1
|
Tsutsumi N, Kildedal DF, Hansen OK, Kong Q, Schols D, Van Loy T, Rosenkilde MM. Insight into structural properties of viral G protein-coupled receptors and their role in the viral infection: IUPHAR Review 41. Br J Pharmacol 2025; 182:26-51. [PMID: 39443818 DOI: 10.1111/bph.17379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/27/2024] [Accepted: 09/14/2024] [Indexed: 10/25/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are pivotal in cellular signalling and drug targeting. Herpesviruses encode GPCRs (vGPCRs) to manipulate cellular signalling, thereby regulating various aspects of the virus life cycle, such as viral spreading and immune evasion. vGPCRs mimic host chemokine receptors, often with broader signalling and high constitutive activity. This review focuses on the recent advancements in structural knowledge about vGPCRs, with an emphasis on molecular mechanisms of action and ligand binding. The structures of US27 and US28 from human cytomegalovirus (HCMV) are compared to their closest human homologue, CX3CR1. Contrasting US27 and US28, the homotrimeric UL78 structure (HCMV) reveals more distance to chemokine receptors. Open reading frame 74 (ORF74; Kaposi's sarcoma-associated herpesvirus) is compared to CXCRs, whereas BILF1 (Epstein-Barr virus) is discussed as a putative lipid receptor. Furthermore, the roles of vGPCRs in latency and lytic replication, reactivation, dissemination and immune evasion are reviewed, together with their potential as drug targets for virus infections and virus-related diseases.
Collapse
Affiliation(s)
- Naotaka Tsutsumi
- TMDU Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Dagmar Fæster Kildedal
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Synklino ApS, Copenhagen, Denmark
| | - Olivia Kramer Hansen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Qianqian Kong
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Tom Van Loy
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
2
|
Thompson MD, Reiner-Link D, Berghella A, Rana BK, Rovati GE, Capra V, Gorvin CM, Hauser AS. G protein-coupled receptor (GPCR) pharmacogenomics. Crit Rev Clin Lab Sci 2024; 61:641-684. [PMID: 39119983 DOI: 10.1080/10408363.2024.2358304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/03/2023] [Accepted: 05/18/2024] [Indexed: 08/10/2024]
Abstract
The field of pharmacogenetics, the investigation of the influence of one or more sequence variants on drug response phenotypes, is a special case of pharmacogenomics, a discipline that takes a genome-wide approach. Massively parallel, next generation sequencing (NGS), has allowed pharmacogenetics to be subsumed by pharmacogenomics with respect to the identification of variants associated with responders and non-responders, optimal drug response, and adverse drug reactions. A plethora of rare and common naturally-occurring GPCR variants must be considered in the context of signals from across the genome. Many fundamentals of pharmacogenetics were established for G protein-coupled receptor (GPCR) genes because they are primary targets for a large number of therapeutic drugs. Functional studies, demonstrating likely-pathogenic and pathogenic GPCR variants, have been integral to establishing models used for in silico analysis. Variants in GPCR genes include both coding and non-coding single nucleotide variants and insertion or deletions (indels) that affect cell surface expression (trafficking, dimerization, and desensitization/downregulation), ligand binding and G protein coupling, and variants that result in alternate splicing encoding isoforms/variable expression. As the breadth of data on the GPCR genome increases, we may expect an increase in the use of drug labels that note variants that significantly impact the clinical use of GPCR-targeting agents. We discuss the implications of GPCR pharmacogenomic data derived from the genomes available from individuals who have been well-phenotyped for receptor structure and function and receptor-ligand interactions, and the potential benefits to patients of optimized drug selection. Examples discussed include the renin-angiotensin system in SARS-CoV-2 (COVID-19) infection, the probable role of chemokine receptors in the cytokine storm, and potential protease activating receptor (PAR) interventions. Resources dedicated to GPCRs, including publicly available computational tools, are also discussed.
Collapse
Affiliation(s)
- Miles D Thompson
- Krembil Brain Institute, Toronto Western Hospital, Toronto, Ontario, Canada
| | - David Reiner-Link
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alessandro Berghella
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brinda K Rana
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - G Enrico Rovati
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valerie Capra
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Groves IJ, O’Connor CM. Loopy virus or controlled contortionist? 3D regulation of HCMV gene expression by CTCF-driven chromatin interactions. J Virol 2024; 98:e0114824. [PMID: 39212383 PMCID: PMC11495066 DOI: 10.1128/jvi.01148-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Three-dimensional chromatin control of eukaryotic transcription is pivotal for regulating gene expression. This additional layer of epigenetic regulation is also utilized by DNA viruses, including herpesviruses. Dynamic, spatial genomic organization often involves looping of chromatin anchored by host-encoded CCCTC-binding factor (CTCF) and other factors, which control crosstalk between promoters and enhancers. Herein, we review the contribution of CTCF-mediated looping in regulating transcription during herpesvirus infection, with a specific focus on the betaherpesvirus, human cytomegalovirus (HCMV).
Collapse
Affiliation(s)
- Ian J. Groves
- Infection Biology Program, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio, USA
| | - Christine M. O’Connor
- Infection Biology Program, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
4
|
Freeman MR, Dooley AL, Beucler MJ, Sanders W, Moorman NJ, O'Connor CM, Miller WE. The Human Cytomegalovirus vGPCR UL33 is Essential for Efficient Lytic Replication in Epithelial Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.609710. [PMID: 39345593 PMCID: PMC11429895 DOI: 10.1101/2024.09.18.609710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Human cytomegalovirus (HCMV) is a β-herpesvirus which is ubiquitous in the human population. HCMV has the largest genome of all known human herpesviruses, and thus encodes a large array of proteins that affect pathogenesis in different cell types. Given the large genome and the ability of HCMV to replicate in a range of cells, investigators have begun to identify viral proteins required for cell type-specific replication. There are four proteins encoded in the HCMV genome that are homologous to human G protein-coupled receptors (GPCRs); these viral-encoded GPCRs (vGPCRs) are UL33, UL78, US27, and US28. In the current study, we find that deletion of all four vGPCR genes from a clinical isolate of HCMV severely attenuates lytic replication in both primary human salivary gland epithelial cells, as well as ARPE-19 retinal epithelial cells as evidenced by significant decreases in immediate early gene expression and virus production. Deletion of UL33 from the HCMV genome also results in a failure to efficiently replicate in epithelial cells, and this defect is manifested by decreased levels of immediate early, early, and late gene expression, as well as reduced viral production. We find that similar to US28, UL33 constitutively activates Gαq-dependent PLC-β signaling to high levels in these epithelial cells. We also find that UL33 transcription is more complicated than originally believed, and there is the potential for the virus to utilize various 5' UTRs to create novel UL33 proteins that are all capable of constitutive Gαq signaling. Taken together, these studies suggest that UL33 driven signaling is important for lytic HCMV replication in cells of epithelial origin.
Collapse
|
5
|
Mason R, Bradley E, Wills M, Sinclair J, Reeves M. Repression of the major immediate early promoter of human cytomegalovirus allows transcription from an alternate promoter. J Gen Virol 2023; 104. [PMID: 37702591 DOI: 10.1099/jgv.0.001894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Following infection, the human cytomegalovirus (HCMV) genome becomes rapidly associated with host histones which can contribute to the regulation of viral gene expression. This can be seen clearly during HCMV latency where silencing of the major immediate early promoter (MIEP), normally responsible for expression of the key lytic proteins IE72 and IE86, is mediated by histone methylation and recruitment of heterochromatin protein 1. Crucially, reversal of these histone modifications coupled with histone acetylation drives viral reactivation which can be blocked with specific histone acetyltransferase inhibitors (HATi). In lytic infection, a role for HATi is less clear despite the well-established enhancement of viral replication observed with histone deacetylase inhibitors. Here we report that a number of different broad-acting HATi have a minor impact on viral infection and replication during lytic infection with the more overt phenotypes observed at lower multiplicities of infection. However, specific analyses of the regulation of major immediate early (MIE) gene expression reveal that the HATi C646, which targets p300/CBP, transiently repressed MIE gene expression via inhibition of the MIEP but by 24 h post-infection MIE gene expression was rescued due to compensatory activation of an alternative IE promoter, ip2. This suggested that silencing of the MIEP promoted alternative ip2 promoter activity in lytic infection and, consistent with this, ip2 transcription is impaired in cells infected with a recombinant HCMV that does not auto-repress the MIEP at late times of infection. Furthermore, inhibition of the histone methyltransferases known to be responsible for auto-repression is similarly inhibitory to ip2 transcription in wild-type infected cells. We also observe that these discrete transcriptional activities of the MIEP and ip2 promoter are also reflected in reactivation; essentially in cells where the MIEP is silenced, ip2 activity is easier to detect at very early times post-reactivation whereas in cells where robust activation of the MIEP is observed ip2 transcription is reduced or delayed. Finally, we observe that inhibition of pathways demonstrated to be important for reactivation of HCMV in dendritic cells, e.g. in response to IL-6, are preferentially important for activation of the MIEP and not the ip2 promoter. Together, these data add to the hypothesis that the existence of multiple promoters within the MIE region of HCMV can drive reactivation in a cell type- and ligand-specific manner and also suggest that inter-dependent regulatory activity between the two promoters exists.
Collapse
Affiliation(s)
- Rebecca Mason
- Institute of Immunity & Transplantation, Royal Free Campus, Division of Infection & Immunity, UCL, London, UK
| | - Eleanor Bradley
- Institute of Immunity & Transplantation, Royal Free Campus, Division of Infection & Immunity, UCL, London, UK
| | - Mark Wills
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - John Sinclair
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Matthew Reeves
- Institute of Immunity & Transplantation, Royal Free Campus, Division of Infection & Immunity, UCL, London, UK
| |
Collapse
|
6
|
Albright ER, Walter RM, Saffert RT, Kalejta RF. NFκB and Cyclic AMP Response Element Sites Mediate the Valproic Acid and UL138 Responsiveness of the Human Cytomegalovirus Major Immediate Early Enhancer and Promoter. J Virol 2023; 97:e0002923. [PMID: 36856444 PMCID: PMC10062163 DOI: 10.1128/jvi.00029-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/08/2023] [Indexed: 03/02/2023] Open
Abstract
The major immediate early enhancer and promoter (MIEP) of human cytomegalovirus (HCMV) drives the transcription of the immediate early one (IE1) and IE2 genes, whose encoded proteins stimulate productive, lytic replication. The MIEP is activated by the virally encoded and tegument-delivered pp71 protein at the start of de novo lytic infections of fully differentiated cells. Conversely, the MIEP is silenced at the start of de novo latent infections within incompletely differentiated myeloid cells in part because tegument-delivered pp71 is sequestered in the cytoplasm in these cells, but also by viral factors that repress transcription from this locus, including the UL138 protein. During both modes of infection, MIEP activity can be increased by the histone deacetylase inhibitor valproic acid (VPA); however, UL138 inhibits the VPA-responsiveness of the MIEP. Here, we show that two families of cellular transcription factors, NF-κB and cAMP response element-binding protein (CREB), together control the VPA-mediated activation and UL138-mediated repression of the HCMV MIEP. IMPORTANCE Artificial regulation of the HCMV MIEP, either activation or repression, is an attractive potential means to target the latent reservoirs of virus for which there is currently no available intervention. The MIEP could be repressed to prevent latency reactivation or induced to drive the virus into the lytic stage that is visible to the immune system and inhibited by multiple small-molecule antiviral drugs. Understanding how the MIEP is regulated is a critical part of designing and implementing either strategy. Our revelation here that NF-κB and CREB control the responsiveness of the MIEP to the viral UL138 protein and the FDA-approved drug VPA could help in the formulation and execution of promoter regulatory strategies against latent HCMV.
Collapse
Affiliation(s)
- Emily R. Albright
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ryan M. Walter
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ryan T. Saffert
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Robert F. Kalejta
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
7
|
Wass AB, Krishna BA, Herring LE, Gilbert TSK, Nukui M, Groves IJ, Dooley AL, Kulp KH, Matthews SM, Rotroff DM, Graves LM, O’Connor CM. Cytomegalovirus US28 regulates cellular EphA2 to maintain viral latency. SCIENCE ADVANCES 2022; 8:eadd1168. [PMID: 36288299 PMCID: PMC9604534 DOI: 10.1126/sciadv.add1168] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Cytomegalovirus (CMV) reactivation from latency following immune dysregulation remains a serious risk for patients, often causing substantial morbidity and mortality. Here, we demonstrate the CMV-encoded G protein-coupled receptor, US28, in coordination with cellular Ephrin receptor A2, attenuates mitogen-activated protein kinase signaling, thereby limiting viral replication in latently infected primary monocytes. Furthermore, treatment of latently infected primary monocytes with dasatinib, a Food and Drug Association-approved kinase inhibitor used to treat a subset of leukemias, results in CMV reactivation. These ex vivo data correlate with our retrospective analyses of the Explorys electronic health record database, where we find dasatinib treatment is associated with a significant risk of CMV-associated disease (odds ratio 1.58, P = 0.0004). Collectively, our findings elucidate a signaling pathway that plays a central role in the balance between CMV latency and reactivation and identifies a common therapeutic cancer treatment that elevates the risk of CMV-associated disease.
Collapse
Affiliation(s)
- Amanda B. Wass
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Infection Biology Program, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Benjamin A. Krishna
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Infection Biology Program, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Laura E. Herring
- UNC Proteomics Core Facility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Thomas S. K. Gilbert
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Masatoshi Nukui
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Infection Biology Program, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ian J. Groves
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Infection Biology Program, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Abigail L. Dooley
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Infection Biology Program, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Katherine H. Kulp
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Infection Biology Program, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Stephen M. Matthews
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Infection Biology Program, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Daniel M. Rotroff
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Endocrinology and Metabolism Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Lee M. Graves
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christine M. O’Connor
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Infection Biology Program, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
8
|
The mouse cytomegalovirus G protein-coupled receptor homolog, M33, coordinates key features of in vivo infection via distinct components of its signalling repertoire. J Virol 2021; 96:e0186721. [PMID: 34878888 DOI: 10.1128/jvi.01867-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Common to all cytomegalovirus (CMV) genomes analysed to date is the presence of G protein-coupled receptors (GPCR). Animal models of CMV provide insights into their role in viral fitness. The mouse cytomegalovirus (MCMV) GPCR, M33, facilitates dendritic cell (DC)-dependent viremia, the extravasation of blood-borne infected DC to the salivary gland and the frequency of reactivation events from latently-infected tissue explants. Constitutive G protein-coupled M33 signalling is required for these phenotypes, although the contribution of distinct biochemical pathways activated by M33 is unknown. M33 engages Gq/11 to constitutively activate phospholipase C β (PLCβ) and downstream cyclic AMP response-element binding protein (CREB) in vitro. Identification of a MCMV M33 mutant (M33ΔC38) for which CREB signalling was disabled, but PLCβ activation was preserved, provided the opportunity to investigate their relevance in vivo. Following intranasal infection with MCMV M33ΔC38, the absence of M33 CREB Gq/11-dependent signalling correlated with reduced mobilisation of lytically-infected DC to draining lymph node high endothelial venules (HEVs) and reduced viremia compared with wild type MCMV. In contrast, M33ΔC38-infected DC within the vascular compartment extravasated to the salivary glands via a pertussis toxin-sensitive, Gi/o-dependent and CREB-independent mechanism. In the context of MCMV latency, spleen explants from M33ΔC38-infected mice were markedly attenuated for reactivation. Taken together, these data demonstrate that key features of the MCMV lifecycle are coordinated in diverse tissues by distinct pathways of the M33 signalling repertoire. IMPORTANCE G protein-coupled receptors (GPCRs) act as cell surface molecular "switches" which regulate the cellular response to environmental stimuli. All cytomegalovirus (CMV) genomes analysed to date possess GPCR homologs with phylogenetic evidence for independent gene capture events, signifying important in vivo roles. The mouse CMV (MCMV) GPCR homolog, designated M33, is important for cell-associated virus spread and for the establishment and/or reactivation of latent MCMV infection. The signalling repertoire of M33 is distinct from cellular GPCRs and little is known of the relevance of component signalling pathways for in vivo M33 function. In this report, we show temporal and tissue-specific M33 signalling is required facilitating in vivo infection. Understanding the relevance of the viral GPCR signalling profiles for in vivo function will provide opportunities for future targeted interventions.
Collapse
|
9
|
Smith NA, Chan GC, O’Connor CM. Modulation of host cell signaling during cytomegalovirus latency and reactivation. Virol J 2021. [DOI: 10.1186/s12985-021-01674-1
expr 947873540 + 978833141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
AbstractBackgroundHuman cytomegalovirus (HCMV) resides latently in cells of the myeloid compartment, including CD34+hematopoietic progenitor cells and circulating monocytes. Healthy hosts maintain the virus latently, and this infection is, for the most part, asymptomatic. However, given the proper external cues, HCMV reactivates from latency, at which point the virus disseminates, causing disease. The viral and cellular factors dictating the balance between these phases of infection are incompletely understood, though a large body of literature support a role for viral-mediated manipulation of host cell signaling.Main bodyTo establish and maintain latency, HCMV has evolved various means by which it usurps host cell factors to alter the cellular environment to its own advantage, including altering host cell signaling cascades. As early as virus entry into myeloid cells, HCMV usurps cellular signaling to change the cellular milieu, and this regulation includes upregulation, as well as downregulation, of different signaling cascades. Indeed, given proper reactivation cues, this signaling is again altered to allow for transactivation of viral lytic genes.ConclusionsHCMV modulation of host cell signaling is not binary, and many of the cellular pathways altered are finely regulated, wherein the slightest modification imparts profound changes to the cellular milieu. It is also evident that viral-mediated cell signaling differs not only between these phases of infection, but also is myeloid cell type specific. Nonetheless, understanding the exact pathways and the means by which HCMV mediates them will undoubtedly provide novel targets for therapeutic intervention.
Collapse
|
10
|
Modulation of host cell signaling during cytomegalovirus latency and reactivation. Virol J 2021; 18:207. [PMID: 34663377 PMCID: PMC8524946 DOI: 10.1186/s12985-021-01674-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022] Open
Abstract
Background Human cytomegalovirus (HCMV) resides latently in cells of the myeloid compartment, including CD34+ hematopoietic progenitor cells and circulating monocytes. Healthy hosts maintain the virus latently, and this infection is, for the most part, asymptomatic. However, given the proper external cues, HCMV reactivates from latency, at which point the virus disseminates, causing disease. The viral and cellular factors dictating the balance between these phases of infection are incompletely understood, though a large body of literature support a role for viral-mediated manipulation of host cell signaling. Main body To establish and maintain latency, HCMV has evolved various means by which it usurps host cell factors to alter the cellular environment to its own advantage, including altering host cell signaling cascades. As early as virus entry into myeloid cells, HCMV usurps cellular signaling to change the cellular milieu, and this regulation includes upregulation, as well as downregulation, of different signaling cascades. Indeed, given proper reactivation cues, this signaling is again altered to allow for transactivation of viral lytic genes. Conclusions HCMV modulation of host cell signaling is not binary, and many of the cellular pathways altered are finely regulated, wherein the slightest modification imparts profound changes to the cellular milieu. It is also evident that viral-mediated cell signaling differs not only between these phases of infection, but also is myeloid cell type specific. Nonetheless, understanding the exact pathways and the means by which HCMV mediates them will undoubtedly provide novel targets for therapeutic intervention.
Collapse
|
11
|
Evasion of the Host Immune Response by Betaherpesviruses. Int J Mol Sci 2021; 22:ijms22147503. [PMID: 34299120 PMCID: PMC8306455 DOI: 10.3390/ijms22147503] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
The human immune system boasts a diverse array of strategies for recognizing and eradicating invading pathogens. Human betaherpesviruses, a highly prevalent subfamily of viruses, include human cytomegalovirus (HCMV), human herpesvirus (HHV) 6A, HHV-6B, and HHV-7. These viruses have evolved numerous mechanisms for evading the host response. In this review, we will highlight the complex interplay between betaherpesviruses and the human immune response, focusing on protein function. We will explore methods by which the immune system first responds to betaherpesvirus infection as well as mechanisms by which viruses subvert normal cellular functions to evade the immune system and facilitate viral latency, persistence, and reactivation. Lastly, we will briefly discuss recent advances in vaccine technology targeting betaherpesviruses. This review aims to further elucidate the dynamic interactions between betaherpesviruses and the human immune system.
Collapse
|
12
|
Perera MR, Wills MR, Sinclair JH. HCMV Antivirals and Strategies to Target the Latent Reservoir. Viruses 2021; 13:817. [PMID: 34062863 PMCID: PMC8147263 DOI: 10.3390/v13050817] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous human herpesvirus. In healthy people, primary infection is generally asymptomatic, and the virus can go on to establish lifelong latency in cells of the myeloid lineage. However, HCMV often causes severe disease in the immunosuppressed: transplant recipients and people living with AIDS, and also in the immunonaive foetus. At present, there are several antiviral drugs licensed to control HCMV disease. However, these are all faced with problems of poor bioavailability, toxicity and rapidly emerging viral resistance. Furthermore, none of them are capable of fully clearing the virus from the host, as they do not target latent infection. Consequently, reactivation from latency is a significant source of disease, and there remains an unmet need for treatments that also target latent infection. This review briefly summarises the most common HCMV antivirals used in clinic at present and discusses current research into targeting the latent HCMV reservoir.
Collapse
Affiliation(s)
| | | | - John H. Sinclair
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK; (M.R.P.); (M.R.W.)
| |
Collapse
|
13
|
Diggins NL, Skalsky RL, Hancock MH. Regulation of Latency and Reactivation by Human Cytomegalovirus miRNAs. Pathogens 2021; 10:pathogens10020200. [PMID: 33668486 PMCID: PMC7918750 DOI: 10.3390/pathogens10020200] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022] Open
Abstract
Human cytomegalovirus (HCMV) encodes 22 mature microRNAs (miRNAs), which regulate a myriad of cellular processes, including vesicular trafficking, cell cycle progression, apoptosis, and immune evasion, as well as viral gene expression. Recent evidence points to a critical role for HCMV miRNAs in mediating latency in CD34+ hematopoietic progenitor cells through modulation of cellular signaling pathways, including attenuation of TGFβ and EGFR signaling. Moreover, HCMV miRNAs can act in concert with, or in opposition to, viral proteins in regulating host cell functions. Here, we comprehensively review the studies of HCMV miRNAs in the context of latency and highlight the novel processes that are manipulated by the virus using these small non-coding RNAs.
Collapse
|