1
|
Weinrauch AM, Dumar ZJ, Overduin SL, Goss GG, Leys SP, Blewett TA. Evidence for transporter-mediated uptake of environmental L-glutamate in a freshwater sponge, Ephydatia muelleri. J Comp Physiol B 2024; 194:121-130. [PMID: 38553641 DOI: 10.1007/s00360-024-01544-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/10/2023] [Accepted: 02/12/2024] [Indexed: 05/07/2024]
Abstract
The freshwater sponge, Ephydatia muelleri, lacks a nervous or endocrine system and yet it exhibits a coordinated whole-body action known as a "sneeze" that can be triggered by exposure to L-glutamate. It is not known how L-glutamate is obtained by E. muelleri in sufficient quantities (i.e., 70 µM) to mediate this response endogenously. The present study tested the hypothesis that L-glutamate can be directly acquired from the environment across the body surface of E. muelleri. We demonstrate carrier mediated uptake of two distinct saturable systems with maximal transport rates (Jmax) of 64.27 ± 4.98 and 25.12 ± 1.87 pmols mg-1 min-1, respectively. The latter system has a higher calculated substrate affinity (Km) of 2.87 ± 0.38 µM compared to the former (8.75 ± 1.00 µM), indicative of distinct systems that can acquire L-glutamate at variable environmental concentrations. Further characterization revealed potential shared pathways of L-glutamate uptake with other negatively charged amino acids, namely D-glutamate and L-aspartate, as well as the neutral amino acid L-alanine. We demonstrate that L-glutamate uptake does not appear to rely on exogenous sodium or proton concentrations as removal of these ions from the bathing media did not significantly alter uptake. Likewise, L-glutamate uptake does not seem to rely on internal proton motive forces driven by VHA as application of 100 nM of the VHA inhibitor bafilomycin did not alter uptake rates within E. muelleri tissues. Whether the acquired amino acid is used to supplement feeding or is stored and accumulated to mediate the sneeze response remains to be determined.
Collapse
Affiliation(s)
- Alyssa M Weinrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Zachary J Dumar
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Sienna L Overduin
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Sally P Leys
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Tamzin A Blewett
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
| |
Collapse
|
2
|
Fukutani KF, Kasprzykowski JI, Paschoal AR, Gomes MDS, Barral A, de Oliveira CI, Ramos PIP, de Queiroz ATL. Meta-Analysis of Aedes aegypti Expression Datasets: Comparing Virus Infection and Blood-Fed Transcriptomes to Identify Markers of Virus Presence. Front Bioeng Biotechnol 2018; 5:84. [PMID: 29376049 PMCID: PMC5768613 DOI: 10.3389/fbioe.2017.00084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/15/2017] [Indexed: 02/05/2023] Open
Abstract
The mosquito Aedes aegypti (L.) is vector of several arboviruses including dengue, yellow fever, chikungunya, and more recently zika. Previous transcriptomic studies have been performed to elucidate altered pathways in response to viral infection. However, the intrinsic coupling between alimentation and infection were unappreciated in these studies. Feeding is required for the initial mosquito contact with the virus and these events are highly dependent. Addressing this relationship, we reinterrogated datasets of virus-infected mosquitoes with two different diet schemes (fed and unfed mosquitoes), evaluating the metabolic cross-talk during both processes. We constructed coexpression networks with the differentially expressed genes of these comparison: virus-infected versus blood-fed mosquitoes and virus-infected versus unfed mosquitoes. Our analysis identified one module with 110 genes that correlated with infection status (representing ~0.7% of the A. aegypti genome). Furthermore, we performed a machine-learning approach and summarized the infection status using only four genes (AAEL012128, AAEL014210, AAEL002477, and AAEL005350). While three of the four genes were annotated as hypothetical proteins, AAEL012128 gene is a membrane amino acid transporter correlated with viral envelope binding. This gene alone is able to discriminate all infected samples and thus should have a key role to discriminate viral infection in the A. aegypti mosquito. Moreover, validation using external datasets found this gene as differentially expressed in four transcriptomic experiments. Therefore, these genes may serve as a proxy of viral infection in the mosquito and the others 106 identified genes provides a framework to future studies.
Collapse
Affiliation(s)
| | - José Irahe Kasprzykowski
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Post-Graduation Program in Biotechnology in Health and Investigative Medicine, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Alexandre Rossi Paschoal
- Federal University of Technology-Paraná, UTFPR, Campus Cornélio Procópio, Cornélio Procópio, Brazil
| | | | - Aldina Barral
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Post-Graduation Program in Health Sciences, School of Medicine, Federal University of Bahia, Salvador, Brazil
| | - Camila I de Oliveira
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Post-Graduation Program in Health Sciences, School of Medicine, Federal University of Bahia, Salvador, Brazil
| | | | - Artur Trancoso Lopo de Queiroz
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Post-Graduation Program in Biotechnology in Health and Investigative Medicine, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Post-Graduation Program in Applied Computation, Universida de Estadual de Feira de Santana, Feira de Santana, Brazil
| |
Collapse
|
3
|
Wang H, Rascoe AM, Holley DC, Gouaux E, Kavanaugh MP. Novel dicarboxylate selectivity in an insect glutamate transporter homolog. PLoS One 2013; 8:e70947. [PMID: 23951049 PMCID: PMC3737229 DOI: 10.1371/journal.pone.0070947] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 06/25/2013] [Indexed: 12/25/2022] Open
Abstract
Mammals express seven transporters from the SLC1 (solute carrier 1) gene family, including five acidic amino acid transporters (EAAT1-5) and two neutral amino acid transporters (ASCT1-2). In contrast, insects of the order Diptera possess only two SLC1 genes. In this work we show that in the mosquito Culex quinquefasciatus, a carrier of West Nile virus, one of its two SLC1 EAAT-like genes encodes a transporter that displays an unusual selectivity for dicarboxylic acids over acidic amino acids. In eukaryotes, dicarboxylic acid uptake has been previously thought to be mediated exclusively by transporters outside the SLC1 family. The dicarboxylate selectivity was found to be associated with two residues in transmembrane domain 8, near the presumed substrate binding site. These residues appear to be conserved in all eukaryotic SLC1 transporters (Asp444 and Thr448, human EAAT3 numbering) with the exception of this novel C. quinquefasciatus transporter and an ortholog from the yellow fever mosquito Aedes aegypti, in which they are changed to Asn and Ala. In the prokaryotic EAAT-like SLC1 transporter DctA, a dicarboxylate transporter which was lost in the lineage leading to eukaryotes, the corresponding TMD8 residues are Ser and Ala. Functional analysis of engineered mutant mosquito and human transporters expressed in Xenopus laevis oocytes provide support for a model defining interactions of charged and polar transporter residues in TMD8 with α-amino acids and ions. Together with the phylogenetic evidence, the functional data suggest that a novel route of dicarboxylic acid uptake evolved in these mosquitos by mutations in an ancestral glutamate transporter gene.
Collapse
Affiliation(s)
- Hui Wang
- Vollum Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Avi M. Rascoe
- Center for Structural and Functional Neuroscience, University of Montana, Missoula, Montana, United States of America
| | - David C. Holley
- Center for Structural and Functional Neuroscience, University of Montana, Missoula, Montana, United States of America
| | - Eric Gouaux
- Vollum Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- Howard Hughes Medical Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail: (EG); (MPK)
| | - Michael P. Kavanaugh
- Center for Structural and Functional Neuroscience, University of Montana, Missoula, Montana, United States of America
- * E-mail: (EG); (MPK)
| |
Collapse
|
4
|
Xiang MA, Linser PJ, Price DA, Harvey WR. Localization of two Na+- or K+-H+ antiporters, AgNHA1 and AgNHA2, in Anopheles gambiae larval Malpighian tubules and the functional expression of AgNHA2 in yeast. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:570-9. [PMID: 22206887 DOI: 10.1016/j.jinsphys.2011.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 12/12/2011] [Accepted: 12/14/2011] [Indexed: 05/20/2023]
Abstract
The newly identified metazoan Na(+)/H(+) antiporter (NHA) family is represented by two paralogues, AgNHA1 and AgNHA2, in the genome of the African malaria mosquito, Anopheles gambiae. Both antiporters are postulated to be electrophoretic i.e. voltage-driven. AgNHA1 was first cloned from An. gambiae larvae and immunolocalized with respect to the H(+) V-ATPase by the Harvey laboratory. Little is known about the properties of NHA1s; attempts to characterize AgNHA1 in Na(+)/H(+) exchanger (NHE)-lacking Chinese hamster ovary cells and in yeast cells or frog oocytes were unsuccessful. Even less is known about AgNHA2. It is predicted to have a relative molecular mass of ∼60 kDa and shares 30.5% amino acid identity with AgNHA1. Immunolocalization images show AgNHA2 on the apical plasma membrane of stellate cells in Malpighian tubules of An. gambiae larvae and adults. When heterologously expressed in a mutant strain of the yeast, Saccharomyces cerevisiae, which lacks endogenous cation/proton antiporters and pumps, AgNHA2 enhanced repression of growth by the alkali metal cations, Li(+), Na(+), or K(+) and enhanced Li(+) accumulation. The yeast growth studies invite the speculation that AgNHA2 is an electrophoretic antiporter with a stoichiometry of nNa(+) to 1H(+) with n > 1. Immunolocalization images provide direct evidence that H(+) V-ATPase is co-localized with AgNHA1 on the apical membrane of principal cells but it is not present in the stellate cells where AgNHA2 is localized apically. These results are consistent with the notion that the outside positive voltage that the H(+) V-ATPase generates across the apical membrane of principal cells appears with but little attenuation across the apical membrane of stellate cells. This immunolocalization pattern is consistent with the hypothesis that the voltage acts via AgNHA1 to drive nH(+) into the principal cells and Na(+) out to the lumen and acts via AgNHA2 to drive nNa(+) into the stellate cells and H(+) out to the lumen. Precious Na(+) is then retained by ejection into the blood via a basal Na(+)/K(+)-ATPase. Localizations of anion transporters and their functions in stellate and principal cells are described by Linser, Romero and associates in this volume. The role that the electrogenic H(+) V-ATPase and the electrophoretic cationic and anionic transporters play in ion homeostasis is incorporated into a model for Malpighian tubule cells of larval mosquitoes.
Collapse
Affiliation(s)
- Minghui A Xiang
- Division of Nephrology and Hypertension, Department of Medicine, University of Florida-Jacksonville, Jacksonville, FL 32206, USA.
| | | | | | | |
Collapse
|
5
|
Linser PJ, Neira Oviedo M, Hirata T, Seron TJ, Smith KE, Piermarini PM, Romero MF. Slc4-like anion transporters of the larval mosquito alimentary canal. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:551-562. [PMID: 22251674 PMCID: PMC3322255 DOI: 10.1016/j.jinsphys.2012.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 01/02/2012] [Accepted: 01/03/2012] [Indexed: 05/31/2023]
Abstract
Mosquito larvae exhibit luminal pH extremes along the axial length of their alimentary canal that range from very alkaline (pH>10) in the anterior midgut to slightly acid in the hindgut. The principal buffer in the system is thought to be bicarbonate and/or carbonate, because the lumen is known to contain high levels of bicarbonate/carbonate and is surrounded by various epithelial cell types which express a variety of carbonic anhydrases. However, the precise mechanisms responsible for the transport of bicarbonate/carbonate into and out of the lumen are unclear. In the present study, we test the hypothesis that SLC4-like anion transporters play a role in bicarbonate/carbonate accumulation in the larval mosquito alimentary canal. Molecular, physiological and immnuohistochemical characterizations of Slc4-like transporters in the gut of larval mosquitoes (Aedes aegypti and Anopheles gambiae) demonstrate the presence of both a Na(+)-independent chloride/bicarbonate anion exchanger (AE) as well as a Na(+)-dependent anion exchanger (NDAE). Notably, immunolocalization experiments in Malpighian tubules show that the two proteins can be located in the same tissue, but to different cell types. Immunolabeling experiments in the gastric caecae show that the two proteins can be found in the same cells, but on opposite sides (basal vs. apical). In summary, our results indicate that the alimentary canal of larval mosquitoes exhibits robust expression of two SLC4-like transporters in locations that are consistent with a role in the regulation of luminal pH. The precise physiological contributions of each transporter remain to be determined.
Collapse
Affiliation(s)
- Paul J Linser
- University of Florida, Whitney Laboratory, St. Augustine, FL 32086, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
Featherstone DE. Glial solute carrier transporters in Drosophila and mice. Glia 2010; 59:1351-63. [PMID: 21732427 DOI: 10.1002/glia.21085] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 09/07/2010] [Indexed: 01/17/2023]
Abstract
Glia regulate brain physiology primarily by regulating the movement and concentration of substances in the extracellular fluid. Therefore, one approach to understanding the role of glia in brain physiology is to study what happens when glial transporters are removed or modified. The largest and most highly conserved class of transporter is solute carrier (SLC) proteins. SLC proteins are highly expressed in brain, and many are found in glia. The function of many SLC proteins in the brain--particularly in glia--is very poorly understood. SLC proteins can be relatively easily knocked out or modified in genetic model organisms to better understand glial function. Drosophila are popular genetic model organisms that offer a nice balance between genetic malleability and brain complexity. They are ideal for such an endeavor. This article lists and discusses SLC transporter family members that are expressed in both mouse and Drosophila glia, in an effort to provide a foundation for studies of glial SLC transporters using Drosophila as a model.
Collapse
Affiliation(s)
- David E Featherstone
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA.
| |
Collapse
|
7
|
Fiandra L, Caccia S, Giordana B, Casartelli M. Leucine transport by the larval midgut of the parasitoid Aphidius ervi (Hymenoptera). JOURNAL OF INSECT PHYSIOLOGY 2010; 56:165-169. [PMID: 19799906 DOI: 10.1016/j.jinsphys.2009.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 09/22/2009] [Accepted: 09/22/2009] [Indexed: 05/28/2023]
Abstract
The larval midgut of the hymenopteran parasitoid Aphidius ervi accomplishes a large transport of nutrients from the lumen to the haemocoel, providing most of the organic molecules necessary for rapid insect development. l-amino acids in general, and leucine in particular, are efficiently accumulated in the larval body. We show here that the intact midgut of early 3rd instar larvae incubated in vitro can take up [(3)H]l-leucine from the basolateral side of the epithelium by transporters insensitive to the presence of monovalent cations. When the midgut is opened and the apical membrane of the absorbing epithelial cells is exposed to the medium containing radiolabelled leucine, a sodium-dependent uptake of the amino acid becomes apparent, disclosing the presence of a symport mechanism. Inhibition experiments of leucine uptake by a 100-fold excess of different amino acids, selected according to the properties of their side chain, revealed that this apical sodium-dependent mechanism is a broad spectrum transport system with a specialization for the absorption of aliphatic amino acids, that can also transfer glutamine and proline, but not phenylalanine, lysine and arginine. Altogether the experimental results obtained with intact- and open-gut preparations suggest that leucine transport across the basolateral membrane is mediated by both an uniporter and an obligatory amino acid exchange mechanism.
Collapse
Affiliation(s)
- L Fiandra
- Università degli Studi di Milano, Dipartimento di Biologia, Via Celoria 26, 20133 Milano, Italy
| | | | | | | |
Collapse
|
8
|
Evans AM, Aimanova KG, Gill SS. Characterization of a blood-meal-responsive proton-dependent amino acid transporter in the disease vector, Aedes aegypti. ACTA ACUST UNITED AC 2009; 212:3263-71. [PMID: 19801431 DOI: 10.1242/jeb.029553] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
After anautogenous mosquitoes ingest the required blood meal, proteins in it are rapidly cleaved, yielding a large pool of amino acids. Transport of these amino acids into gut epithelial cells and their subsequent translocation into other tissues is critical for oogenesis and other physiological processes. We have identified a proton amino acid transporter (PAT) in Aedes aegypti (AaePAT1, AAEL007191) which facilitates this transport and is expressed in epithelial cell membranes of larval caecae and the adult midgut. AaePAT1 encodes a 475 amino acid protein showing high similarity to Anopheles gambiae AGAP009896, Culex pipiens CPIJ011438 and Drosophila melanogaster CG7888. When expressed in Xenopus oocytes the transport kinetics showed AaePAT1 is a low affinity transporter with low substrate specificity, having Km and Vmax values of about 7.2 mmol l(-1) and 69 pmol oocyte(-1) min(-1), respectively, for glutamine. A number of other amino acids are also transported by this PAT. In female adult midgut, AaePAT1 transcript levels were induced after ingestion of a blood meal.
Collapse
Affiliation(s)
- Amy M Evans
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA
| | | | | |
Collapse
|
9
|
Harvey WR. Voltage coupling of primary H+ V-ATPases to secondary Na+- or K+-dependent transporters. J Exp Biol 2009; 212:1620-9. [PMID: 19448072 PMCID: PMC2683009 DOI: 10.1242/jeb.031534] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2009] [Indexed: 01/23/2023]
Abstract
This review provides alternatives to two well established theories regarding membrane energization by H(+) V-ATPases. Firstly, we offer an alternative to the notion that the H(+) V-ATPase establishes a protonmotive force (pmf) across the membrane into which it is inserted. The term pmf, which was introduced by Peter Mitchell in 1961 in his chemiosmotic hypothesis for the synthesis of ATP by H(+) F-ATP synthases, has two parts, the electrical potential difference across the phosphorylating membrane, Deltapsi, and the pH difference between the bulk solutions on either side of the membrane, DeltapH. The DeltapH term implies three phases - a bulk fluid phase on the H(+) input side, the membrane phase and a bulk fluid phase on the H(+) output side. The Mitchell theory was applied to H(+) V-ATPases largely by analogy with H(+) F-ATP synthases operating in reverse as H(+) F-ATPases. We suggest an alternative, voltage coupling model. Our model for V-ATPases is based on Douglas B. Kell's 1979 'electrodic view' of ATP synthases in which two phases are added to the Mitchell model - an unstirred layer on the input side and another one on the output side of the membrane. In addition, we replace the notion that H(+) V-ATPases normally acidify the output bulk solution with the hypothesis, which we introduced in 1992, that the primary action of a H(+) V-ATPase is to charge the membrane capacitance and impose a Deltapsi across the membrane; the translocated hydrogen ions (H(+)s) are retained at the outer fluid-membrane interface by electrostatic attraction to the anions that were left behind. All subsequent events, including establishing pH differences in the outside bulk solution, are secondary. Using the surface of an electrode as a model, Kell's 'electrodic view' has five phases - the outer bulk fluid phase, an outer fluid-membrane interface, the membrane phase, an inner fluid-membrane interface and the inner bulk fluid phase. Light flash, H(+) releasing and binding experiments and other evidence provide convincing support for Kell's electrodic view yet Mitchell's chemiosmotic theory is the one that is accepted by most bioenergetics experts today. First we discuss the interaction between H(+) V-ATPase and the K(+)/2H(+) antiporter that forms the caterpillar K(+) pump, and use the Kell electrodic view to explain how the H(+)s at the outer fluid-membrane interface can drive two H(+) from lumen to cell and one K(+) from cell to lumen via the antiporter even though the pH in the bulk fluid of the lumen is highly alkaline. Exchange of outer bulk fluid K(+) (or Na(+)) with outer interface H(+) in conjunction with (K(+) or Na(+))/2H(+) antiport, transforms the hydrogen ion electrochemical potential difference, mu(H), to a K(+) electrochemical potential difference, mu(K) or a Na(+) electrochemical potential difference, mu(Na). The mu(K) or mu(Na) drives K(+)- or Na(+)-coupled nutrient amino acid transporters (NATs), such as KAAT1 (K(+) amino acid transporter 1), which moves Na(+) and an amino acid into the cell with no H(+)s involved. Examples in which the voltage coupling model is used to interpret ion and amino acid transport in caterpillar and larval mosquito midgut are discussed.
Collapse
Affiliation(s)
- William R Harvey
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St Augustine, FL 32080, USA.
| |
Collapse
|
10
|
Harvey WR, Boudko DY, Rheault MR, Okech BA. NHE(VNAT): an H+ V-ATPase electrically coupled to a Na+:nutrient amino acid transporter (NAT) forms an Na+/H+ exchanger (NHE). ACTA ACUST UNITED AC 2009; 212:347-57. [PMID: 19151209 DOI: 10.1242/jeb.026047] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glycolysis, the citric acid cycle and other metabolic pathways of living organisms generate potentially toxic acids within all cells. One ubiquitous mechanism for ridding cells of the acids is to expel H(+) in exchange for extracellular Na(+), mediated by electroneutral transporters called Na(+)/H(+) exchangers (NHEs) that are driven by Na(+) concentration gradients. The exchange must be important because the human genome contains 10 NHEs along with two Na(+)/H(+) antiporters (NHAs). By contrast, the genomes of two principal disease vector mosquitoes, Anopheles gambiae and Aedes aegypti, contain only three NHEs along with the two NHAs. This shortfall may be explained by the presence of seven nutrient amino acid transporters (NATs) in the mosquito genomes. NATs transport Na(+) stoichiometrically linked to an amino acid into the cells by a process called symport or co-transport. Three of the mosquito NATs and two caterpillar NATs have previously been investigated after heterologous expression in Xenopus laevis oocytes and were found to be voltage driven (electrophoretic). Moreover, the NATs are present in the same membrane as the H(+) V-ATPase, which generates membrane potentials as high as 120 mV. We review evidence that the H(+) V-ATPase moves H(+) out of the cells and the resulting membrane potential (V(m)) drives Na(+) linked to an amino acid into the cells via a NAT. The H(+) efflux by the V-ATPase and Na(+) influx by the NAT comprise the same ion exchange as that mediated by an NHE; so the V and NAT working together constitute an NHE that we call NHE(VNAT). As the H(+) V-ATPase is widely distributed in mosquito epithelial cells and there are seven NATs in the mosquito genomes, there are potentially seven NHE(VNAT)s that could replace the missing NHEs. We review published evidence in support of this hypothesis and speculate about broader functions of NHE(VNAT)s.
Collapse
Affiliation(s)
- William R Harvey
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA.
| | | | | | | |
Collapse
|
11
|
Rheault MR, Okech BA, Keen SBW, Miller MM, Meleshkevitch EA, Linser PJ, Boudko DY, Harvey WR. Molecular cloning, phylogeny and localization of AgNHA1: the first Na+/H+ antiporter (NHA) from a metazoan,Anopheles gambiae. J Exp Biol 2007; 210:3848-61. [DOI: 10.1242/jeb.007872] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYWe have cloned a cDNA encoding a new ion transporter from the alimentary canal of larval African malaria mosquito, Anopheles gambiae Giles sensu stricto. Phylogenetic analysis revealed that the corresponding gene is in a group that has been designated NHA, and which includes(Na+ or K+)/H+ antiporters; so the novel transporter is called AgNHA1. The annotation of current insect genomes shows that both AgNHA1 and a close relative, AgNHA2, belong to the cation proton antiporter 2 (CPA2) subfamily and cluster in an exclusive clade of genes with high identity from Aedes aegypti, Drosophila melanogaster, D. pseudoobscura, Apis mellifera and Tribolium castaneum. Although NHA genes have been identified in all phyla for which genomes are available, no NHA other than AgNHA1 has previously been cloned,nor have the encoded proteins been localized or characterized.The AgNHA1 transcript was localized in An. gambiae larvae by quantitative real-time PCR (qPCR) and in situ hybridization. AgNHA1 message was detected in gastric caeca and rectum, with much weaker transcription in other parts of the alimentary canal. Immunolabeling of whole mounts and longitudinal sections of isolated alimentary canal showed that AgNHA1 is expressed in the cardia, gastric caeca, anterior midgut, posterior midgut, proximal Malpighian tubules and rectum, as well as in the subesophageal and abdominal ganglia.A phylogenetic analysis of NHAs and KHAs indicates that they are ubiquitous. A comparative molecular analysis of these antiporters suggests that they catalyze electrophoretic alkali metal ion/hydrogen ion exchanges that are driven by the voltage from electrogenic H+ V-ATPases. The tissue localization of AgNHA1 suggests that it plays a key role in maintaining the characteristic longitudinal pH gradient in the lumen of the alimentary canal of An. gambiae larvae.
Collapse
Affiliation(s)
- Mark R. Rheault
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St Augustine, FL 32080, USA
| | - Bernard A. Okech
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St Augustine, FL 32080, USA
| | | | - Melissa M. Miller
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St Augustine, FL 32080, USA
| | | | - Paul J. Linser
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St Augustine, FL 32080, USA
| | - Dmitri Y. Boudko
- Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - William R. Harvey
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St Augustine, FL 32080, USA
| |
Collapse
|
12
|
Canepa GE, Bouvier LA, Urias U, Miranda MR, Colli W, Alves MJM, Pereira CA. Aspartate transport and metabolism in the protozoan parasite Trypanosoma cruzi. FEMS Microbiol Lett 2006; 247:65-71. [PMID: 15927749 DOI: 10.1016/j.femsle.2005.04.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Revised: 03/23/2005] [Accepted: 04/19/2005] [Indexed: 10/25/2022] Open
Abstract
Aspartate is one of the compounds that induce the differentiation process of the non-infective epimastigote stage to the infective trypomastigote stage of the protozoan parasite Trypanosoma cruzi. l-aspartate is transported by both epimastigote and trypomastigote cells at the same rate, about 3.4 pmolmin(-1) per 10(7) cells. Aspartate transport is only competed by glutamate suggesting that this transport system is specific for anionic amino acids. Aspartate uptake rates increase along the parasite growth curve, by amino acids starvation or pH decrease. The metabolic fate of the transported aspartate was predicted in silico by identification of seven putative genes coding for enzymes involved in aspartate metabolism that could be related to the differentiation process.
Collapse
Affiliation(s)
- Gaspar E Canepa
- Laboratorio de Biología Molecular de Trypanosoma cruzi (LBMTC), Instituto de Investigaciones Médicas Alfredo Lanari, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|