1
|
Nanavati BN, Noordstra I, Lwin AKO, Brooks JW, Rae J, Parton RG, Verma S, Duszyc K, Green KJ, Yap AS. The desmosome-intermediate filament system facilitates mechanotransduction at adherens junctions for epithelial homeostasis. Curr Biol 2024; 34:4081-4090.e5. [PMID: 39153481 PMCID: PMC11387132 DOI: 10.1016/j.cub.2024.07.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 12/04/2023] [Accepted: 07/22/2024] [Indexed: 08/19/2024]
Abstract
Epithelial homeostasis can be critically influenced by how cells respond to mechanical forces, both local changes in force balance between cells and altered tissue-level forces.1 Coupling of specialized cell-cell adhesions to their cytoskeletons provides epithelia with diverse strategies to respond to mechanical stresses.2,3,4 Desmosomes confer tissue resilience when their associated intermediate filaments (IFs)2,3 stiffen in response to strain,5,6,7,8,9,10,11 while mechanotransduction associated with the E-cadherin apparatus12,13 at adherens junctions (AJs) actively modulates actomyosin by RhoA signaling. Although desmosomes and AJs make complementary contributions to mechanical homeostasis in epithelia,6,8 there is increasing evidence to suggest that these cytoskeletal-adhesion systems can interact functionally and biochemically.8,14,15,16,17,18,19,20 We now report that the desmosome-IF system integrated by desmoplakin (DP) facilitates active tension sensing at AJs for epithelial homeostasis. DP function is necessary for mechanosensitive RhoA signaling at AJs to be activated when tension was applied to epithelial monolayers. This effect required DP to anchor IFs to desmosomes and recruit the dystonin (DST) cytolinker to apical junctions. DP RNAi reduced the mechanical load that was applied to the cadherin complex by increased monolayer tension. Consistent with reduced mechanical signal strength, DP RNAi compromised assembly of the Myosin VI-E-cadherin mechanosensor that activates RhoA. The integrated DP-IF system therefore supports AJ mechanotransduction by enhancing the mechanical load of tissue tension that is transmitted to E-cadherin. This crosstalk was necessary for efficient elimination of apoptotic epithelial cells by apical extrusion, demonstrating its contribution to epithelial homeostasis.
Collapse
Affiliation(s)
- Bageshri Naimish Nanavati
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Ivar Noordstra
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Angela K O Lwin
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - John W Brooks
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - James Rae
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Robert G Parton
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Suzie Verma
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Kinga Duszyc
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Kathleen J Green
- Departments of Pathology and Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 06011, USA
| | - Alpha S Yap
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
2
|
Jara O, Maripillán J, Momboisse F, Cárdenas AM, García IE, Martínez AD. Differential Regulation of Hemichannels and Gap Junction Channels by RhoA GTPase and Actin Cytoskeleton: A Comparative Analysis of Cx43 and Cx26. Int J Mol Sci 2024; 25:7246. [PMID: 39000353 PMCID: PMC11242593 DOI: 10.3390/ijms25137246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Connexins (Cxs) are transmembrane proteins that assemble into gap junction channels (GJCs) and hemichannels (HCs). Previous researches support the involvement of Rho GTPases and actin microfilaments in the trafficking of Cxs, formation of GJCs plaques, and regulation of channel activity. Nonetheless, it remains uncertain whether distinct types of Cxs HCs and GJCs respond differently to Rho GTPases or changes in actin polymerization/depolymerization dynamics. Our investigation revealed that inhibiting RhoA, a small GTPase that controls actin polymerization, or disrupting actin microfilaments with cytochalasin B (Cyto-B), resulted in reduced GJCs plaque size at appositional membranes and increased transport of HCs to non-appositional plasma membrane regions. Notably, these effects were consistent across different Cx types, since Cx26 and Cx43 exhibited similar responses, despite having distinct trafficking routes to the plasma membrane. Functional assessments showed that RhoA inhibition and actin depolymerization decreased the activity of Cx43 GJCs while significantly increasing HC activity. However, the functional status of GJCs and HCs composed of Cx26 remained unaffected. These results support the hypothesis that RhoA, through its control of the actin cytoskeleton, facilitates the transport of HCs to appositional cell membranes for GJCs formation while simultaneously limiting the positioning of free HCs at non-appositional cell membranes, independently of Cx type. This dynamic regulation promotes intercellular communications and reduces non-selective plasma membrane permeability through a Cx-type dependent mechanism, whereby the activity of Cx43 HCs and GJCs are differentially affected but Cx26 channels remain unchanged.
Collapse
Affiliation(s)
- Oscar Jara
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia, Universidad de Valparaíso, Valparaíso 2362807, Chile
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA
| | - Jaime Maripillán
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia, Universidad de Valparaíso, Valparaíso 2362807, Chile
| | - Fanny Momboisse
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia, Universidad de Valparaíso, Valparaíso 2362807, Chile
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, 75013 Paris, France
| | - Ana María Cárdenas
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia, Universidad de Valparaíso, Valparaíso 2362807, Chile
| | - Isaac E García
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia, Universidad de Valparaíso, Valparaíso 2362807, Chile
- Laboratorio de Fisiología Molecular y Biofísica, Facultad de Odontología, Universidad de Valparaíso, Valparaíso 2360004, Chile
- Centro de Investigación en Ciencias Odontológicas y Médicas, CICOM, Universidad de Valparaíso, Valparaíso 2360004, Chile
| | - Agustín D Martínez
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia, Universidad de Valparaíso, Valparaíso 2362807, Chile
| |
Collapse
|
3
|
Baba H, Fujita T, Mizuno K, Tambo M, Toda S. Programming Spatial Cell Sorting by Engineering Cadherin Intracellular Activity. ACS Synth Biol 2024; 13:1705-1715. [PMID: 38726686 PMCID: PMC11197096 DOI: 10.1021/acssynbio.3c00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 06/22/2024]
Abstract
The spatial sorting of cells into appropriate tissue compartments is essential for embryogenesis and tissue development. Spatial cell sorting is controlled by the interplay between cell surface affinity and intracellular mechanical properties. However, intracellular signaling that can sufficiently sort cell populations remains unexplored. In this study, we engineered chimeric cadherins by replacing the cadherin intracellular domain with cytoskeletal regulators to test their ability to induce spatial cell sorting. Using a fibroblast-based reconstitution system, we observed that Rac1 and RhoA activity in the cadherin tail induced outward and inward sorting, respectively. In particular, RhoA activity embedded cells toward the inside of E-cadherin-expressing spheroids and tumor spheroids, leading to tissue invagination. Despite the simplicity of chimeric cadherin design, our results indicate that differences in cadherin intracellular activities can determine the direction of spatial cell sorting, even when cell surface affinity is not different, and provide new molecular tools to engineer tissue architectures.
Collapse
Affiliation(s)
- Hikari Baba
- WPI
Nano Life Science Institute (NanoLSI), Kanazawa
University, Kanazawa, Ishikawa 920-1192, Japan
| | - Tomohiro Fujita
- WPI
Nano Life Science Institute (NanoLSI), Kanazawa
University, Kanazawa, Ishikawa 920-1192, Japan
- Graduate
School of Frontier Science Initiative, Kanazawa
University, Kanazawa, Ishikawa 920-1192, Japan
| | - Kosuke Mizuno
- WPI
Nano Life Science Institute (NanoLSI), Kanazawa
University, Kanazawa, Ishikawa 920-1192, Japan
- Graduate
School of Frontier Science Initiative, Kanazawa
University, Kanazawa, Ishikawa 920-1192, Japan
| | - Mai Tambo
- WPI
Nano Life Science Institute (NanoLSI), Kanazawa
University, Kanazawa, Ishikawa 920-1192, Japan
| | - Satoshi Toda
- WPI
Nano Life Science Institute (NanoLSI), Kanazawa
University, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
4
|
Higashi T, Saito AC, Chiba H. Damage control of epithelial barrier function in dynamic environments. Eur J Cell Biol 2024; 103:151410. [PMID: 38579602 DOI: 10.1016/j.ejcb.2024.151410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024] Open
Abstract
Epithelial tissues cover the surfaces and lumens of the internal organs of multicellular animals and crucially contribute to internal environment homeostasis by delineating distinct compartments within the body. This vital role is known as epithelial barrier function. Epithelial cells are arranged like cobblestones and intricately bind together to form an epithelial sheet that upholds this barrier function. Central to the restriction of solute and fluid diffusion through intercellular spaces are occluding junctions, tight junctions in vertebrates and septate junctions in invertebrates. As part of epithelial tissues, cells undergo constant renewal, with older cells being replaced by new ones. Simultaneously, the epithelial tissue undergoes relative rearrangement, elongating, and shifting directionally as a whole. The movement or shape changes within the epithelial sheet necessitate significant deformation and reconnection of occluding junctions. Recent advancements have shed light on the intricate mechanisms through which epithelial cells sustain their barrier function in dynamic environments. This review aims to introduce these noteworthy findings and discuss some of the questions that remain unanswered.
Collapse
Affiliation(s)
- Tomohito Higashi
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan.
| | - Akira C Saito
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Hideki Chiba
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan
| |
Collapse
|
5
|
Jin X, Rosenbohm J, Moghaddam AO, Kim E, Seiffert-Sinha K, Leiker M, Zhai H, Baddam SR, Minnick G, Huo Y, Safa BT, Wahl JK, Meng F, Huang C, Lim JY, Conway DE, Sinha AA, Yang R. Desmosomal Cadherin Tension Loss in Pemphigus Vulgaris Mediated by the Inhibition of Active RhoA at Cell-Cell Adhesions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592394. [PMID: 38766211 PMCID: PMC11100601 DOI: 10.1101/2024.05.03.592394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Binding of autoantibodies to keratinocyte surface antigens, primarily desmoglein 3 (Dsg3) of the desmosomal complex, leads to the dissociation of cell-cell adhesion in the blistering disorder pemphigus vulgaris (PV). After the initial disassembly of desmosomes, cell-cell adhesions actively remodel in association with the cytoskeleton and focal adhesions. Growing evidence highlights the role of adhesion mechanics and mechanotransduction at cell-cell adhesions in this remodeling process, as their active participation may direct autoimmune pathogenicity. However, a large part of the biophysical transformations after antibody binding remains underexplored. Specifically, it is unclear how tension in desmosomes and cell-cell adhesions changes in response to antibodies, and how the altered tensional states translate to cellular responses. Here, we showed a tension loss at Dsg3 using fluorescence resonance energy transfer (FRET)-based tension sensors, a tension loss at the entire cell-cell adhesion, and a potentially compensatory increase in junctional traction force at cell-extracellular matrix adhesions after PV antibody binding. Further, our data indicate that this tension loss is mediated by the inhibition of RhoA at cell-cell contacts, and the extent of RhoA inhibition may be crucial in determining the severity of pathogenicity among different PV antibodies. More importantly, this tension loss can be partially restored by altering actomyosin based cell contractility. Collectively, these findings provide previously unattainable details in our understanding of the mechanisms that govern cell-cell interactions under physiological and autoimmune conditions, which may open the window to entirely new therapeutics aimed at restoring physiological balance to tension dynamics that regulates the maintenance of cell-cell adhesion.
Collapse
Affiliation(s)
- Xiaowei Jin
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Jordan Rosenbohm
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Amir Ostadi Moghaddam
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Eunju Kim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
| | | | - Merced Leiker
- Department of Dermatology, University at Buffalo, Buffalo, NY 14203
| | - Haiwei Zhai
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Sindora R. Baddam
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23284
| | - Grayson Minnick
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Yucheng Huo
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore
| | - Bahareh Tajvidi Safa
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - James K. Wahl
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE 68583
| | - Fanben Meng
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Changjin Huang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore
| | - Jung Yul Lim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Daniel E. Conway
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210
- The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210
| | - Animesh A. Sinha
- Department of Dermatology, University at Buffalo, Buffalo, NY 14203
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
6
|
Bement WM, Goryachev AB, Miller AL, von Dassow G. Patterning of the cell cortex by Rho GTPases. Nat Rev Mol Cell Biol 2024; 25:290-308. [PMID: 38172611 DOI: 10.1038/s41580-023-00682-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 01/05/2024]
Abstract
The Rho GTPases - RHOA, RAC1 and CDC42 - are small GTP binding proteins that regulate basic biological processes such as cell locomotion, cell division and morphogenesis by promoting cytoskeleton-based changes in the cell cortex. This regulation results from active (GTP-bound) Rho GTPases stimulating target proteins that, in turn, promote actin assembly and myosin 2-based contraction to organize the cortex. This basic regulatory scheme, well supported by in vitro studies, led to the natural assumption that Rho GTPases function in vivo in an essentially linear matter, with a given process being initiated by GTPase activation and terminated by GTPase inactivation. However, a growing body of evidence based on live cell imaging, modelling and experimental manipulation indicates that Rho GTPase activation and inactivation are often tightly coupled in space and time via signalling circuits and networks based on positive and negative feedback. In this Review, we present and discuss this evidence, and we address one of the fundamental consequences of coupled activation and inactivation: the ability of the Rho GTPases to self-organize, that is, direct their own transition from states of low order to states of high order. We discuss how Rho GTPase self-organization results in the formation of diverse spatiotemporal cortical patterns such as static clusters, oscillatory pulses, travelling wave trains and ring-like waves. Finally, we discuss the advantages of Rho GTPase self-organization and pattern formation for cell function.
Collapse
Affiliation(s)
- William M Bement
- Center for Quantitative Cell Imaging, Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Andrew B Goryachev
- Center for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| | - Ann L Miller
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | | |
Collapse
|
7
|
Wu Z, Liu Q, Zhao Y, Fang C, Zheng W, Zhao Z, Zhang N, Yang X. Rhogef17: A novel target for endothelial barrier function. Biomed Pharmacother 2024; 170:115983. [PMID: 38134633 DOI: 10.1016/j.biopha.2023.115983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
ARHGEF17 encodes the protein RhoGEF17, which is highly expressed in vascular endothelial cells. It is a guanine nucleotide exchange factor (GEF) that accelerates the exchange of GDP with GTP on many small GTPases through its Dbl homology (DH) domain, enabling the activation of Rho-GTPases such as RhoA, RhoB, and RhoC. Rho GTPase-regulated changes in the actin cytoskeleton and cell adhesion kinetics are the main mechanisms mediating many endothelial cell (EC) alterations, including cell morphology, migration, and division changes, which profoundly affect EC barrier function. This review focuses on ARHGEF17 expression, activation and biological functions in ECs, linking its regulation of cellular morphology, migration, mitosis and other cellular behaviors to disease onset and progression. Understanding ARHGEF17 mechanisms of action will contribute to the design of therapeutic approaches targeting RhoGEF17, a potential drug target for the treatment of various endothelium-related diseases, Such as vascular inflammation, carcinogenesis and transendothelial metastasis of tumors.
Collapse
Affiliation(s)
- Zhuolin Wu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | - Quanlei Liu
- Department of Neurosurgery, Capital Medical University, Xuanwu Hospital, Beijing, China
| | - Yan Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | | | - Wen Zheng
- Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Zilin Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | - Nai Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xinyu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
8
|
Eckert J, Ladoux B, Mège RM, Giomi L, Schmidt T. Hexanematic crossover in epithelial monolayers depends on cell adhesion and cell density. Nat Commun 2023; 14:5762. [PMID: 37717032 PMCID: PMC10505199 DOI: 10.1038/s41467-023-41449-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 08/30/2023] [Indexed: 09/18/2023] Open
Abstract
Changes in tissue geometry during developmental processes are associated with collective migration of cells. Recent experimental and numerical results suggest that these changes could leverage on the coexistence of nematic and hexatic orientational order at different length scales. How this multiscale organization is affected by the material properties of the cells and their substrate is presently unknown. In this study, we address these questions in monolayers of Madin-Darby canine kidney cells having various cell densities and molecular repertoires. At small length scales, confluent monolayers are characterized by a prominent hexatic order, independent of the presence of E-cadherin, monolayer density, and underlying substrate stiffness. However, all three properties affect the meso-scale tissue organization. The length scale at which hexatic order transits to nematic order, the "hexanematic" crossover scale, strongly depends on cell-cell adhesions and correlates with monolayer density. Our study demonstrates how epithelial organization is affected by mechanical properties, and provides a robust description of tissue organization during developmental processes.
Collapse
Affiliation(s)
- Julia Eckert
- Physics of Life Processes, Leiden Institute of Physics, Universiteit Leiden, 2333 CC, Leiden, The Netherlands
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Benoît Ladoux
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - René-Marc Mège
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Luca Giomi
- Instituut-Lorentz, Leiden Institute of Physics, Universiteit Leiden, P.O. Box 9506, 2300 RA, Leiden, The Netherlands
| | - Thomas Schmidt
- Physics of Life Processes, Leiden Institute of Physics, Universiteit Leiden, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
9
|
Landino J, Misterovich E, Chumki S, Miller AL. Neighbor cells restrain furrowing during epithelial cytokinesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.08.544077. [PMID: 37333405 PMCID: PMC10274919 DOI: 10.1101/2023.06.08.544077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Cytokinesis challenges epithelial tissue homeostasis by generating forces that pull on neighboring cells via cell-cell junctions. Previous work has shown that junction reinforcement at the furrow in Xenopus laevis epithelia regulates the speed of furrowing1. This suggests the cytokinetic array that drives cell division is subject to resistive forces from epithelial neighbor cells. We show here that contractility factors accumulate in neighboring cells near the furrow during cytokinesis. Additionally, increasing neighbor cell stiffness, via ɑ-actinin overexpression, or contractility, through optogenetic Rho activation in one neighbor cell, slows or asymmetrically pauses furrowing, respectively. Notably, optogenetic stimulation of neighbor cell contractility on both sides of the furrow induces cytokinetic failure and binucleation. We conclude that forces from the cytokinetic array in the dividing cell are carefully balanced with restraining forces generated by neighbor cells, and neighbor cell mechanics regulate the speed and success of cytokinesis.
Collapse
Affiliation(s)
- Jennifer Landino
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor
| | - Eileen Misterovich
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor
| | - Shahana Chumki
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor
| | - Ann L. Miller
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor
| |
Collapse
|
10
|
Cervantes-Villagrana RD, García-Jiménez I, Vázquez-Prado J. Guanine nucleotide exchange factors for Rho GTPases (RhoGEFs) as oncogenic effectors and strategic therapeutic targets in metastatic cancer. Cell Signal 2023; 109:110749. [PMID: 37290677 DOI: 10.1016/j.cellsig.2023.110749] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/11/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Metastatic cancer cells dynamically adjust their shape to adhere, invade, migrate, and expand to generate secondary tumors. Inherent to these processes is the constant assembly and disassembly of cytoskeletal supramolecular structures. The subcellular places where cytoskeletal polymers are built and reorganized are defined by the activation of Rho GTPases. These molecular switches directly respond to signaling cascades integrated by Rho guanine nucleotide exchange factors (RhoGEFs), which are sophisticated multidomain proteins that control morphological behavior of cancer and stromal cells in response to cell-cell interactions, tumor-secreted factors and actions of oncogenic proteins within the tumor microenvironment. Stromal cells, including fibroblasts, immune and endothelial cells, and even projections of neuronal cells, adjust their shapes and move into growing tumoral masses, building tumor-induced structures that eventually serve as metastatic routes. Here we review the role of RhoGEFs in metastatic cancer. They are highly diverse proteins with common catalytic modules that select among a variety of homologous Rho GTPases enabling them to load GTP, acquiring an active conformation that stimulates effectors controlling actin cytoskeleton remodeling. Therefore, due to their strategic position in oncogenic signaling cascades, and their structural diversity flanking common catalytic modules, RhoGEFs possess unique characteristics that make them conceptual targets of antimetastatic precision therapies. Preclinical proof of concept, demonstrating the antimetastatic effect of inhibiting either expression or activity of βPix (ARHGEF7), P-Rex1, Vav1, ARHGEF17, and Dock1, among others, is emerging.
Collapse
|
11
|
Nanavati BN, Noordstra I, Verma S, Duszyc K, Green KJ, Yap AS. Desmosome-anchored intermediate filaments facilitate tension-sensitive RhoA signaling for epithelial homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529786. [PMID: 36865131 PMCID: PMC9980054 DOI: 10.1101/2023.02.23.529786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Epithelia are subject to diverse forms of mechanical stress during development and post-embryonic life. They possess multiple mechanisms to preserve tissue integrity against tensile forces, which characteristically involve specialized cell-cell adhesion junctions coupled to the cytoskeleton. Desmosomes connect to intermediate filaments (IF) via desmoplakin (DP)1,2, while the E-cadherin complex links to the actomyosin cytoskeleton in adherens junctions (AJ)3. These distinct adhesion-cytoskeleton systems support different strategies to preserve epithelial integrity, especially against tensile stress. IFs coupled to desmosomes can passively respond to tension by strain-stiffening4-10, whereas for AJs a variety of mechanotransduction mechanisms associated with the E-cadherin apparatus itself11,12, or proximate to the junctions13, can modulate the activity of its associated actomyosin cytoskeleton by cell signaling. We now report a pathway where these systems collaborate for active tension-sensing and epithelial homeostasis. We found that DP was necessary for epithelia to activate RhoA at AJ on tensile stimulation, an effect that required its capacity to couple IF to desmosomes. DP exerted this effect by facilitating the association of Myosin VI with E-cadherin, the mechanosensor for the tension-sensitive RhoA pathway at AJ12. This connection between the DP-IF system and AJ-based tension-sensing promoted epithelial resilience when contractile tension was increased. It further facilitated epithelial homeostasis by allowing apoptotic cells to be eliminated by apical extrusion. Thus, active responses to tensile stress in epithelial monolayers reflect an integrated response of the IF- and actomyosin-based cell-cell adhesion systems.
Collapse
Affiliation(s)
- Bageshri Naimish Nanavati
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland
| | - Ivar Noordstra
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland
| | - Suzie Verma
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland
| | - Kinga Duszyc
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland
| | - Kathleen J. Green
- Departments of Pathology and Dermatology, Feinberg School of Medicine, Northwestern University, Chicago IL 06011 USA
| | - Alpha S. Yap
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland
| |
Collapse
|
12
|
Truszkowski L, Batur D, Long H, Tarbashevich K, Vos BE, Trappmann B, Raz E. Primordial germ cells adjust their protrusion type while migrating in different tissue contexts in vivo. Development 2023; 150:286614. [PMID: 36515556 PMCID: PMC10110502 DOI: 10.1242/dev.200603] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
In both physiological processes and disease contexts, migrating cells have the ability to adapt to conditions in their environment. As an in vivo model for this process, we use zebrafish primordial germ cells that migrate throughout the developing embryo. When migrating within an ectodermal environment, the germ cells form fewer and smaller blebs when compared with their behavior within mesodermal environment. We find that cortical tension of neighboring cells is a parameter that affects blebbing frequency. Interestingly, the change in blebbing activity is accompanied by the formation of more actin-rich protrusions. These alterations in cell behavior that correlate with changes in RhoA activity could allow the cells to maintain dynamic motility parameters, such as migration speed and track straightness, in different settings. In addition, we find that the polarity of the cells can be affected by stiff structures positioned in their migration path This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Lukasz Truszkowski
- Institute of Cell Biology, ZMBE, University of Münster, D-48149 Münster, Germany
| | - Dilek Batur
- Institute of Cell Biology, ZMBE, University of Münster, D-48149 Münster, Germany
| | - Hongyan Long
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany
| | | | - Bart E Vos
- Third Institute of Physics - Biophysics, Georg August University Göttingen, D-37007 Göttingen, Germany
| | - Britta Trappmann
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany
| | - Erez Raz
- Institute of Cell Biology, ZMBE, University of Münster, D-48149 Münster, Germany
- Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany
| |
Collapse
|
13
|
McEvoy E, Sneh T, Moeendarbary E, Javanmardi Y, Efimova N, Yang C, Marino-Bravante GE, Chen X, Escribano J, Spill F, Garcia-Aznar JM, Weeraratna AT, Svitkina TM, Kamm RD, Shenoy VB. Feedback between mechanosensitive signaling and active forces governs endothelial junction integrity. Nat Commun 2022; 13:7089. [PMID: 36402771 PMCID: PMC9675837 DOI: 10.1038/s41467-022-34701-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/03/2022] [Indexed: 11/21/2022] Open
Abstract
The formation and recovery of gaps in the vascular endothelium governs a wide range of physiological and pathological phenomena, from angiogenesis to tumor cell extravasation. However, the interplay between the mechanical and signaling processes that drive dynamic behavior in vascular endothelial cells is not well understood. In this study, we propose a chemo-mechanical model to investigate the regulation of endothelial junctions as dependent on the feedback between actomyosin contractility, VE-cadherin bond turnover, and actin polymerization, which mediate the forces exerted on the cell-cell interface. Simulations reveal that active cell tension can stabilize cadherin bonds, but excessive RhoA signaling can drive bond dissociation and junction failure. While actin polymerization aids gap closure, high levels of Rac1 can induce junction weakening. Combining the modeling framework with experiments, our model predicts the influence of pharmacological treatments on the junction state and identifies that a critical balance between RhoA and Rac1 expression is required to maintain junction stability. Our proposed framework can help guide the development of therapeutics that target the Rho family of GTPases and downstream active mechanical processes.
Collapse
Affiliation(s)
- Eoin McEvoy
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Biomedical Engineering, University of Galway, Galway, H91 HX31, Ireland
| | - Tal Sneh
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Emad Moeendarbary
- Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yousef Javanmardi
- Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK
| | - Nadia Efimova
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Changsong Yang
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gloria E Marino-Bravante
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Xingyu Chen
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jorge Escribano
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Fabian Spill
- School of Mathematics, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | | | - Ashani T Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Tatyana M Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Vivek B Shenoy
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
14
|
Anillin governs mitotic rounding during early epidermal development. BMC Biol 2022; 20:145. [PMID: 35710398 PMCID: PMC9205045 DOI: 10.1186/s12915-022-01345-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
Abstract
Background The establishment of tissue architecture requires coordination between distinct processes including basement membrane assembly, cell adhesion, and polarity; however, the underlying mechanisms remain poorly understood. The actin cytoskeleton is ideally situated to orchestrate tissue morphogenesis due to its roles in mechanical, structural, and regulatory processes. However, the function of many pivotal actin-binding proteins in mammalian development is poorly understood. Results Here, we identify a crucial role for anillin (ANLN), an actin-binding protein, in orchestrating epidermal morphogenesis. In utero RNAi-mediated silencing of Anln in mouse embryos disrupted epidermal architecture marked by adhesion, polarity, and basement membrane defects. Unexpectedly, these defects cannot explain the profoundly perturbed epidermis of Anln-depleted embryos. Indeed, even before these defects emerge, Anln-depleted epidermis exhibits abnormalities in mitotic rounding and its associated processes: chromosome segregation, spindle orientation, and mitotic progression, though not in cytokinesis that was disrupted only in Anln-depleted cultured keratinocytes. We further show that ANLN localizes to the cell cortex during mitotic rounding, where it regulates the distribution of active RhoA and the levels, activity, and structural organization of the cortical actomyosin proteins. Conclusions Our results demonstrate that ANLN is a major regulator of epidermal morphogenesis and identify a novel role for ANLN in mitotic rounding, a near-universal process that governs cell shape, fate, and tissue morphogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01345-9.
Collapse
|
15
|
Xu W, Alpha KM, Zehrbach NM, Turner CE. Paxillin Promotes Breast Tumor Collective Cell Invasion through Maintenance of Adherens Junction Integrity. Mol Biol Cell 2021; 33:ar14. [PMID: 34851720 PMCID: PMC9236150 DOI: 10.1091/mbc.e21-09-0432] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Distant organ metastasis is linked to poor prognosis during cancer progression. The expression level of the focal adhesion adapter protein paxillin varies among different human cancers, but its role in tumor progression is unclear. Herein, we utilize a newly generated PyMT mammary tumor mouse model with conditional paxillin ablation in breast tumor epithelial cells, combined with in vitro 3D tumor organoids invasion analysis and 2D calcium switch assays, to assess the roles for paxillin in breast tumor cell invasion. Paxillin had little effect on primary tumor initiation and growth but is critical for the formation of distant lung metastasis. In paxillin-depleted 3D tumor organoids, collective cell invasion was substantially perturbed. Two-dimensional cell culture revealed paxillin-dependent stabilization of adherens junctions (AJ). Mechanistically, paxillin is required for AJ assembly through facilitating E-cadherin endocytosis and recycling and HDAC6-mediated microtubule acetylation. Furthermore, Rho GTPase activity analysis and rescue experiments with a RhoA activator or Rac1 inhibitor suggest paxillin is potentially regulating the E-cadherin-dependent junction integrity and contractility through control of the balance of RhoA and Rac1 activities. Together, these data highlight new roles for paxillin in the regulation of cell-cell adhesion and collective tumor cell migration to promote the formation of distance organ metastases. [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text].
Collapse
Affiliation(s)
- Weiyi Xu
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA
| | - Kyle M Alpha
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA
| | - Nicholas M Zehrbach
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA
| | - Christopher E Turner
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA
| |
Collapse
|
16
|
First person – Shafali Gupta. J Cell Sci 2021. [DOI: 10.1242/jcs.259300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Shafali Gupta is first author on ‘ Enhanced RhoA signaling stabilizes E-cadherin in migrating epithelial monolayers’, published in JCS. Shafali is a postdoc in the lab of Alpha S. Yap at Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia, investigating the critical mechanisms behind different cellular processes.
Collapse
|