOI: 10.1165/rcmb.2023-0346oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/23/2023] [Accepted: 07/03/2024] [Indexed: 07/05/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an aggressive and, thus far, incurable disease characterized by aberrant fibroblast-mediated extracellular matrix deposition. Our understanding of the disease etiology is incomplete; however, there is consensus that a reduction-oxidation (redox) imbalance plays a role. In this study, we use the autofluorescent properties of two redox molecules, NAD(P)H and FAD, to quantify changes in their relative abundance in living lung tissue of mice with experimental lung fibrosis and in freshly isolated cells from mouse lungs and humans with IPF. Our results identify cell population-specific intracellular redox changes in the lungs in experimental and human fibrosis. We focus particularly on redox changes within collagen-producing cells, where we identified a bimodal distribution of NAD(P)H concentrations, establishing NAD(P)Hhigh and NAD(P)Hlow subpopulations. NAD(P)Hhigh fibroblasts exhibited elevated profibrotic gene expression and decreased collagenolytic protease activity relative to NAD(P)Hlow fibroblasts. The NAD(P)Hhigh population was present in healthy lungs but expanded with time after bleomycin injury, suggesting a potential role in fibrosis progression. We identified a similar increased abundance of NAD(P)Hhigh cells in freshly dissociated lungs of subjects with IPF relative to control subjects, as well as similar reductions in collagenolytic activity in this cell population. These data highlight the complexity of redox state changes in experimental and human pulmonary fibrosis and the need for selective approaches to restore redox imbalances in the fibrotic lung.
Collapse
Affiliation(s)
- Patrick A. Link
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Jeffrey A. Meridew
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | | | - Ashley Y. Gao
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Victor Peters
- Department of Internal Medicine, Ohio State University, Columbus, Ohio
| | - Mauricio Rojas
- Department of Internal Medicine, Ohio State University, Columbus, Ohio
| | | |
Collapse
|
3
|
Zhao J, Yu W, Zhou D, Liu Y, Wei J, Bi L, Zhao S, He J, Liu J, Su J, Jin H, Liu Y, Shan H, Li M, Zhang Y, Li Y. Delineating, Imaging, and Assessing Pulmonary Fibrosis Remodeling via Collagen Hybridization. ACS NANO 2024; 18:27997-28011. [PMID: 39361472 DOI: 10.1021/acsnano.4c06139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 10/05/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, life-threatening disease with no early detection, few treatments, and dismal outcomes. Although collagen overdeposition is a hallmark of lung fibrosis, current research mostly focuses on the cellular aspect, leaving collagen, particularly its dynamic remodeling (i.e., degradation and turnover), largely unexplored. Here, using a collagen hybridizing peptide (CHP) that specifically binds unfolded collagen chains, we reveal vast collagen denaturation in human IPF lungs and delineate the spatiotemporal progression of collagen denaturation three-dimensionally within fibrotic lungs in mice. Transcriptomic analyses support that lung collagen denaturation is strongly associated with up-regulated collagen catabolism in mice and patients. We thus show that CHP probing differentiates remodeling responses to antifibrotics and highlights the resolution of established fibrosis by agents up-regulating collagen catabolism. We further develop a radioactive CHP that detects fibrosis in vivo in mice as early as 7 days postlung-injury (Ashcroft score: 2-3) by positron emission tomography (PET) imaging and ex vivo in clinical lung specimens. These findings establish collagen denaturation as a promising marker of fibrotic remodeling for the investigation, diagnosis, and therapeutic development of pulmonary fibrosis.
Collapse
Affiliation(s)
- Jie Zhao
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Wenjun Yu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
- Department of Radiology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Daoning Zhou
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Yinghua Liu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Jingyue Wei
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
- Biobank and Department of Information Technology and Data Center, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Lei Bi
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Suwen Zhao
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Jianzhong He
- Department of Pathology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Jing Liu
- Department of Pulmonary and Critical Care Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Jin Su
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Hongjun Jin
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Ye Liu
- Department of Pathology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Hong Shan
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
- Department of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Man Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
- Biobank and Department of Information Technology and Data Center, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Yaqin Zhang
- Department of Radiology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Yang Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| |
Collapse
|
4
|
Ali Akbari Ghavimi S, Aronson MR, Ghaderi DD, Friedman RM, Patel N, Giordano T, Borek RC, Devine CM, Han L, Jacobs IN, Gottardi R. Modulated Fibrosis and Mechanosensing of Fibroblasts by SB525334 in Pediatric Subglottic Stenosis. Laryngoscope 2024; 134:287-296. [PMID: 37458368 DOI: 10.1002/lary.30873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/01/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 12/26/2023]
Abstract
OBJECTIVE Subglottic stenosis (SGS) may result from prolonged intubation where fibrotic scar tissue narrows the airway. The scar forms by differentiated myofibroblasts secreting excessive extracellular matrix (ECM). TGF-β1 is widely accepted as a regulator of fibrosis; however, it is unclear how biomechanical pathways co-regulate fibrosis. Therefore, we phenotyped fibroblasts from pediatric patients with SGS to explore how key signaling pathways, TGF-β and Hippo, impact scarring and assess the impact of inhibiting these pathways with potential therapeutic small molecules SB525334 and DRD1 agonist dihydrexidine hydrochloride (DHX). METHODS Laryngeal fibroblasts isolated from subglottic as well as distal control biopsies of patients with evolving and maturing subglottic stenosis were assessed by α-smooth muscle actin immunostaining and gene expression for α-SMA, FN, HGF, and CTGF markers. TGF-β and Hippo signaling pathways were modulated during TGF-β1-induced fibrosis using the inhibitor SB525334 or DHX and analyzed by RT-qPCR for differential gene expression and atomic force microscopy for ECM stiffness. RESULTS SGS fibroblasts exhibited higher α-SMA staining and greater inflammatory cytokine and fibrotic marker expression upon TGF-β1 stimulation (p < 0.05). SB525334 restored levels to baseline by reducing SMAD2/3 nuclear translocation (p < 0.0001) and pro-fibrotic gene expression (p < 0.05). ECM stiffness of stenotic fibroblasts was greater than healthy fibroblasts and was restored to baseline by Hippo pathway modulation using SB525334 and DHX (p < 0.01). CONCLUSION We demonstrate that distinct fibroblast phenotypes from diseased and healthy regions of pediatric SGS patients respond differently to TGF-β1 stimulation, and SB525334 has the superior potential for subglottic stenosis treatment by simultaneously modulating TGF-β and Hippo signaling pathways. LEVEL OF EVIDENCE NA Laryngoscope, 134:287-296, 2024.
Collapse
Affiliation(s)
- Soheila Ali Akbari Ghavimi
- Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Matthew R Aronson
- Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel D Ghaderi
- Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ryan M Friedman
- Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Neil Patel
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Terri Giordano
- Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ryan C Borek
- Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Conor M Devine
- Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Ian N Jacobs
- Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Riccardo Gottardi
- Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Division of Pulmonary Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Orthopaedics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Ri.MED Foundation, Palermo, Italy
| |
Collapse
|
5
|
Link PA, Meridew JA, Caporarello N, Gao AY, Peters V, Smith GB, Rojas M, Tschumperlin DJ. A redox-shifted fibroblast subpopulation emerges in the fibrotic lung. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.23.559128. [PMID: 38014129 PMCID: PMC10680805 DOI: 10.1101/2023.09.23.559128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an aggressive and thus far incurable disease, characterized by aberrant fibroblast-mediated extracellular matrix deposition. Our understanding of the disease etiology is incomplete; however, there is consensus that a reduction-oxidation (redox) imbalance plays a role. In this study we use the autofluorescent properties of two redox molecules, NAD(P)H and FAD, to quantify changes in their relative abundance in living lung tissue of mice with experimental lung fibrosis, and in freshly isolated cells from mouse lungs and humans with IPF. Our results identify cell population-specific intracellular redox changes in the lungs in experimental and human fibrosis. We focus particularly on redox changes within collagen producing cells, where we identified a bimodal distribution of NAD(P)H concentrations, establishing NAD(P)H high and NAD(P)H low sub-populations. NAD(P)H high fibroblasts exhibited elevated pro-fibrotic gene expression and decreased collagenolytic protease activity relative to NAD(P)H low fibroblasts. The NAD(P)H high population was present in healthy lungs but expanded with time after bleomycin injury suggesting a potential role in fibrosis progression. We identified a similar increased abundance of NAD(P)H high cells in freshly dissociated lungs of subjects with IPF relative to controls, and similar reductions in collagenolytic activity in this cell population. These data highlight the complexity of redox state changes in experimental and human pulmonary fibrosis and the need for selective approaches to restore redox imbalances in the fibrotic lung.
Collapse
|
6
|
Andresen BT. Could a Nebulized or Dry Powder Inhalation of a Dopamine D1R Agonist Be a Treatment of Idiopathic Pulmonary Fibrosis? J Pharmacol Exp Ther 2023; 386:274-276. [PMID: 37591657 DOI: 10.1124/jpet.123.001661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/08/2023] [Accepted: 04/07/2023] [Indexed: 08/19/2023] Open
Affiliation(s)
- Bradley T Andresen
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California
| |
Collapse
|
7
|
Gao AY, Diaz Espinosa AM, Nguyen BBN, Link PA, Meridew J, Jones DL, Gibbard DF, Tschumperlin DJ, Haak AJ. Dopamine Receptor D1 Is Exempt from Transforming Growth Factor β-Mediated Antifibrotic G Protein-Coupled Receptor Landscape Tampering in Lung Fibroblasts. J Pharmacol Exp Ther 2023; 386:277-287. [PMID: 37024146 PMCID: PMC10449101 DOI: 10.1124/jpet.122.001442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/08/2022] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023] Open
Abstract
Pulmonary fibroblasts are the primary producers of extracellular matrix (ECM) in the lungs, and their pathogenic activation drives scarring and loss of lung function in idiopathic pulmonary fibrosis (IPF). This uncontrolled production of ECM is stimulated by mechanosignaling and transforming growth factor beta 1 (TGF-β1) signaling that together promote transcriptional programs including Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). G protein-coupled receptors (GPCRs) that couple to G α s have emerged as pharmacological targets to inactivate YAP/TAZ signaling and promote lung fibrosis resolution. Previous studies have shown a loss of expression of "antifibrotic GPCRs"-receptors that couple to G α s, in IPF patient-derived fibroblasts compared with non-IPF samples. Of the 14 G α s GPCRs we found to be expressed in lung fibroblasts, the dopamine receptor D1 (DRD1) was one of only two not repressed by TGF-β1 signaling, with the β2-adrenergic receptor being the most repressed. We compared the potency and efficacy of multiple D1 and β2 receptor agonists +/- TGF-β1 treatment in vitro for their ability to elevate cAMP, inhibit nuclear localization of YAP/TAZ, regulate expression of profibrotic and antifibrotic genes, and inhibit cellular proliferation and collagen deposition. Consistently, the activity of β2 receptor agonists was lost, whereas D1 receptor agonists was maintained, after stimulating cultured lung fibroblasts with TGF-β1. These data further support the therapeutic potential of the dopamine receptor D1 and highlight an orchestrated and pervasive loss of antifibrotic GPCRs mediated by TGF-β1 signaling. SIGNIFICANCE STATEMENT: Idiopathic pulmonary fibrosis (IPF) is a deadly lung disease with limited therapies. GPCRs have emerged as a primary target for the development of novel antifibrotic drugs; however, a challenge to this approach is the dramatic changes in GPCR expression in response to profibrotic stimuli. Here, we investigate the impact of TGF-β1 on the expression of antifibrotic GPCRs and show the D1 dopamine receptor expression is uniquely maintained in response to TGF-β1, further implicating it as a compelling target to treat IPF.
Collapse
Affiliation(s)
- Ashley Y Gao
- Departments of Physiology and Biomedical Engineering (A.M.D.E., P.A.L., J.M., D.L.J., D.J.T., A.J.H.), Ophthalmology (A.Y.G.), and Molecular Pharmacology and Experimental Therapeutics (B.B.N.N., D.F.G., A.J.H.), Mayo Clinic, Rochester, Minnesota
| | - Ana M Diaz Espinosa
- Departments of Physiology and Biomedical Engineering (A.M.D.E., P.A.L., J.M., D.L.J., D.J.T., A.J.H.), Ophthalmology (A.Y.G.), and Molecular Pharmacology and Experimental Therapeutics (B.B.N.N., D.F.G., A.J.H.), Mayo Clinic, Rochester, Minnesota
| | - Ba Bao N Nguyen
- Departments of Physiology and Biomedical Engineering (A.M.D.E., P.A.L., J.M., D.L.J., D.J.T., A.J.H.), Ophthalmology (A.Y.G.), and Molecular Pharmacology and Experimental Therapeutics (B.B.N.N., D.F.G., A.J.H.), Mayo Clinic, Rochester, Minnesota
| | - Patrick A Link
- Departments of Physiology and Biomedical Engineering (A.M.D.E., P.A.L., J.M., D.L.J., D.J.T., A.J.H.), Ophthalmology (A.Y.G.), and Molecular Pharmacology and Experimental Therapeutics (B.B.N.N., D.F.G., A.J.H.), Mayo Clinic, Rochester, Minnesota
| | - Jeffrey Meridew
- Departments of Physiology and Biomedical Engineering (A.M.D.E., P.A.L., J.M., D.L.J., D.J.T., A.J.H.), Ophthalmology (A.Y.G.), and Molecular Pharmacology and Experimental Therapeutics (B.B.N.N., D.F.G., A.J.H.), Mayo Clinic, Rochester, Minnesota
| | - Dakota L Jones
- Departments of Physiology and Biomedical Engineering (A.M.D.E., P.A.L., J.M., D.L.J., D.J.T., A.J.H.), Ophthalmology (A.Y.G.), and Molecular Pharmacology and Experimental Therapeutics (B.B.N.N., D.F.G., A.J.H.), Mayo Clinic, Rochester, Minnesota
| | - Daniel F Gibbard
- Departments of Physiology and Biomedical Engineering (A.M.D.E., P.A.L., J.M., D.L.J., D.J.T., A.J.H.), Ophthalmology (A.Y.G.), and Molecular Pharmacology and Experimental Therapeutics (B.B.N.N., D.F.G., A.J.H.), Mayo Clinic, Rochester, Minnesota
| | - Daniel J Tschumperlin
- Departments of Physiology and Biomedical Engineering (A.M.D.E., P.A.L., J.M., D.L.J., D.J.T., A.J.H.), Ophthalmology (A.Y.G.), and Molecular Pharmacology and Experimental Therapeutics (B.B.N.N., D.F.G., A.J.H.), Mayo Clinic, Rochester, Minnesota
| | - Andrew J Haak
- Departments of Physiology and Biomedical Engineering (A.M.D.E., P.A.L., J.M., D.L.J., D.J.T., A.J.H.), Ophthalmology (A.Y.G.), and Molecular Pharmacology and Experimental Therapeutics (B.B.N.N., D.F.G., A.J.H.), Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
8
|
Jones DL, Hallström GF, Jiang X, Locke RC, Evans MK, Bonnevie ED, Srikumar A, Leahy TP, Nijsure MP, Boerckel JD, Mauck RL, Dyment NA. Mechanoepigenetic regulation of extracellular matrix homeostasis via Yap and Taz. Proc Natl Acad Sci U S A 2023; 120:e2211947120. [PMID: 37216538 PMCID: PMC10235980 DOI: 10.1073/pnas.2211947120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/11/2022] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Cells integrate mechanical cues to direct fate specification to maintain tissue function and homeostasis. While disruption of these cues is known to lead to aberrant cell behavior and chronic diseases, such as tendinopathies, the underlying mechanisms by which mechanical signals maintain cell function are not well understood. Here, we show using a model of tendon de-tensioning that loss of tensile cues in vivo acutely changes nuclear morphology, positioning, and expression of catabolic gene programs, resulting in subsequent weakening of the tendon. In vitro studies using paired ATAC/RNAseq demonstrate that the loss of cellular tension rapidly reduces chromatin accessibility in the vicinity of Yap/Taz genomic targets while also increasing expression of genes involved in matrix catabolism. Concordantly, the depletion of Yap/Taz elevates matrix catabolic expression. Conversely, overexpression of Yap results in a reduction of chromatin accessibility at matrix catabolic gene loci, while also reducing transcriptional levels. The overexpression of Yap not only prevents the induction of this broad catabolic program following a loss of cellular tension, but also preserves the underlying chromatin state from force-induced alterations. Taken together, these results provide novel mechanistic details by which mechanoepigenetic signals regulate tendon cell function through a Yap/Taz axis.
Collapse
Affiliation(s)
- Dakota L. Jones
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA19104
| | - Grey F. Hallström
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA19104
| | - Xi Jiang
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA19104
| | - Ryan C. Locke
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA19104
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
- Translational Musculoskeletal Research Center, Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA19104
| | - Mary Kate Evans
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA19104
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
| | - Edward D. Bonnevie
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA19104
- Translational Musculoskeletal Research Center, Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA19104
| | - Anjana Srikumar
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA19104
| | - Thomas P. Leahy
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA19104
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
| | - Madhura P. Nijsure
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA19104
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA19104
| | - Joel D. Boerckel
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA19104
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA19104
| | - Robert L. Mauck
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA19104
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
- Translational Musculoskeletal Research Center, Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA19104
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA19104
| | - Nathaniel A. Dyment
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA19104
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
9
|
Abstract
Collagen provides mechanical and biological support for virtually all human tissues in the extracellular matrix (ECM). Its defining molecular structure, the triple-helix, could be damaged and denatured in disease and injuries. To probe collagen damage, the concept of collagen hybridization has been proposed, revised, and validated through a series of investigations reported as early as 1973: a collagen-mimicking peptide strand may form a hybrid triple-helix with the denatured chains of natural collagen but not the intact triple-helical collagen proteins, enabling assessment of proteolytic degradation or mechanical disruption to collagen within a tissue-of-interest. Here we describe the concept and development of collagen hybridization, summarize the decades of chemical investigations on rules underlying the collagen triple-helix folding, and discuss the growing biomedical evidence on collagen denaturation as a previously overlooked ECM signature for an array of conditions involving pathological tissue remodeling and mechanical injuries. Finally, we propose a series of emerging questions regarding the chemical and biological nature of collagen denaturation and highlight the diagnostic and therapeutic opportunities from its targeting.
Collapse
Affiliation(s)
- Xiaojing Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Department of Radiology, Cardiac Surgery and Structural Heart Disease Unit of Cardiovascular Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Qi Zhang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Department of Radiology, Cardiac Surgery and Structural Heart Disease Unit of Cardiovascular Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - S. Michael Yu
- Department of Biomedical Engineering, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Yang Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Department of Radiology, Cardiac Surgery and Structural Heart Disease Unit of Cardiovascular Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| |
Collapse
|
10
|
Ishikawa G, Peng X, McGovern J, Woo S, Perry C, Liu A, Yu S, Ghincea A, Kishchanka A, Fiorini V, Hu B, Sun Y, Sun H, Ryu C, Herzog EL. α1 Adrenoreceptor antagonism mitigates extracellular mitochondrial DNA accumulation in lung fibrosis models and in patients with idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2023; 324:L639-L651. [PMID: 36648147 PMCID: PMC10110730 DOI: 10.1152/ajplung.00119.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/13/2022] [Revised: 12/14/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
Idiopathic pulmonary fibrosis is increasingly associated with nerve-driven processes and endogenous innate immune ligands such as mitochondrial DNA (mtDNA). Interestingly, a connection between these entities has not been explored. Here, we report that noradrenaline (NA) derived from the lung's adrenergic nerve supply drives α-smooth muscle actin (αSMA)-expressing fibroblast accumulation via mechanisms involving α1 adrenoreceptors and mtDNA. Using the bleomycin model, we compared ablation of the lung's adrenergic nerve supply with surgical adrenal resection and found that NA derived from local but not adrenal sources contributes to experimentally induced lung fibrosis and the emergence of an αSMA+ve fibroblast population expressing adrenoreceptor α-1D (ADRA1D). Therapeutic delivery of the α1 adrenoreceptor antagonist terazosin reversed these changes and suppressed extracellular mtDNA accumulation. Cultured normal human lung fibroblasts displayed α1 adrenoreceptors and in response to costimulation with TGFβ1 and NA adopted ACTA2 expression and extracellular mtDNA release. These findings were opposed by terazosin. Evaluation of a previously studied IPF cohort revealed that patients prescribed α1 adrenoreceptor antagonists for nonpulmonary indications demonstrated improved survival and reduced concentrations of plasma mtDNA. Our observations link nerve-derived NA, α1 adrenoreceptors, extracellular mtDNA, and lung fibrogenesis in mouse models, cultured cells, and humans with IPF. Further study of this neuroinnate connection may yield new avenues for investigation in the clinical and basic science realms.
Collapse
Affiliation(s)
- Genta Ishikawa
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Xueyan Peng
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - John McGovern
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Sam Woo
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Carrighan Perry
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Angela Liu
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Sheeline Yu
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Alexander Ghincea
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Aliaksandr Kishchanka
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Vitória Fiorini
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Buqu Hu
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Ying Sun
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Huanxing Sun
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Changwan Ryu
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Erica L Herzog
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
11
|
Gao AY, Link PA, Bakri SJ, Haak AJ. Dopamine Receptor Signaling Regulates Fibrotic Activation of Retinal Pigmented Epithelial Cells. Am J Physiol Cell Physiol 2022; 323:C116-C124. [PMID: 35544697 DOI: 10.1152/ajpcell.00468.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
Retinal pigmented epithelial (RPE) cells play an important role in retinal fibrotic diseases such as proliferative vitreoretinopathy (PVR). The purpose of this study was to elucidate the involvement of dopamine receptor signaling in regulating the fibrotic activation of RPE cells. Dopamine receptor expression, the effect of dopamine on fibrotic activity, and dopamine production were measured in the human RPE cell line ARPE-19. The fibrotic activation of RPE cells was evaluated in response to treatments with selective dopamine receptor agonists and antagonists by measuring gene expression, migration, proliferation, and fibronectin deposition. DRD2 and DRD5 are the dominant dopaminergic receptors expressed in ARPE-19 cells and TGFβ stimulates enhances autocrine release of dopamine which we show further exasperates fibrotic activation. Finally, treatment with D2 dopamine receptor antagonists or D5 dopamine receptor agonists inhibits profibrotic gene expression, migration, proliferation, and fibronectin deposition and thus may serve as effective mechanisms for treating retinal fibrosis including PVR.
Collapse
Affiliation(s)
- Ashley Y Gao
- Mayo Clinic, Department of Ophthalmology, Rochester, MN, United States
| | - Patrick A Link
- Mayo Clinic, Department of Physiology and Biomedical Engineering, Rochester, MN, United States
| | - Sophie J Bakri
- Mayo Clinic, Department of Ophthalmology, Rochester, MN, United States
| | - Andrew J Haak
- Mayo Clinic, Department of Physiology and Biomedical Engineering, Rochester, MN, United States
| |
Collapse
|
12
|
Jiang JS, Zhang Y, Luo Y, Ru Y, Luo Y, Fei XY, Song JK, Ding XJ, Zhang Z, Yang D, Yin SY, Zhang HP, Liu TY, Li B, Kuai L. The Identification of the Biomarkers of Sheng-Ji Hua-Yu Formula Treated Diabetic Wound Healing Using Modular Pharmacology. Front Pharmacol 2021; 12:726158. [PMID: 34867329 PMCID: PMC8636748 DOI: 10.3389/fphar.2021.726158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/16/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Sheng-Ji Hua-Yu (SJHY) formula has been proved to reduce the severity of diabetic wound healing without significant adverse events in our previous clinical trials. However, based on multi-target characteristics, the regulatory network among herbs, ingredients, and hub genes remains to be elucidated. The current study aims to identify the biomarkers of the SJHY formula for the treatment of diabetic wound healing. First, a network of components and targets for the SJHY formula was constructed using network pharmacology. Second, the ClusterONE algorithm was used to build a modular network and identify hub genes along with kernel pathways. Third, we verified the kernel targets by molecular docking to select hub genes. In addition, the biomarkers of the SJHY formula were validated by animal experiments in a diabetic wound healing mice model. The results revealed that the SJHY formula downregulated the mRNA expression of Cxcr4, Oprd1, and Htr2a, while upregulated Adrb2, Drd, Drd4, and Hrh1. Besides, the SJHY formula upregulated the kernel pathways, neuroactive ligand-receptor interaction, and cAMP signaling pathway in the skin tissue homogenate of the diabetic wound healing mice model. In summary, this study identified the potential targets and kernel pathways, providing additional evidence for the clinical application of the SJHY formula for the treatment of diabetic wound healing.
Collapse
Affiliation(s)
- Jing-Si Jiang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ying Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yi Ru
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yue Luo
- Shanghai Skin Disease Hospital of Tongji University, Shanghai, China
| | - Xiao-Ya Fei
- Shanghai Skin Disease Hospital of Tongji University, Shanghai, China
| | - Jian-Kun Song
- Shanghai Skin Disease Hospital of Tongji University, Shanghai, China
| | - Xiao-Jie Ding
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Zhan Zhang
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Dan Yang
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Shuang-Yi Yin
- Center for Translational Medicine, Huaihe Hospital of Henan University, Kaifeng, China
| | - Hui-Ping Zhang
- Shanghai Applied Protein Technology Co., Ltd., Shanghai, China
| | - Tai-Yi Liu
- Shanghai Applied Protein Technology Co., Ltd., Shanghai, China
| | - Bin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China.,Shanghai Skin Disease Hospital of Tongji University, Shanghai, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
13
|
Choi KM, Haak AJ, Diaz Espinosa AM, Cummins KA, Link PA, Aravamudhan A, Wood DK, Tschumperlin DJ. GPCR-mediated YAP/TAZ inactivation in fibroblasts via EPAC1/2, RAP2C, and MAP4K7. J Cell Physiol 2021; 236:7759-7774. [PMID: 34046891 DOI: 10.1002/jcp.30459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/23/2020] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 12/29/2022]
Abstract
Yes-associated protein (YAP) and PDZ-binding motif (TAZ) have emerged as important regulators of pathologic fibroblast activation in fibrotic diseases. Agonism of Gαs-coupled G protein coupled receptors (GPCRs) provides an attractive approach to inhibit the nuclear localization and function of YAP and TAZ in fibroblasts that inhibits or reverses their pathological activation. Agonism of the dopamine D1 GPCR has proven effective in preclinical models of lung and liver fibrosis. However, the molecular mechanisms coupling GPCR agonism to YAP and TAZ inactivation in fibroblasts remain incompletely understood. Here, using human lung fibroblasts, we identify critical roles for the cAMP effectors EPAC1/2, the small GTPase RAP2c, and the serine/threonine kinase MAP4K7 as the essential elements in the downstream signaling cascade linking GPCR agonism to LATS1/2-mediated YAP and TAZ phosphorylation and nuclear exclusion in fibroblasts. We further show that this EPAC/RAP2c/MAP4K7 signaling cascade is essential to the effects of dopamine D1 receptor agonism on reducing fibroblast proliferation, contraction, and extracellular matrix production. Targeted modulation of this cascade in fibroblasts may prove a useful strategy to regulate YAP and TAZ signaling and fibroblast activities central to tissue repair and fibrosis.
Collapse
Affiliation(s)
- Kyoung Moo Choi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Andrew J Haak
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Ana M Diaz Espinosa
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Katherine A Cummins
- Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
| | - Patrick A Link
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Aja Aravamudhan
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - David K Wood
- Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| |
Collapse
|
14
|
First person – Ana Diaz Espinosa. J Cell Sci 2020. [DOI: 10.1242/jcs.257402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Ana Diaz Espinosa is first author on ‘Dopamine D1 receptor stimulates cathepsin K-dependent degradation and resorption of collagen I in lung fibroblasts’, published in JCS. Ana conducted the research described in this article while a Post-baccalaureate Research Education Program (PREP) student in Daniel Tschumperlin's lab at the Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN. She is now a PhD student at the Mayo Clinic Graduate School for Biomedical Sciences, investigating how to restore cellular and tissue function by integrating fundamental principles of biology and biomaterials.
Collapse
|