1
|
Deo A, Ghosh R, Ahire S, Marathe S, Majumdar A, Bose T. Two novel DnaJ chaperone proteins CG5001 and P58IPK regulate the pathogenicity of Huntington's disease related aggregates. Sci Rep 2024; 14:20867. [PMID: 39242711 PMCID: PMC11379882 DOI: 10.1038/s41598-024-71065-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024] Open
Abstract
Huntington's disease (HD) is a rare neurodegenerative disease caused due to aggregation of Huntingtin (HTT) protein. This study involves the cloning of 40 DnaJ chaperones from Drosophila, and overexpressing them in yeasts and fly models of HD. Accordingly, DnaJ chaperones were catalogued as enhancers or suppressors based on their growth phenotypes and aggregation properties. 2 of the chaperones that came up as targets were CG5001 and P58IPK. Protein aggregation and slow growth phenotype was rescued in yeasts, S2 cells, and Drosophila transgenic lines of HTT103Q with these overexpressed chaperones. Since DnaJ chaperones have protein sequence similarity across species, they can be used as possible tools to combat the effects of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ankita Deo
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Rishita Ghosh
- Indian Institute of Science and Educational Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Snehal Ahire
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Sayali Marathe
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Amitabha Majumdar
- National Centre for Cell Sciences, Inside Savitribai Phule Pune University Campus, Ganeshkhind, Pune, 411007, India.
| | - Tania Bose
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India.
| |
Collapse
|
2
|
Montoya MR, Quanrud GM, Mei L, Moñtano JL, Hong C, Genereux JC. Factors affecting protein recovery during Hsp40 affinity profiling. Anal Bioanal Chem 2024; 416:4249-4260. [PMID: 38850318 PMCID: PMC11271386 DOI: 10.1007/s00216-024-05362-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/30/2024] [Accepted: 05/22/2024] [Indexed: 06/10/2024]
Abstract
The identification and quantification of misfolded proteins from complex mixtures is important for biological characterization and disease diagnosis, but remains a major bioanalytical challenge. We have developed Hsp40 Affinity Profiling as a bioanalytical approach to profile protein stability in response to cellular stress. In this assay, we ectopically introduce the Hsp40 FlagDNAJB8H31Q into cells and use quantitative proteomics to determine how protein affinity for DNAJB8 changes in the presence of cellular stress, without regard for native clients. Herein, we evaluate potential approaches to improve the performance of this bioanalytical assay. We find that although intracellular crosslinking increases recovery of protein interactors, this is not enough to overcome the relative drop in DNAJB8 recovery. While the J-domain promotes Hsp70 association, it does not affect the yield of protein association with DNAJB8 under basal conditions. By contrast, crosslinking and J-domain ablation both substantially increase relative protein interactor recovery with the structurally distinct Class B Hsp40 DNAJB1 but are completely compensated by poorer yield of DNAJB1 itself. Cellular thermal stress promotes increased affinity between DNAJB8H31Q and interacting proteins, as expected for interactions driven by recognition of misfolded proteins. DNAJB8WT does not demonstrate such a property, suggesting that under stress misfolded proteins are handed off to Hsp70. Hence, we find that DNAJB8H31Q is still our most effective recognition element for the recovery of destabilized client proteins following cellular stress.
Collapse
Affiliation(s)
- Maureen R Montoya
- Department of Chemistry, University of California, 501 Big Springs Rd, Riverside, CA, 92521, USA
| | - Guy M Quanrud
- Department of Chemistry, University of California, 501 Big Springs Rd, Riverside, CA, 92521, USA
| | - Liangyong Mei
- Department of Chemistry, University of North Florida, Jacksonville, FL, USA
| | - José L Moñtano
- Department of Chemistry, University of California, 501 Big Springs Rd, Riverside, CA, 92521, USA
| | - Caleb Hong
- Department of Chemistry, University of California, 501 Big Springs Rd, Riverside, CA, 92521, USA
| | - Joseph C Genereux
- Department of Chemistry, University of California, 501 Big Springs Rd, Riverside, CA, 92521, USA.
| |
Collapse
|
3
|
Chen G, Wang Y, Zheng Z, Jiang W, Leppert A, Zhong X, Belorusova A, Siegal G, Jegerschöld C, Koeck PJB, Abelein A, Hebert H, Knight SD, Johansson J. Molecular basis for different substrate-binding sites and chaperone functions of the BRICHOS domain. Protein Sci 2024; 33:e5063. [PMID: 38864729 PMCID: PMC11168071 DOI: 10.1002/pro.5063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024]
Abstract
Proteins can misfold into fibrillar or amorphous aggregates and molecular chaperones act as crucial guardians against these undesirable processes. The BRICHOS chaperone domain, found in several otherwise unrelated proproteins that contain amyloidogenic regions, effectively inhibits amyloid formation and toxicity but can in some cases also prevent non-fibrillar, amorphous protein aggregation. Here, we elucidate the molecular basis behind the multifaceted chaperone activities of the BRICHOS domain from the Bri2 proprotein. High-confidence AlphaFold2 and RoseTTAFold predictions suggest that the intramolecular amyloidogenic region (Bri23) is part of the hydrophobic core of the proprotein, where it occupies the proposed amyloid binding site, explaining the markedly reduced ability of the proprotein to prevent an exogenous amyloidogenic peptide from aggregating. However, the BRICHOS-Bri23 complex maintains its ability to form large polydisperse oligomers that prevent amorphous protein aggregation. A cryo-EM-derived model of the Bri2 BRICHOS oligomer is compatible with surface-exposed hydrophobic motifs that get exposed and come together during oligomerization, explaining its effects against amorphous aggregation. These findings provide a molecular basis for the BRICHOS chaperone domain function, where distinct surfaces are employed against different forms of protein aggregation.
Collapse
Affiliation(s)
- Gefei Chen
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
- Department of Cell and Molecular BiologyUppsala UniversityUppsalaSweden
| | - Yu Wang
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
- College of Wildlife and Protected Area, Northeast Forestry UniversityHarbinChina
| | - Zihan Zheng
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
- Department of PharmacologyXi'an Jiaotong UniversityXi'anChina
| | - Wangshu Jiang
- Department of Cell and Molecular BiologyUppsala UniversityUppsalaSweden
| | - Axel Leppert
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
- Present address:
Department of Microbiology, Tumour and Cell BiologyKarolinska InstitutetSolnaSweden
| | - Xueying Zhong
- Department of Biomedical Engineering and Health Systems, School of Engineering Sciences in Chemistry, Biotechnology and HealthKTH Royal Institute of TechnologyHuddingeSweden
| | | | | | - Caroline Jegerschöld
- Department of Biomedical Engineering and Health Systems, School of Engineering Sciences in Chemistry, Biotechnology and HealthKTH Royal Institute of TechnologyHuddingeSweden
| | - Philip J. B. Koeck
- Department of Biomedical Engineering and Health Systems, School of Engineering Sciences in Chemistry, Biotechnology and HealthKTH Royal Institute of TechnologyHuddingeSweden
| | - Axel Abelein
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| | - Hans Hebert
- Department of Biomedical Engineering and Health Systems, School of Engineering Sciences in Chemistry, Biotechnology and HealthKTH Royal Institute of TechnologyHuddingeSweden
| | - Stefan D. Knight
- Department of Cell and Molecular BiologyUppsala UniversityUppsalaSweden
| | - Jan Johansson
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| |
Collapse
|
4
|
Ryder BD, Ustyantseva E, Boyer DR, Mendoza-Oliva A, Kuska MI, Wydorski PM, Macierzyńska P, Morgan N, Sawaya MR, Diamond MI, Kampinga HH, Joachimiak LA. DNAJB8 oligomerization is mediated by an aromatic-rich motif that is dispensable for substrate activity. Structure 2024; 32:662-678.e8. [PMID: 38508190 PMCID: PMC11162344 DOI: 10.1016/j.str.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 01/17/2024] [Accepted: 02/22/2024] [Indexed: 03/22/2024]
Abstract
J-domain protein (JDP) molecular chaperones have emerged as central players that maintain a healthy proteome. The diverse members of the JDP family function as monomers/dimers and a small subset assemble into micron-sized oligomers. The oligomeric JDP members have eluded structural characterization due to their low-complexity, intrinsically disordered middle domains. This in turn, obscures the biological significance of these larger oligomers in protein folding processes. Here, we identified a short, aromatic motif within DNAJB8 that drives self-assembly through π-π stacking and determined its X-ray structure. We show that mutations in the motif disrupt DNAJB8 oligomerization in vitro and in cells. DNAJB8 variants that are unable to assemble bind to misfolded tau seeds more specifically and retain capacity to reduce protein aggregation in vitro and in cells. We propose a new model for DNAJB8 function in which the sequences in the low-complexity domains play distinct roles in assembly and substrate activity.
Collapse
Affiliation(s)
- Bryan D Ryder
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elizaveta Ustyantseva
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, The Netherlands
| | - David R Boyer
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ayde Mendoza-Oliva
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mikołaj I Kuska
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Paweł M Wydorski
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Paulina Macierzyńska
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nabil Morgan
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael R Sawaya
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Harm H Kampinga
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, The Netherlands
| | - Lukasz A Joachimiak
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
5
|
Zoltsman G, Dang TL, Kuchersky M, Faust O, Silva MS, Ilani T, Wentink AS, Bukau B, Rosenzweig R. A unique chaperoning mechanism in class A JDPs recognizes and stabilizes mutant p53. Mol Cell 2024; 84:1512-1526.e9. [PMID: 38508184 DOI: 10.1016/j.molcel.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 12/14/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024]
Abstract
J-domain proteins (JDPs) constitute a large family of molecular chaperones that bind a broad spectrum of substrates, targeting them to Hsp70, thus determining the specificity of and activating the entire chaperone functional cycle. The malfunction of JDPs is therefore inextricably linked to myriad human disorders. Here, we uncover a unique mechanism by which chaperones recognize misfolded clients, present in human class A JDPs. Through a newly identified β-hairpin site, these chaperones detect changes in protein dynamics at the initial stages of misfolding, prior to exposure of hydrophobic regions or large structural rearrangements. The JDPs then sequester misfolding-prone proteins into large oligomeric assemblies, protecting them from aggregation. Through this mechanism, class A JDPs bind destabilized p53 mutants, preventing clearance of these oncoproteins by Hsp70-mediated degradation, thus promoting cancer progression. Removal of the β-hairpin abrogates this protective activity while minimally affecting other chaperoning functions. This suggests the class A JDP β-hairpin as a highly specific target for cancer therapeutics.
Collapse
Affiliation(s)
- Guy Zoltsman
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Thi Lieu Dang
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 282, Heidelberg 69120, Germany
| | - Miriam Kuchersky
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Ofrah Faust
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Micael S Silva
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Tal Ilani
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Anne S Wentink
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 282, Heidelberg 69120, Germany; Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, the Netherlands
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 282, Heidelberg 69120, Germany.
| | - Rina Rosenzweig
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 761000, Israel.
| |
Collapse
|
6
|
Ryder BD, Ustyantseva E, Boyer DR, Mendoza-Oliva A, Kuska M, Wydorski PM, Macierzynska P, Morgan N, Sawaya MR, Diamond MI, Kampinga HH, Joachimiak L. DNAJB8 oligomerization is mediated by an aromatic-rich motif that is dispensable for substrate activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.06.531355. [PMID: 36945632 PMCID: PMC10028812 DOI: 10.1101/2023.03.06.531355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
J-domain protein (JDP) molecular chaperones have emerged as central players that maintain a healthy proteome. The diverse members of the JDP family function as monomers/dimers and a small subset assemble into micron-sized oligomers. The oligomeric JDP members have eluded structural characterization due to their low-complexity, intrinsically disordered middle domains. This in turn, obscures the biological significance of these larger oligomers in protein folding processes. Here, we identified a short, aromatic motif within DNAJB8, that drives self-assembly through pi-pi stacking and determined its X-ray structure. We show that mutations in the motif disrupt DNAJB8 oligomerization in vitro and in cells. DNAJB8 variants that are unable to assemble bind to misfolded tau seeds more specifically and retain capacity to reduce protein aggregation in vitro and in cells. We propose a new model for DNAJB8 function in which the sequences in the low-complexity domains play distinct roles in assembly and substrate activity.
Collapse
|
7
|
Abayev-Avraham M, Salzberg Y, Gliksberg D, Oren-Suissa M, Rosenzweig R. DNAJB6 mutants display toxic gain of function through unregulated interaction with Hsp70 chaperones. Nat Commun 2023; 14:7066. [PMID: 37923706 PMCID: PMC10624832 DOI: 10.1038/s41467-023-42735-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023] Open
Abstract
Molecular chaperones are essential cellular components that aid in protein folding and preventing the abnormal aggregation of disease-associated proteins. Mutations in one such chaperone, DNAJB6, were identified in patients with LGMDD1, a dominant autosomal disorder characterized by myofibrillar degeneration and accumulations of aggregated protein within myocytes. The molecular mechanisms through which such mutations cause this dysfunction, however, are not well understood. Here we employ a combination of solution NMR and biochemical assays to investigate the structural and functional changes in LGMDD1 mutants of DNAJB6. Surprisingly, we find that DNAJB6 disease mutants show no reduction in their aggregation-prevention activity in vitro, and instead differ structurally from the WT protein, affecting their interaction with Hsp70 chaperones. While WT DNAJB6 contains a helical element regulating its ability to bind and activate Hsp70, in LGMDD1 disease mutants this regulation is disrupted. These variants can thus recruit and hyperactivate Hsp70 chaperones in an unregulated manner, depleting Hsp70 levels in myocytes, and resulting in the disruption of proteostasis. Interfering with DNAJB6-Hsp70 binding, however, reverses the disease phenotype, suggesting future therapeutic avenues for LGMDD1.
Collapse
Affiliation(s)
- Meital Abayev-Avraham
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 761000, Israel
| | - Yehuda Salzberg
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 761000, Israel
| | - Dar Gliksberg
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 761000, Israel
| | - Meital Oren-Suissa
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 761000, Israel
| | - Rina Rosenzweig
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 761000, Israel.
| |
Collapse
|
8
|
J Proteins Counteract Amyloid Propagation and Toxicity in Yeast. BIOLOGY 2022; 11:biology11091292. [PMID: 36138771 PMCID: PMC9495310 DOI: 10.3390/biology11091292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 12/02/2022]
Abstract
Simple Summary Dozens of diseases are associated with misfolded proteins that accumulate in highly ordered fibrous aggregates called amyloids. Protein quality control (PQC) factors keep cells healthy by helping maintain the integrity of the cell’s proteins and physiological processes. Yeast has been used widely for years to study how amyloids cause toxicity to cells and how PQC factors help protect cells from amyloid toxicity. The so-called J-domain proteins (JDPs) are PQC factors that are particularly effective at providing such protection. We discuss how PQC factors protect animals, human cells, and yeast from amyloid toxicity, focusing on yeast and human JDPs. Abstract The accumulation of misfolded proteins as amyloids is associated with pathology in dozens of debilitating human disorders, including diabetes, Alzheimer’s, Parkinson’s, and Huntington’s diseases. Expressing human amyloid-forming proteins in yeast is toxic, and yeast prions that propagate as infectious amyloid forms of cellular proteins are also harmful. The yeast system, which has been useful for studying amyloids and their toxic effects, has provided much insight into how amyloids affect cells and how cells respond to them. Given that an amyloid is a protein folding problem, it is unsurprising that the factors found to counteract the propagation or toxicity of amyloids in yeast involve protein quality control. Here, we discuss such factors with an emphasis on J-domain proteins (JDPs), which are the most highly abundant and diverse regulators of Hsp70 chaperones. The anti-amyloid effects of JDPs can be direct or require interaction with Hsp70.
Collapse
|
9
|
Claesson K, Chew YL, Ecroyd H. Exploiting flow cytometry for the unbiased quantification of protein inclusions in Caenorhabditis elegans. J Neurochem 2022; 161:281-292. [PMID: 35170035 PMCID: PMC9541147 DOI: 10.1111/jnc.15591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/28/2022] [Accepted: 02/12/2022] [Indexed: 11/29/2022]
Abstract
The aggregation of proteins into inclusions or plaques is a prominent hallmark of a diverse range of pathologies including neurodegenerative diseases. The quantification of such inclusions in Caenorhabditis elegans models of aggregation is usually achieved by fluorescence microscopy or other techniques involving biochemical fractionation of worm lysates. Here, we describe a simple and rapid flow cytometry-based approach that allows fluorescently tagged inclusions to be enumerated in whole worm lysate in a quantitative and unbiased fashion. We demonstrate that this technique is applicable to multiple C. elegans models of aggregation and importantly, can be used to monitor the dynamics of inclusion formation in response to heat shock and during ageing. This includes the characterisation of physicochemical properties of inclusions, such as their apparent size, which may reveal how aggregate formation is distinct in different tissues or at different stages of pathology or ageing. This new method can be used as a powerful technique for the medium- to high-throughput quantification of inclusions in future studies of genetic or chemical modulators of aggregation in C. elegans.
Collapse
Affiliation(s)
- Kristian Claesson
- Molecular Horizons and School of Chemistry and Molecular BioscienceUniversity of WollongongWollongongNSWAustralia
- Illawarra Health & Medical Research InstituteWollongongNew South WalesAustralia
| | - Yee Lian Chew
- Molecular Horizons and School of Chemistry and Molecular BioscienceUniversity of WollongongWollongongNSWAustralia
- Illawarra Health & Medical Research InstituteWollongongNew South WalesAustralia
- Flinders Health and Medical Research Institute, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - Heath Ecroyd
- Molecular Horizons and School of Chemistry and Molecular BioscienceUniversity of WollongongWollongongNSWAustralia
- Illawarra Health & Medical Research InstituteWollongongNew South WalesAustralia
| |
Collapse
|
10
|
Li G, Zhang S, Wang H, Liang L, Liu Z, Wang Y, Xu B, Zhao H. Differential Expression Characterisation of the Heat Shock Proteins DnaJB6, DnaJshv, DnaJB13, and DnaJB14 in Apis cerana cerana Under Various Stress Conditions. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.873791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
As key pollinators, bees are frequently exposed to multiple environmental stresses and have developed crucial mechanisms by which they adapt to these stressors. However, the molecular bases mediated at the gene level remain to be discovered. Here, we found four heat shock protein DnaJB subfamily genes, DnaJB6, DnaJshv, DnaJB13, and DnaJB14, from Apis cerana cerana, that all have J domains in their protein sequences. The expression levels of DnaJB6 and DnaJshv were upregulated by different degrees of heat stress, and the transcript level of DnaJB14 was gradually upregulated as the degree of heat stress increased, while the mRNA level of DnaJB13 was downregulated at multiple time points during heat stress treatment. The mRNA levels of all four DnaJBs were upregulated by cold and UV stress. In addition, the expression levels of DnaJB6, DnaJshv and DnaJB13 were reduced under abamectin, imidacloprid, cypermethrin, bifenthrin, spirodiclofen, and methomyl stresses. The transcript level of DnaJB14 was decreased by imidacloprid, cypermethrin, spirodiclofen, and methomyl exposure but increased by abamectin and bifenthrin exposure. These results indicate that the demand of A. cerana cerana for these four DnaJBs differs under various stress conditions. To further explore the role of DnaJBs in the stress response, we successfully silenced DnaJshv and DnaJB14. The content of protein carbonyl was increased, while the content of VC, the enzymatic activities of CAT, GST, and SOD, the mRNA levels of many antioxidant-related genes, and the total antioxidant capacity were reduced after knockdown of DnaJshv and DnaJB14 in A. cerana cerana. These results indicate that silencing DnaJshv and DnaJB14 increases oxidative damage and decreases the antioxidant ability of A. cerana cerana. Taken together, our results demonstrate that DnaJB6, DnaJshv, DnaJB13, and DnaJB14 are differentially expressed under stress conditions and play crucial roles in response to various stressors, possibly through the antioxidant signalling pathway. These findings will be conducive to understanding the molecular basis of bee responses to environmental stresses and are beneficial for improving bee protection.
Collapse
|
11
|
Robinson KJ, Tym MC, Hogan A, Watchon M, Yuan KC, Plenderleith SK, Don EK, Laird AS. Flow cytometry allows rapid detection of protein aggregates in cellular and zebrafish models of spinocerebellar ataxia 3. Dis Model Mech 2021; 14:dmm049023. [PMID: 34473252 PMCID: PMC8524651 DOI: 10.1242/dmm.049023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/23/2021] [Indexed: 01/18/2023] Open
Abstract
Spinocerebellar ataxia 3 (SCA3, also known as Machado-Joseph disease) is a neurodegenerative disease caused by inheritance of a CAG repeat expansion within the ATXN3 gene, resulting in polyglutamine (polyQ) repeat expansion within the ataxin-3 protein. In this study, we have identified protein aggregates in both neuronal-like (SHSY5Y) cells and transgenic zebrafish expressing human ataxin-3 with expanded polyQ. We have adapted a previously reported flow cytometry methodology named flow cytometric analysis of inclusions and trafficking, allowing rapid quantification of detergent insoluble forms of ataxin-3 fused to a GFP in SHSY5Y cells and cells dissociated from the zebrafish larvae. Flow cytometric analysis revealed an increased number of detergent-insoluble ataxin-3 particles per nuclei in cells and in zebrafish expressing polyQ-expanded ataxin-3 compared to those expressing wild-type human ataxin-3. Treatment with compounds known to modulate autophagic activity altered the number of detergent-insoluble ataxin-3 particles in cells and zebrafish expressing mutant human ataxin-3. We conclude that flow cytometry can be harnessed to rapidly count ataxin-3 aggregates, both in vitro and in vivo, and can be used to compare potential therapies targeting protein aggregates. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Angela S. Laird
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
12
|
First person – Shannon McMahon. J Cell Sci 2021. [DOI: 10.1242/jcs.258681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Shannon McMahon is first author on ‘DNAJB chaperones suppress destabilised protein aggregation via a region distinct from that used to inhibit amyloidogenesis’, published in JCS. Shannon is a PhD student in the lab of Heath Ecroyd at Molecular Horizons and the Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia, investigating whether the intrinsic proteostasis machinery can be manipulated to combat neurodegenerative diseases.
Collapse
|