1
|
Woodrow C, Celiker E, Montealegre-Z F. An Eocene insect could hear conspecific ultrasounds and bat echolocation. Curr Biol 2023; 33:5304-5315.e3. [PMID: 37963458 DOI: 10.1016/j.cub.2023.10.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/08/2023] [Accepted: 10/21/2023] [Indexed: 11/16/2023]
Abstract
Hearing has evolved independently many times in the animal kingdom and is prominent in various insects and vertebrates for conspecific communication and predator detection. Among insects, katydid (Orthoptera: Tettigoniidae) ears are unique, as they have evolved outer, middle, and inner ear components, analogous in their biophysical principles to the mammalian ear. The katydid ear consists of two paired tympana located in each foreleg. These tympana receive sound externally on the tympanum surface (usually via pinnae) or internally via an ear canal (EC). The EC functions to capture conspecific calls and low frequencies, while the pinnae passively amplify higher-frequency ultrasounds including bat echolocation. Together, these outer ear components provide enhanced hearing sensitivity across a dynamic range of over 100 kHz. However, despite a growing understanding of the biophysics and function of the katydid ear, its precise emergence and evolutionary history remains elusive. Here, using microcomputed tomography (μCT) scanning, we recovered geometries of the outer ear components and wings of an exceptionally well-preserved katydid fossilized in Baltic amber (∼44 million years [Ma]). Using numerical and theoretical modeling of the wings, we show that this species was communicating at a peak frequency of 31.62 (± 2.27) kHz, and we demonstrate that the ear was biophysically tuned to this signal and to providing hearing at higher-frequency ultrasounds (>80 kHz), likely for enhanced predator detection. The results indicate that the evolution of the unique ear of the katydid, with its broadband ultrasonic sensitivity and analogous biophysical properties to the ears of mammals, emerged in the Eocene.
Collapse
Affiliation(s)
- Charlie Woodrow
- University of Lincoln, School of Life and Environmental Sciences, Joseph Banks Laboratories, Green Lane, Lincoln LN6 7DL, UK; Uppsala University, Department of Ecology and Genetics, Evolutionary Biology Centre, Norbyvägen 18 D, 752 36, Uppsala, Sweden.
| | - Emine Celiker
- University of Dundee, Division of Mathematics, School of Science and Engineering, Nethergate, Dundee DD1 4HN, UK; University of Leicester, School of Engineering, University Road, Leicester LE1 7RH, UK
| | - Fernando Montealegre-Z
- University of Lincoln, School of Life and Environmental Sciences, Joseph Banks Laboratories, Green Lane, Lincoln LN6 7DL, UK.
| |
Collapse
|
2
|
Pulver CA, Celiker E, Woodrow C, Geipel I, Soulsbury CD, Cullen DA, Rogers SM, Veitch D, Montealegre-Z F. Ear pinnae in a neotropical katydid (Orthoptera: Tettigoniidae) function as ultrasound guides for bat detection. eLife 2022; 11:77628. [PMID: 36170144 PMCID: PMC9519150 DOI: 10.7554/elife.77628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
Early predator detection is a key component of the predator-prey arms race and has driven the evolution of multiple animal hearing systems. Katydids (Insecta) have sophisticated ears, each consisting of paired tympana on each foreleg that receive sound both externally, through the air, and internally via a narrowing ear canal running through the leg from an acoustic spiracle on the thorax. These ears are pressure-time difference receivers capable of sensitive and accurate directional hearing across a wide frequency range. Many katydid species have cuticular pinnae which form cavities around the outer tympanal surfaces, but their function is unknown. We investigated pinnal function in the katydid Copiphora gorgonensis by combining experimental biophysics and numerical modelling using 3D ear geometries. We found that the pinnae in C. gorgonensis do not assist in directional hearing for conspecific call frequencies, but instead act as ultrasound detectors. Pinnae induced large sound pressure gains (20–30 dB) that enhanced sound detection at high ultrasonic frequencies (>60 kHz), matching the echolocation range of co-occurring insectivorous gleaning bats. These findings were supported by behavioural and neural audiograms and pinnal cavity resonances from live specimens, and comparisons with the pinnal mechanics of sympatric katydid species, which together suggest that katydid pinnae primarily evolved for the enhanced detection of predatory bats.
Collapse
Affiliation(s)
- Christian A Pulver
- University of Lincoln, School of Life & Environmental Sciences, Joseph Banks Laboratories, Green Lane, Lincoln, United Kingdom
| | - Emine Celiker
- University of Lincoln, School of Life & Environmental Sciences, Joseph Banks Laboratories, Green Lane, Lincoln, United Kingdom
| | - Charlie Woodrow
- University of Lincoln, School of Life & Environmental Sciences, Joseph Banks Laboratories, Green Lane, Lincoln, United Kingdom
| | - Inga Geipel
- Smithsonian Tropical Research Institute, Balboa, Panama.,CoSys Lab, Faculty of Applied Engineering, University of Antwerp, Antwerp, Belgium.,Flanders Make Strategic Research Centre, Lommel, Belgium
| | - Carl D Soulsbury
- University of Lincoln, School of Life & Environmental Sciences, Joseph Banks Laboratories, Green Lane, Lincoln, United Kingdom
| | - Darron A Cullen
- University of Lincoln, School of Life & Environmental Sciences, Joseph Banks Laboratories, Green Lane, Lincoln, United Kingdom
| | - Stephen M Rogers
- University of Lincoln, School of Life & Environmental Sciences, Joseph Banks Laboratories, Green Lane, Lincoln, United Kingdom
| | - Daniel Veitch
- University of Lincoln, School of Life & Environmental Sciences, Joseph Banks Laboratories, Green Lane, Lincoln, United Kingdom
| | - Fernando Montealegre-Z
- University of Lincoln, School of Life & Environmental Sciences, Joseph Banks Laboratories, Green Lane, Lincoln, United Kingdom
| |
Collapse
|
3
|
Bailey NW, Pascoal S, Montealegre-Z F. Testing the role of trait reversal in evolutionary diversification using song loss in wild crickets. Proc Natl Acad Sci U S A 2019; 116:8941-8949. [PMID: 30992379 PMCID: PMC6500131 DOI: 10.1073/pnas.1818998116] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mechanisms underlying rapid macroevolution are controversial. One largely untested hypothesis that could inform this debate is that evolutionary reversals might release variation in vestigial traits, which then facilitates subsequent diversification. We evaluated this idea by testing key predictions about vestigial traits arising from sexual trait reversal in wild field crickets. In Hawaiian Teleogryllus oceanicus, the recent genetic loss of sound-producing and -amplifying structures on male wings eliminates their acoustic signals. Silence protects these "flatwing" males from an acoustically orienting parasitoid and appears to have evolved independently more than once. Here, we report that flatwing males show enhanced variation in vestigial resonator morphology under varied genetic backgrounds. Using laser Doppler vibrometry, we found that these vestigial sound-producing wing features resonate at highly variable acoustic frequencies well outside the normal range for this species. These results satisfy two important criteria for a mechanism driving rapid evolutionary diversification: Sexual signal loss was accompanied by a release of vestigial morphological variants, and these could facilitate the rapid evolution of novel signal values. Widespread secondary trait losses have been inferred from fossil and phylogenetic evidence across numerous taxa, and our results suggest that such reversals could play a role in shaping historical patterns of diversification.
Collapse
Affiliation(s)
- Nathan W Bailey
- School of Biology, University of St. Andrews, St. Andrews KY16 9TH, United Kingdom;
| | - Sonia Pascoal
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | | |
Collapse
|
4
|
Windmill JFC, Jackson JC, Pook VG, Robert D. Frequency doubling by active in vivo motility of mechanosensory neurons in the mosquito ear. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171082. [PMID: 29410822 PMCID: PMC5792899 DOI: 10.1098/rsos.171082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/28/2017] [Indexed: 06/08/2023]
Abstract
Across vertebrate and invertebrate species, nonlinear active mechanisms are employed to increase the sensitivity and acuity of hearing. In mosquitoes, the antennal hearing organs are known to use active force feedback to enhance auditory acuity to female generated sounds. This sophisticated form of signal processing involves active nonlinear events that are proposed to rely on the motile properties of mechanoreceptor neurons. The fundamental physical mechanism for active auditory mechanics is theorized to rely on a synchronization of motile neurons, with a characteristic frequency doubling of the force generated by an ensemble of motile mechanoreceptors. There is however no direct biomechanical evidence at the mechanoreceptor level, hindering further understanding of the fundamental mechanisms of sensitive hearing. Here, using in situ and in vivo atomic force microscopy, we measure and characterize the mechanical response of mechanosensory neuron units during forced oscillations of the hearing organ. Mechanoreceptor responses exhibit the hallmark of nonlinear feedback for force generation, with movements at twice the stimulus frequency, associated with auditory amplification. Simultaneous electrophysiological recordings exhibit similar response features, notably a frequency doubling of the firing rate. This evidence points to the nature of the mechanism, whereby active hearing in mosquitoes emerges from the double-frequency response of the auditory neurons. These results open up the opportunity to directly investigate active cellular mechanics in auditory systems, and they also reveal a pathway to study the nanoscale biomechanics and its dynamics of cells beyond the sense of hearing.
Collapse
|
5
|
Schneider ES, Römer H, Robillard T, Schmidt AKD. Hearing with exceptionally thin tympana: Ear morphology and tympanal membrane vibrations in eneopterine crickets. Sci Rep 2017; 7:15266. [PMID: 29127426 PMCID: PMC5681576 DOI: 10.1038/s41598-017-15282-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/24/2017] [Indexed: 11/12/2022] Open
Abstract
The receiver sensory system plays a crucial role in the evolution of new communication signals in insects. Among acoustic communicating crickets, the tribe Lebinthini (Eneopterinae) has evolved a unique communication system in that males produce exceptionally high-frequency calls and females respond with vibratory signals to guide males towards them. In this study, we describe nine species of Eneopterinae in which the sound receiving structures have undergone considerable morphological changes. We revealed that the anterior tympanal membrane (ATM) of the ear was extremely thin, as little as 0.35 µm thick, and to the best of our knowledge, this is the thinnest tympanal membrane found in crickets thus far. Measurements of tympanum vibrations obtained from Lebinthus bitaeniatus demonstrated a strong sensitivity towards higher frequencies. The finding also coincides with the neuronal tuning of ascending neurons and the behavioural response of the Lebinthini. The morphologically specialized ATM and its mechanical sensitivity for high frequencies, therefore, may have driven the sensory exploitation of an anti-predator behaviour that led to the evolution of a new communication system known for this group of crickets. The hypothetical phylogenetic origin of the investigated tympanal ears is discussed.
Collapse
Affiliation(s)
- Erik S Schneider
- Department of Zoology, University of Graz, Universitaetsplatz 2, 8010, Graz, Austria
| | - Heinrich Römer
- Department of Zoology, University of Graz, Universitaetsplatz 2, 8010, Graz, Austria
| | - Tony Robillard
- Institut de Systématique, Evolution et Biodiversité, ISYEB - UMR 7205, CNRS MNHN UPMC EPHE, Muséum national d'Histoire naturelle, Sorbonne Universités, CP 50 (Entomologie), 75231, Paris, Cedex 05, France
| | - Arne K D Schmidt
- Department of Zoology, University of Graz, Universitaetsplatz 2, 8010, Graz, Austria.
| |
Collapse
|
6
|
Chivers BD, Béthoux O, Sarria-S FA, Jonsson T, Mason AC, Montealegre-Z F. Functional morphology of tegmina-based stridulation in the relict species Cyphoderris monstrosa (Orthoptera: Ensifera: Prophalangopsidae). ACTA ACUST UNITED AC 2017; 220:1112-1121. [PMID: 28082619 DOI: 10.1242/jeb.153106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/04/2017] [Indexed: 11/20/2022]
Abstract
Male grigs, bush crickets and crickets produce mating calls by tegminal stridulation: the scraping together of modified forewings functioning as sound generators. Bush crickets (Tettigoniidae) and crickets (Gryllinae) diverged some 240 million years ago, with each lineage developing unique characteristics in wing morphology and the associated mechanics of stridulation. The grigs (Prophalangopsidae), a relict lineage more closely related to bush crickets than to crickets, are believed to retain plesiomorphic features of wing morphology. The wing cells widely involved in sound production, such as the harp and mirror, are comparatively small, poorly delimited and/or partially filled with cross-veins. Such morphology is similarly observed in the earliest stridulating ensiferans, for which stridulatory mechanics remains poorly understood. The grigs, therefore, are of major importance to investigate the early evolutionary stages of tegminal stridulation, a critical innovation in the evolution of the Orthoptera. The aim of this study is to appreciate the degree of specialization on grig forewings, through identification of sound radiating areas and their properties. For well-grounded comparisons, homologies in wing venation (and associated areas) of grigs and bush crickets are re-evaluated. Then, using direct evidence, this study confirms the mirror cell, in association with two other areas (termed 'neck' and 'pre-mirror'), as the acoustic resonator in the grig Cyphoderris monstrosa Despite the use of largely symmetrical resonators, as found in field crickets, analogous features of stridulatory mechanics are observed between C. monstrosa and bush crickets. Both morphology and function in grigs represents transitional stages between unspecialized forewings and derived conditions observed in modern species.
Collapse
Affiliation(s)
- Benedict D Chivers
- Bioacoustics and Sensory Biology Lab, Joseph Banks Laboratories, University of Lincoln, Green Lane, Lincoln LN6 7DL, UK
| | - Olivier Béthoux
- Sorbonne Universités, UPMC Univ Paris 06, MNHN, CNRS, Centre de recherche sur la paléobiodiversité et les paléoenvironnements (CR2P), 57 Rue Cuvier, CP 38, Paris 75005, France
| | - Fabio A Sarria-S
- Bioacoustics and Sensory Biology Lab, Joseph Banks Laboratories, University of Lincoln, Green Lane, Lincoln LN6 7DL, UK
| | - Thorin Jonsson
- Bioacoustics and Sensory Biology Lab, Joseph Banks Laboratories, University of Lincoln, Green Lane, Lincoln LN6 7DL, UK
| | - Andrew C Mason
- Integrative Behaviour and Neuroscience, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario, Canada, M1C 1A4
| | - Fernando Montealegre-Z
- Bioacoustics and Sensory Biology Lab, Joseph Banks Laboratories, University of Lincoln, Green Lane, Lincoln LN6 7DL, UK
| |
Collapse
|
7
|
Reid A, Marin-Cudraz T, Windmill JFC, Greenfield MD. Evolution of directional hearing in moths via conversion of bat detection devices to asymmetric pressure gradient receivers. Proc Natl Acad Sci U S A 2016; 113:E7740-E7748. [PMID: 27849607 PMCID: PMC5137745 DOI: 10.1073/pnas.1615691113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Small animals typically localize sound sources by means of complex internal connections and baffles that effectively increase time or intensity differences between the two ears. However, some miniature acoustic species achieve directional hearing without such devices, indicating that other mechanisms have evolved. Using 3D laser vibrometry to measure tympanum deflection, we show that female lesser waxmoths (Achroia grisella) can orient toward the 100-kHz male song, because each ear functions independently as an asymmetric pressure gradient receiver that responds sharply to high-frequency sound arriving from an azimuth angle 30° contralateral to the animal's midline. We found that females presented with a song stimulus while running on a locomotion compensation sphere follow a trajectory 20°-40° to the left or right of the stimulus heading but not directly toward it, movement consistent with the tympanum deflections and suggestive of a monaural mechanism of auditory tracking. Moreover, females losing their track typically regain it by auditory scanning-sudden, wide deviations in their heading-and females initially facing away from the stimulus quickly change their general heading toward it, orientation indicating superior ability to resolve the front-rear ambiguity in source location. X-ray computer-aided tomography (CT) scans of the moths did not reveal any internal coupling between the two ears, confirming that an acoustic insect can localize a sound source based solely on the distinct features of each ear.
Collapse
Affiliation(s)
- Andrew Reid
- Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XW, United Kingdom;
| | - Thibaut Marin-Cudraz
- Institut de recherche sur la biologie de l'insecte, CNRS UMR 7261, Université François Rabelais de Tours, 37200 Tours, France
| | - James F C Windmill
- Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XW, United Kingdom
| | - Michael D Greenfield
- Institut de recherche sur la biologie de l'insecte, CNRS UMR 7261, Université François Rabelais de Tours, 37200 Tours, France
| |
Collapse
|
8
|
Hedwig BG. Sequential Filtering Processes Shape Feature Detection in Crickets: A Framework for Song Pattern Recognition. Front Physiol 2016; 7:46. [PMID: 26941647 PMCID: PMC4766296 DOI: 10.3389/fphys.2016.00046] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/01/2016] [Indexed: 11/13/2022] Open
Abstract
Intraspecific acoustic communication requires filtering processes and feature detectors in the auditory pathway of the receiver for the recognition of species-specific signals. Insects like acoustically communicating crickets allow describing and analysing the mechanisms underlying auditory processing at the behavioral and neural level. Female crickets approach male calling song, their phonotactic behavior is tuned to the characteristic features of the song, such as the carrier frequency and the temporal pattern of sound pulses. Data from behavioral experiments and from neural recordings at different stages of processing in the auditory pathway lead to a concept of serially arranged filtering mechanisms. These encompass a filter for the carrier frequency at the level of the hearing organ, and the pulse duration through phasic onset responses of afferents and reciprocal inhibition of thoracic interneurons. Further, processing by a delay line and coincidence detector circuit in the brain leads to feature detecting neurons that specifically respond to the species-specific pulse rate, and match the characteristics of the phonotactic response. This same circuit may also control the response to the species-specific chirp pattern. Based on these serial filters and the feature detecting mechanism, female phonotactic behavior is shaped and tuned to the characteristic properties of male calling song.
Collapse
|
9
|
Abstract
Insect hearing has independently evolved multiple times in the context of intraspecific communication and predator detection by transforming proprioceptive organs into ears. Research over the past decade, ranging from the biophysics of sound reception to molecular aspects of auditory transduction to the neuronal mechanisms of auditory signal processing, has greatly advanced our understanding of how insects hear. Apart from evolutionary innovations that seem unique to insect hearing, parallels between insect and vertebrate auditory systems have been uncovered, and the auditory sensory cells of insects and vertebrates turned out to be evolutionarily related. This review summarizes our current understanding of insect hearing. It also discusses recent advances in insect auditory research, which have put forward insect auditory systems for studying biological aspects that extend beyond hearing, such as cilium function, neuronal signal computation, and sensory system evolution.
Collapse
Affiliation(s)
- Martin C Göpfert
- Department of Cellular Neurobiology, University of Göttingen, D-37077 Göttingen, Germany;
| | - R Matthias Hennig
- Department of Biology, Behavioral Physiology, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany;
| |
Collapse
|
10
|
Geurten B, Spalthoff C, Göpfert M. Insect Hearing: Active Amplification in Tympanal Ears. Curr Biol 2013; 23:R950-2. [DOI: 10.1016/j.cub.2013.09.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Mora EC, Cobo-Cuan A, Macías-Escrivá F, Pérez M, Nowotny M, Kössl M. Mechanical tuning of the moth ear: distortion-product otoacoustic emissions and tympanal vibrations. J Exp Biol 2013; 216:3863-72. [PMID: 23868848 DOI: 10.1242/jeb.085902] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mechanical tuning of the ear in the moth Empyreuma pugione was investigated by distortion-product otoacoustic emissions (DPOAE) and laser Doppler vibrometry (LDV). DPOAE audiograms were assessed using a novel protocol that may be advantageous for non-invasive auditory studies in insects. To evoke DPOAE, two-tone stimuli within frequency and level ranges that generated a large matrix of values (960 frequency-level combinations) were used to examine the acoustic space in which the moth tympanum shows its best mechanical and acoustical responses. The DPOAE tuning curve derived from the response matrix resembles that obtained previously by electrophysiology, and is V-shaped and tuned to frequencies between 25 and 45 kHz with low Q10dB values of 1.21±0.26. In addition, while using a comparable stimulation regime, mechanical distortion in the displacement of the moth's tympanal membrane at the stigma was recorded with a laser Doppler vibrometer. The corresponding mechanical vibration audiograms were compared with DPOAE audiograms. Both types of audiograms have comparable shape, but most of the mechanical response fields are shifted towards lower frequencies. We showed for the first time in moths that DPOAE have a pronounced analogy in the vibration of the tympanic membrane where they may originate. Our work supports previous studies that point to the stigma (and the internally associated transduction machinery) as an important place of sound amplification in the moth ear, but also suggests a complex mechanical role for the rest of the transparent zone.
Collapse
Affiliation(s)
- Emanuel C Mora
- Research Group in Bioacoustics and Neuroethology, Department of Animal and Human Biology, Faculty of Biology, Havana University, 25 St. No. 455, Vedado, CP. 10400, Havana, Cuba
| | | | | | | | | | | |
Collapse
|
12
|
Moir HM, Jackson JC, Windmill JFC. Extremely high frequency sensitivity in a 'simple' ear. Biol Lett 2013; 9:20130241. [PMID: 23658005 PMCID: PMC3730633 DOI: 10.1098/rsbl.2013.0241] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 04/16/2013] [Indexed: 11/12/2022] Open
Abstract
An evolutionary war is being played out between the bat, which uses ultrasonic calls to locate insect prey, and the moth, which uses microscale ears to listen for the approaching bat. While the highest known frequency of bat echolocation calls is 212 kHz, the upper limit of moth hearing is considered much lower. Here, we show that the greater wax moth, Galleria mellonella, is capable of hearing ultrasonic frequencies approaching 300 kHz; the highest frequency sensitivity of any animal. With auditory frequency sensitivity that is unprecedented in the animal kingdom, the greater wax moth is ready and armed for any echolocation call adaptations made by the bat in the on-going bat-moth evolutionary war.
Collapse
Affiliation(s)
| | | | - James F. C. Windmill
- Department of Electronic and Electrical Engineering, Centre for Ultrasonic Engineering, University of Strathclyde, Royal College Building, 204 George Street, Glasgow G1 1XW, UK
| |
Collapse
|
13
|
Dynamic Characterization of Cercal Mechanosensory Hairs of Crickets. INSECTS 2012; 3:1028-38. [PMID: 26466724 PMCID: PMC4553561 DOI: 10.3390/insects3041028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 10/15/2012] [Accepted: 10/16/2012] [Indexed: 12/04/2022]
Abstract
Previous dynamic characterizations of the cercal mechanosensory hairs of crickets have generally been limited to the first resonant frequency and associated deflection shape. A more complete description of the mechanical dynamics of these structures could be obtained by an experimental modal analysis. This paper describes a method by which a full experimental modal analysis, giving natural frequency, mode shape, and modal damping ratio, of these sense organs can be performed. Results of this analysis, employing an unmeasured moving-air excitation and non-contact vibration measurement with an output-only identification method are presented. Two distinct types of behaviour were observed, one of which was a good match for the behaviour expected based on the literature, and one of which was quite different. These two behaviours had distinct patterns of modal parameters. The method described in this paper has been shown to be able to estimate the modal parameters, including natural frequency, modal damping ratio, and normalized mode shape, for the first mode of cercal mechanosensory hairs of crickets. The method could practically be extended to higher modes and a wide variety of other sound and vibration sense organs with the selection of appropriate excitation and specimen supports.
Collapse
|
14
|
Yager DD. Predator detection and evasion by flying insects. Curr Opin Neurobiol 2012; 22:201-7. [PMID: 22226428 DOI: 10.1016/j.conb.2011.12.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/12/2011] [Accepted: 12/17/2011] [Indexed: 11/29/2022]
Abstract
Echolocating bats detect prey using ultrasonic pulses, and many nocturnally flying insects effectively detect and evade these predators through sensitive ultrasonic hearing. Many eared insects can use the intensity of the predator-generated ultrasound and the stereotyped progression of bat echolocation pulse rate to assess risk level. Effective responses can vary from gentle turns away from the threat (low risk) to sudden random flight and dives (highest risk). Recent research with eared moths shows that males will balance immediate bat predation risk against reproductive opportunity as judged by the strength and quality of conspecific pheromones present. Ultrasound exposure may, in fact, bias such decisions for up to 24 hours through plasticity in the CNS olfactory system. However, brain processing of ultrasonic stimuli to yield adaptive prey behaviors remains largely unstudied, so possible mechanisms are not known.
Collapse
Affiliation(s)
- David D Yager
- Department of Psychology and Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
15
|
ter Hofstede HM, Goerlitz HR, Montealegre-Z F, Robert D, Holderied MW. Tympanal mechanics and neural responses in the ears of a noctuid moth. Naturwissenschaften 2011; 98:1057-61. [DOI: 10.1007/s00114-011-0851-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 09/22/2011] [Accepted: 09/26/2011] [Indexed: 10/17/2022]
|
16
|
Rowland E, Schaefer PW, Belton P, Gries G. Evidence for short-range sonic communication in lymantriine moths. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:292-299. [PMID: 21115014 DOI: 10.1016/j.jinsphys.2010.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Revised: 11/21/2010] [Accepted: 11/22/2010] [Indexed: 05/30/2023]
Abstract
Sexual communication of nun moth, Lymantria monacha (L.), pink gypsy moth, Lymantria mathura Moore, and fumida tussock moth, Lymantria fumida Butler (all Lepidoptera: Noctuidae: Lymantriinae), is known to be mediated by pheromones. We now show that males are attracted by the sounds of conspecific females over short distances and that wing fanning male and female L. monacha, L. mathura and L. fumida produce species- and sex-specific wing beat and associated click sounds that could contribute to reproductive isolation. Evidence for short-range communication in these lymantriines includes (i) scanning electron micrographs revealing metathoracic tympanate ears, (ii) laser interferometry showing particular sensitivity of tympana tuned to frequency components of sound signals from conspecifics, and (iii) phonotaxis of male L. monacha and L. fumida to speakers playing back sound signals from conspecific females. We conclude that tympanate ears of these moths have evolved in response not only to bat predation, but also for short-range mate finding and possibly recognition.
Collapse
Affiliation(s)
- E Rowland
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada
| | | | | | | |
Collapse
|
17
|
SUEUR JÉRÔME, JANIQUE SOLÈNE, SIMONIS CAROLINE, WINDMILL JAMESFC, BAYLAC MICHEL. Cicada ear geometry: species and sex effects. Biol J Linn Soc Lond 2010. [DOI: 10.1111/j.1095-8312.2010.01540.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Windmill JFC, Sueur J, Robert D. The next step in cicada audition: measuring pico-mechanics in the cicada's ear. J Exp Biol 2009; 212:4079-83. [DOI: 10.1242/jeb.033019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYFemale cicadas use sound when they select a mate from a chorus of singing males. The cicada has a tympanal ear; and the tympanal membrane, and constituent tympanal ridge, act as both acousto-mechanical transducers and frequency filters. The tympanal ridge is physically connected to a large number of mechanoreceptor neurons via a cuticular extension known as the tympanal apodeme. Using microscanning laser Doppler vibrometry, we measured for the first time the in vivo vibrations of the apodeme of female Cicadatra atra in response to the motion of the tympanum driven by sound. These measurements reveal that the nanoscale motion of the tympanal membrane is over a magnitude greater than that of the apodeme. Furthermore, the apodeme acts as an additional mechanical frequency filter, enhancing that of the tympanal ridge, narrowing the frequency band of vibration at the mechanoreceptor neurons to that of the male calling song. This study enhances our understanding of the mechanical link between the external ear of the cicada and its sensory cells.
Collapse
Affiliation(s)
- J. F. C. Windmill
- Centre for Ultrasonic Engineering, Department of Electronic & Electrical Engineering, University of Strathclyde, 204 George Street, Glasgow, G1 1XW, UK
| | - J. Sueur
- Muséum National d'Histoire Naturelle, Département Systématique et Evolution, UMR 7205 CNRS, 45 rue Buffon, F-75231 Paris cedex 05, France
| | - D. Robert
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol, BS8 1UG, UK
| |
Collapse
|
19
|
Lucas KM, Windmill JFC, Robert D, Yack JE. Auditory mechanics and sensitivity in the tropical butterfly Morpho peleides (Papilionoidea, Nymphalidae). J Exp Biol 2009; 212:3533-41. [DOI: 10.1242/jeb.032425] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The ears of insects exhibit a broad functional diversity with the ability to detect sounds across a wide range of frequencies and intensities. In tympanal ears, the membrane is a crucial step in the transduction of the acoustic stimulus into a neural signal. The tropical butterfly Morpho peleides has an oval-shaped membrane at the base of the forewing with an unusual dome in the middle of the structure. We are testing the hypothesis that this unconventional anatomical arrangement determines the mechanical tuning properties of this butterfly ear. Using microscanning laser Doppler vibrometry to measure the vibrational characteristics of this novel tympanum,the membrane was found to vibrate in two distinct modes, depending on the frequency range: at lower frequencies (1–5 kHz) the vibration was focused at the proximal half of the posterior side of the outer membrane,while at higher frequencies (5–20 kHz) the entire membrane contributed to the vibration. The maximum deflection points of the two vibrational modes correspond to the locations of the associated chordotonal organs, suggesting that M. peleides has the capacity for frequency partitioning because of the different vibrational properties of the two membrane components. Extracellular nerve recordings confirm that the innervating chordotonal organs respond to the same frequency range of 1–20 kHz, and are most sensitive between 2 and 4 kHz, although distinct frequency discrimination was not observed. We suggest that this remarkable variation in structure is associated with function that provides a selective advantage, particularly in predator detection.
Collapse
Affiliation(s)
- Kathleen M. Lucas
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK
| | - James F. C. Windmill
- Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde, Royal College Building, 204 George Street, Glasgow G1 1XW, UK
| | - Daniel Robert
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK
| | - Jayne E. Yack
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa,Ontario, Canada K1S 5B6
| |
Collapse
|
20
|
No neural evidence for dynamic auditory tuning of the A1 receptor in the ear of the noctuid moth, Noctua pronuba. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2009; 195:955-60. [PMID: 19727759 DOI: 10.1007/s00359-009-0471-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 08/12/2009] [Accepted: 08/14/2009] [Indexed: 10/20/2022]
Abstract
By examining the mechanical properties of the tympanum of the noctuid moth, Noctua pronuba, Windmill et al. (2006) suggested that this insect increases (up-tunes) the frequencies of its best hearing when exposed to high intensity sounds (HIS) resembling the echolocation calls of attacking bats. We tested whether this biophysical phenomenon was encoded in the neural responses of this moth's most sensitive auditory receptor (A1 cell) before and after exposure to HIS. We measured: (1) the number of A1 action potentials (spikes) per stimulus pulse; (2) the proportion of A1 spike periods below that determined to elicit evasive flight maneuvers and, (3) the change in A1 cell firing (spike number, interspike interval, stimulus/spike latency) over a duration of time similar to that in which up-tuning lasts. We observed no significant spiking response changes in the predicted direction to any of the frequencies tested following exposure to HIS and we observed only two of the 24 predicted time-dependent changes to A1 firing. These results indicate that tympanal up-tuning does not result in a change to this moth's auditory frequency sensitivity and we suggest either sensillar resonances or increases in thoracic muscle tension following exposure to HIS as alternative explanations.
Collapse
|
21
|
Windmill JFC, Bockenhauer S, Robert D. Time-resolved tympanal mechanics of the locust. J R Soc Interface 2009; 5:1435-43. [PMID: 18522928 DOI: 10.1098/rsif.2008.0131] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A salient characteristic of most auditory systems is their capacity to analyse the frequency of sound. Little is known about how such analysis is performed across the diversity of auditory systems found in animals, and especially in insects. In locusts, frequency analysis is primarily mechanical, based on vibrational waves travelling across the tympanal membrane. Different acoustic frequencies generate travelling waves that direct vibrations to distinct tympanal locations, where distinct groups of correspondingly tuned mechanosensory neurons attach. Measuring the mechanical tympanal response, for the first time, to acoustic impulses in the time domain, nanometre-range vibrational waves are characterized with high spatial and temporal resolutions. Conventional Fourier analysis is also used to characterize the response in the frequency domain. Altogether these results show that travelling waves originate from a particular tympanal location and travel across the membrane to generate oscillations in the exact region where mechanosensory neurons attach. Notably, travelling waves are unidirectional; no strong back reflection or wave resonance could be observed across the membrane. These results constitute a key step in understanding tympanal mechanics in general, and in insects in particular, but also in our knowledge of the vibrational behaviour of anisotropic media.
Collapse
Affiliation(s)
- J F C Windmill
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK.
| | | | | |
Collapse
|
22
|
Montealegre-Z F, Windmill JFC, Morris GK, Robert D. Mechanical phase shifters for coherent acoustic radiation in the stridulating wings of crickets: the plectrum mechanism. J Exp Biol 2009; 212:257-69. [PMID: 19112145 DOI: 10.1242/jeb.022731] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYMale crickets produce stridulatory songs using engaged tegmina (forewings):a plectrum on the left sweeps along a tooth row on the right. During stridulation, the plectrum moves across the teeth and vibrations are amplified by the surrounding cells and veins, resonating at the frequency of tooth impacts. The advance of the plectrum on the file is controlled by an escapement mechanism so that passing each single tooth generates one wave of a highly tonal signal. Both tegmina must oscillate in phase to avoid destructive interference. But as each plectrum-tooth contact begins, the right and left tegmina react in opposite oscillatory directions. A mechanical phase shifter is part of the left tegmen and compensates to achieve wing oscillation synchrony. We use a new technique to simulate plectrum-on-file interactions:in combination with laser vibrometry, this technique assessed plectrum mechanics in the cricket Gryllus bimaculatus. Using an excised teneral file, shaped like a partial gear and moved by a motor, and a microscan Doppler laser vibrometer, plectrum and left-tegmen mechanics were explored. The results show that plectrum and harp oscillate with a phase difference of ca. 156 deg., a shift rather than a complete phase inversion (180 deg.). This phase shift occurs at the site of a large wing vein (possibly A3). Plectrum and harp vibrate with similar fundamental frequency, therefore, plectrum torsion resonant frequency is important for maintaining vibration coherence. The mechanical aspects involved in this partial phase inversion are discussed with respect to the escapement mechanism. The plectrum mechanics and its implications in katydid stridulation are also considered.
Collapse
Affiliation(s)
- Fernando Montealegre-Z
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol,BS8 1UG, UK
| | - James F. C. Windmill
- Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde, Royal College Building, 204 George Street, Glasgow, G1 1XW, UK
| | - Glenn K. Morris
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON, Canada, L5L 1C6
| | - Daniel Robert
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol,BS8 1UG, UK
| |
Collapse
|
23
|
Sueur J, Windmill JFC, Robert D. Sexual dimorphism in auditory mechanics: tympanal vibrations of Cicada orni. J Exp Biol 2008; 211:2379-87. [DOI: 10.1242/jeb.018804] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
In cicadas, the tympanum is anatomically intricate and employs complex vibrations as a mechanism for auditory frequency analysis. Using microscanning laser Doppler vibrometry, the tympanal mechanics of Cicada orni can be characterized in controlled acoustical conditions. The tympanum of C. orni moves following a simple drum-like motion, rather than the travelling wave found in a previous study of Cicadatra atra. There is a clear sexual dimorphism in the tympanal mechanics. The large male tympanum is unexpectedly insensitive to the dominant frequency of its own calling song,possibly a reflection of its dual purpose as a sound emitter and receiver. The small female tympanum appears to be mechanically sensitive to the dominant frequency of the male calling song and to high-frequency sound, a capacity never suspected before in these insects. This sexual dimorphism probably results from a set of selective pressures acting in divergent directions,which are linked to the different role of the sexes in sound reception and production. These discoveries serve to indicate that there is far more to be learnt about the development of the cicada ear, its biomechanics and evolution, and the cicada's acoustic behaviour.
Collapse
Affiliation(s)
- Jérôme Sueur
- Muséum National d'Histoire naturelle, Département Systématique et Evolution, UMR 5202 CNRS & USM 601 MNHN, 75005 Paris, France
| | - James F. C. Windmill
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK
| | - Daniel Robert
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK
| |
Collapse
|
24
|
Blackburn L. GOOD VIBRATIONS. J Exp Biol 2007. [DOI: 10.1242/jeb.009613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|