1
|
Brandt EE, Duke S, Wang H, Mhatre N. The ground offers acoustic efficiency gains for crickets and other calling animals. Proc Natl Acad Sci U S A 2023; 120:e2302814120. [PMID: 37934821 PMCID: PMC10655215 DOI: 10.1073/pnas.2302814120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/01/2023] [Indexed: 11/09/2023] Open
Abstract
Male crickets attract females by producing calls with their forewings. Louder calls travel further and are more effective at attracting mates. However, crickets are much smaller than the wavelength of their call, and this limits their power output. A small group called tree crickets make acoustic tools called baffles which reduce acoustic short-circuiting, a source of dipole inefficiency. Here, we ask why baffling is uncommon among crickets. We hypothesize that baffling may be rare because like other tools they offer insufficient advantage for most species. To test this, we modelled the calling efficiencies of crickets within the full space of possible natural wing sizes and call frequencies, in multiple acoustic environments. We then generated efficiency landscapes, within which we plotted 112 cricket species across 7 phylogenetic clades. We found that all sampled crickets, in all conditions, could gain efficiency from tool use. Surprisingly, we also found that calling from the ground significantly increased efficiency, with or without a baffle, by as much as an order of magnitude. We found that the ground provides some reduction of acoustic short-circuiting but also halves the air volume within which sound is radiated. It simultaneously reflects sound upwards, allowing recapture of a significant amount of acoustic energy through constructive interference. Thus, using the ground as a reflective baffle is an effective strategy for increasing calling efficiency. Indeed, theory suggests that this increase in efficiency is accessible not just to crickets but to all acoustically communicating animals whether they are dipole or monopole sound sources.
Collapse
Affiliation(s)
- Erin E. Brandt
- Department of Biology, Western University, London, ONN6A 3K7, Canada
| | - Sarah Duke
- Department of Biology, Western University, London, ONN6A 3K7, Canada
| | - Honglin Wang
- Department of Biology, Western University, London, ONN6A 3K7, Canada
| | - Natasha Mhatre
- Department of Biology, Western University, London, ONN6A 3K7, Canada
| |
Collapse
|
2
|
Neurophysiology goes wild: from exploring sensory coding in sound proof rooms to natural environments. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:303-319. [PMID: 33835199 PMCID: PMC8079291 DOI: 10.1007/s00359-021-01482-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 10/27/2022]
Abstract
To perform adaptive behaviours, animals have to establish a representation of the physical "outside" world. How these representations are created by sensory systems is a central issue in sensory physiology. This review addresses the history of experimental approaches toward ideas about sensory coding, using the relatively simple auditory system of acoustic insects. I will discuss the empirical evidence in support of Barlow's "efficient coding hypothesis", which argues that the coding properties of neurons undergo specific adaptations that allow insects to detect biologically important acoustic stimuli. This hypothesis opposes the view that the sensory systems of receivers are biased as a result of their phylogeny, which finally determine whether a sound stimulus elicits a behavioural response. Acoustic signals are often transmitted over considerable distances in complex physical environments with high noise levels, resulting in degradation of the temporal pattern of stimuli, unpredictable attenuation, reduced signal-to-noise levels, and degradation of cues used for sound localisation. Thus, a more naturalistic view of sensory coding must be taken, since the signals as broadcast by signallers are rarely equivalent to the effective stimuli encoded by the sensory system of receivers. The consequences of the environmental conditions for sensory coding are discussed.
Collapse
|
3
|
Hommaru N, Shidara H, Ando N, Ogawa H. Internal state transition to switch behavioral strategies in cricket phonotaxis. J Exp Biol 2020; 223:jeb229732. [PMID: 32943581 DOI: 10.1242/jeb.229732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/09/2020] [Indexed: 11/20/2022]
Abstract
Animals employ multiple behavioral strategies for exploring food and mating partners based on both their internal state and external environment. Here, we examined how cricket phonotaxis, which was considered an innate reactive behavior of females to approach the calling song of conspecific males, depended on these internal and external conditions. Our observation revealed that the phonotaxis process consisted of two distinctive phases: wandering and approaching. In the latter phase, crickets moved directly towards the sound source. The transition into this phase, referred to as the 'approach phase', was based on changes in the animal's internal state. Moreover, retention of the approach phase required recognition of the calling song, while song loss downregulated cricket mobility and induced frequent stopping. This is a typical movement in local search behaviors. Our results indicate that phonotaxis is not only a reactive response but a complicated process including multiple behavioral strategies.
Collapse
Affiliation(s)
- Naoto Hommaru
- Graduate school of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hisashi Shidara
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Noriyasu Ando
- Department of Systems Life Engineering, Faculty of Engineering, Maebashi Institute of Technology, Maebashi 371-0816, Japan
| | - Hiroto Ogawa
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
4
|
Römer H. Directional hearing in insects: biophysical, physiological and ecological challenges. ACTA ACUST UNITED AC 2020; 223:223/14/jeb203224. [PMID: 32737067 DOI: 10.1242/jeb.203224] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sound localisation is a fundamental attribute of the way that animals perceive their external world. It enables them to locate mates or prey, determine the direction from which a predator is approaching and initiate adaptive behaviours. Evidence from different biological disciplines that has accumulated over the last two decades indicates how small insects with body sizes much smaller than the wavelength of the sound of interest achieve a localisation performance that is similar to that of mammals. This Review starts by describing the distinction between tympanal ears (as in grasshoppers, crickets, cicadas, moths or mantids) and flagellar ears (specifically antennae in mosquitoes and fruit flies). The challenges faced by insects when receiving directional cues differ depending on whether they have tympanal or flagellar years, because the latter respond to the particle velocity component (a vector quantity) of the sound field, whereas the former respond to the pressure component (a scalar quantity). Insects have evolved sophisticated biophysical solutions to meet these challenges, which provide binaural cues for directional hearing. The physiological challenge is to reliably encode these cues in the neuronal activity of the afferent auditory system, a non-trivial problem in particular for those insect systems composed of only few nerve cells which exhibit a considerable amount of intrinsic and extrinsic response variability. To provide an integrative view of directional hearing, I complement the description of these biophysical and physiological solutions by presenting findings on localisation in real-world situations, including evidence for localisation in the vertical plane.
Collapse
Affiliation(s)
- Heiner Römer
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| |
Collapse
|
5
|
Mhatre N, Malkin R, Deb R, Balakrishnan R, Robert D. Tree crickets optimize the acoustics of baffles to exaggerate their mate-attraction signal. eLife 2017; 6:32763. [PMID: 29227246 PMCID: PMC5764570 DOI: 10.7554/elife.32763] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/08/2017] [Indexed: 11/13/2022] Open
Abstract
Object manufacture in insects is typically inherited, and believed to be highly stereotyped. Optimization, the ability to select the functionally best material and modify it appropriately for a specific function, implies flexibility and is usually thought to be incompatible with inherited behaviour. Here, we show that tree-crickets optimize acoustic baffles, objects that are used to increase the effective loudness of mate-attraction calls. We quantified the acoustic efficiency of all baffles within the naturally feasible design space using finite-element modelling and found that design affects efficiency significantly. We tested the baffle-making behaviour of tree crickets in a series of experimental contexts. We found that given the opportunity, tree crickets optimised baffle acoustics; they selected the best sized object and modified it appropriately to make a near optimal baffle. Surprisingly, optimization could be achieved in a single attempt, and is likely to be achieved through an inherited yet highly accurate behavioural heuristic.
Collapse
Affiliation(s)
- Natasha Mhatre
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Robert Malkin
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Rittik Deb
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India
| | - Rohini Balakrishnan
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India
| | - Daniel Robert
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
6
|
Nandi D, Balakrishnan R. Spatio-Temporal Dynamics of Field Cricket Calling Behaviour: Implications for Female Mate Search and Mate Choice. PLoS One 2016; 11:e0165807. [PMID: 27820868 PMCID: PMC5098824 DOI: 10.1371/journal.pone.0165807] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 10/18/2016] [Indexed: 11/19/2022] Open
Abstract
Amount of calling activity (calling effort) is a strong determinant of male mating success in species such as orthopterans and anurans that use acoustic communication in the context of mating behaviour. While many studies in crickets have investigated the determinants of calling effort, patterns of variability in male calling effort in natural choruses remain largely unexplored. Within-individual variability in calling activity across multiple nights of calling can influence female mate search and mate choice strategies. Moreover, calling site fidelity across multiple nights of calling can also affect the female mate sampling strategy. We therefore investigated the spatio-temporal dynamics of acoustic signaling behaviour in a wild population of the field cricket species Plebeiogryllus guttiventris. We first studied the consistency of calling activity by quantifying variation in male calling effort across multiple nights of calling using repeatability analysis. Callers were inconsistent in their calling effort across nights and did not optimize nightly calling effort to increase their total number of nights spent calling. We also estimated calling site fidelity of males across multiple nights by quantifying movement of callers. Callers frequently changed their calling sites across calling nights with substantial displacement but without any significant directionality. Finally, we investigated trade-offs between within-night calling effort and energetically expensive calling song features such as call intensity and chirp rate. Calling effort was not correlated with any of the calling song features, suggesting that energetically expensive song features do not constrain male calling effort. The two key features of signaling behaviour, calling effort and call intensity, which determine the duration and spatial coverage of the sexual signal, are therefore uncorrelated and function independently.
Collapse
Affiliation(s)
- Diptarup Nandi
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
- * E-mail: (DN); (RB)
| | - Rohini Balakrishnan
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
- * E-mail: (DN); (RB)
| |
Collapse
|
7
|
Hirtenlehner S, Römer H. Selective phonotaxis of female crickets under natural outdoor conditions. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:239-50. [PMID: 24488017 PMCID: PMC3929774 DOI: 10.1007/s00359-014-0881-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/07/2014] [Accepted: 01/10/2014] [Indexed: 10/27/2022]
Abstract
Acoustic mate choice in insects has been extensively studied under laboratory conditions, using different behavioural paradigms. Ideally, however, mate choice designs should reflect natural conditions, including the physical properties of the transmission channel for the signal. Since little is known about the discrimination ability of females between male song variants under natural conditions, we performed phonotaxis experiments with female field crickets (Gryllus bimaculatus) outdoors, using two-choice decisions based on differences in carrier frequency, sound pressure level, and chirp rate. For all three song parameters, minimum differences necessary for a significant preference between two song models were considerably larger outdoors compared to laboratory conditions. A minimum amplitude difference of 5 dB was required for a significant choice in the field, compared to only 1-2 dB reported for lab-based experiments. Due to the tuned receiver system, differences in carrier frequency equal differences in perceived loudness, and the results on choice for differences in carrier frequency corroborate those in amplitude. Similarly, chirp rate differences of 50 chirps/min were required outdoors compared to only 20 chirps/min in the lab. For predictions about patterns of sexual selection, future studies need to consider the different outcomes of mate choice decisions in lab and field trials.
Collapse
Affiliation(s)
- Stefan Hirtenlehner
- Department of Zoology, Karl-Franzens-University, Universitätsplatz 2, 8010, Graz, Austria,
| | | |
Collapse
|
8
|
Call intensity is a repeatable and dominant acoustic feature determining male call attractiveness in a field cricket. Anim Behav 2013. [DOI: 10.1016/j.anbehav.2013.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Hirtenlehner S, Küng S, Kainz F, Römer H. Asymmetry in cricket song: female preference and proximate mechanism of discrimination. ACTA ACUST UNITED AC 2013; 216:2046-54. [PMID: 23470661 PMCID: PMC3699250 DOI: 10.1242/jeb.083774] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Subtle random deviations from perfect symmetry in bilateral traits are suggested to signal reduced phenotypic and genetic quality of a sender, but little is known about the related receiver mechanisms for discriminating symmetrical from asymmetrical traits. Here, we investigated these mechanisms in behavioural and neurophysiological experiments in the Mediterranean field cricket, Gryllus bimaculatus. A downward frequency modulation at the end of each syllable in the calling song has been suggested to indicate morphological asymmetry in sound radiating structures between left and right forewings. Even under ideal laboratory conditions on a trackball system, female crickets only discriminated between songs of symmetrical and asymmetrical males in two-choice experiments at carrier frequencies of 4.4 kHz and a large modulation depth of 600 and 800 Hz. Under these conditions they preferred the pure-tone calling songs over the modulated (asymmetrical) alternative, whereas no preference was observed at carrier frequencies of 4.9 and 5.2 kHz. These preferences correlate well with the responses of a pair of identified auditory interneurons (AN1), known for their importance in female phonotaxis. The AN1 interneuron is tuned to an average frequency of 4.9 kHz, and the roll-off towards lower and higher frequencies determines the magnitude of responses to pure-tone and frequency-modulated calling songs. The difference in response magnitude between the two neurons appears to drive the decision of females towards the song alternatives. We discuss the relevance of song differences based on asymmetry in the morphology of song-producing structures under natural conditions.
Collapse
|
10
|
Meckenhäuser G, Hennig RM, Nawrot MP. Critical song features for auditory pattern recognition in crickets. PLoS One 2013; 8:e55349. [PMID: 23437054 PMCID: PMC3577835 DOI: 10.1371/journal.pone.0055349] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 12/31/2012] [Indexed: 11/18/2022] Open
Abstract
Many different invertebrate and vertebrate species use acoustic communication for pair formation. In the cricket Gryllus bimaculatus, females recognize their species-specific calling song and localize singing males by positive phonotaxis. The song pattern of males has a clear structure consisting of brief and regular pulses that are grouped into repetitive chirps. Information is thus present on a short and a long time scale. Here, we ask which structural features of the song critically determine the phonotactic performance. To this end we employed artificial neural networks to analyze a large body of behavioral data that measured females' phonotactic behavior under systematic variation of artificially generated song patterns. In a first step we used four non-redundant descriptive temporal features to predict the female response. The model prediction showed a high correlation with the experimental results. We used this behavioral model to explore the integration of the two different time scales. Our result suggested that only an attractive pulse structure in combination with an attractive chirp structure reliably induced phonotactic behavior to signals. In a further step we investigated all feature sets, each one consisting of a different combination of eight proposed temporal features. We identified feature sets of size two, three, and four that achieve highest prediction power by using the pulse period from the short time scale plus additional information from the long time scale.
Collapse
Affiliation(s)
- Gundula Meckenhäuser
- Theoretical Neuroscience and Neuroinformatics, Institute of Biology, Freie Universität Berlin, Berlin, Germany.
| | | | | |
Collapse
|
11
|
Rowland E, Schaefer PW, Belton P, Gries G. Evidence for short-range sonic communication in lymantriine moths. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:292-299. [PMID: 21115014 DOI: 10.1016/j.jinsphys.2010.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Revised: 11/21/2010] [Accepted: 11/22/2010] [Indexed: 05/30/2023]
Abstract
Sexual communication of nun moth, Lymantria monacha (L.), pink gypsy moth, Lymantria mathura Moore, and fumida tussock moth, Lymantria fumida Butler (all Lepidoptera: Noctuidae: Lymantriinae), is known to be mediated by pheromones. We now show that males are attracted by the sounds of conspecific females over short distances and that wing fanning male and female L. monacha, L. mathura and L. fumida produce species- and sex-specific wing beat and associated click sounds that could contribute to reproductive isolation. Evidence for short-range communication in these lymantriines includes (i) scanning electron micrographs revealing metathoracic tympanate ears, (ii) laser interferometry showing particular sensitivity of tympana tuned to frequency components of sound signals from conspecifics, and (iii) phonotaxis of male L. monacha and L. fumida to speakers playing back sound signals from conspecific females. We conclude that tympanate ears of these moths have evolved in response not only to bat predation, but also for short-range mate finding and possibly recognition.
Collapse
Affiliation(s)
- E Rowland
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada
| | | | | | | |
Collapse
|
12
|
Alem S, Greenfield MD. Economics of mate choice at leks: do female waxmoths pay costs for indirect genetic benefits? Behav Ecol 2010. [DOI: 10.1093/beheco/arq028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Mhatre N, Balakrishnan R. Predicting acoustic orientation in complex real-world environments. ACTA ACUST UNITED AC 2008; 211:2779-85. [PMID: 18723535 DOI: 10.1242/jeb.017756] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Animals have to accomplish several tasks in their lifetime, such as finding food and mates and avoiding predators. Animals that locate these using sound need to detect, recognize and localize appropriate acoustic objects in their environment, typically in noisy, non-ideal conditions. Quantitative models attempting to explain or predict animal behaviour should be able to accurately simulate behaviour in such complex, real-world conditions. Female crickets locate potential mates in choruses of simultaneously calling males. In the present study, we have tested field cricket acoustic orientation behaviour in complex acoustic conditions in the field and also successfully predicted female orientation and paths under these conditions using a simulation model based on auditory physiology. Such simulation models can provide powerful tools to predict and dissect patterns of behaviour in complex, natural environments.
Collapse
Affiliation(s)
- Natasha Mhatre
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560012, India
| | | |
Collapse
|