1
|
Coughlin DJ, Santarcangelo K, Wilcock E, Tum Suden DJ, Ellerby DJ. Muscle power production during intermittent swimming in bluegill sunfish. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:1026-1035. [PMID: 37661699 DOI: 10.1002/jez.2751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
Locomotion is essential for the survival and fitness of animals. Fishes have evolved a variety of mechanisms to minimize the cost of transport. For instance, bluegill sunfish have recently been shown to employ intermittent swimming in nature and in laboratory conditions. We focused on the functional properties of the power-producing muscles that generate propulsive forces in bluegill to understand the implications of intermittent activity. We used in vivo aerobic or red muscle activity parameters (e.g., oscillation frequency and onset time and duration of activation) in muscle physiology experiments to examine muscle power output during intermittent versus steady swimming in these fish. Intermittent propulsion involves swimming at relatively slow speeds with short propulsive bursts alternating with gliding episodes. The propulsive bursts are at higher oscillation frequencies than would be predicted for a given average swimming speed with constant propulsion. The work-loop muscle physiology experiments with red muscle demonstrated that intermittent activity allows muscle to produce sufficient power for swimming compared with imposed steady swimming conditions. Further, the intermittent muscle activity in vitro reduces fatigue relative to steady or continuous activity. This work supports the fixed-gear hypothesis that suggests that there are preferred oscillation frequencies that optimize efficiency in muscle use and minimize cost of transport.
Collapse
Affiliation(s)
- David J Coughlin
- Department of Biology, Widener University, Chester, Pennsylvania, USA
| | | | - Emma Wilcock
- Department of Biology, Widener University, Chester, Pennsylvania, USA
| | | | - David J Ellerby
- Department of Biology, Wellesley College, Massachusetts, USA
| |
Collapse
|
2
|
Schakmann M, Korsmeyer KE. Fish swimming mode and body morphology affect the energetics of swimming in a wave-surge water flow. J Exp Biol 2023; 226:297193. [PMID: 36779237 DOI: 10.1242/jeb.244739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 01/30/2023] [Indexed: 02/14/2023]
Abstract
Fish swimming modes and the shape of both the fins and body are expected to affect their swimming ability under different flow conditions. These swimming strategies and body morphologies often correspond to distributional patterns of distinct functional groups exposed to natural and variable water flows. In this study, we used a swimming-respirometer to measure energetic costs during prolonged, steady swimming and while station holding in a range of simulated oscillatory wave-surge water flows, within the natural range of flow speeds and wave frequencies on coral reefs. We quantified the net cost of swimming (NCOS, metabolic costs above resting) for four reef fish species with differences in swimming mode and morphologies of the fin and body: a body and caudal fin (BCF) swimmer, the Hawaiian flagtail, Kuhlia xenura, and three pectoral fin swimmers, the kole tang, Ctenochaetus strigosus, the saddle wrasse, Thalassoma duperrey, and the Indo-Pacific sergeant major, Abudefduf vaigiensis. We found that the BCF swimmer had the highest rates of increase in NCOS with increasing wave frequency (i.e. increased turning frequency) compared with the pectoral fin swimmers. The wrasse, with a more streamlined, higher body fineness, had lower rates of increase in NCOS with increasing swimming speeds than the low body fineness species, but overall had the highest swimming NCOS, which may be a result of a higher aerobic swimming capacity. The deep-bodied (low fineness) pectoral fin swimmers (A. vaigiensis and C. strigosus) were the most efficient at station holding in oscillating, wave-surge water flows.
Collapse
Affiliation(s)
- Mathias Schakmann
- Department of Natural Sciences, Hawaii Pacific University, 1 Aloha Tower Drive, Honolulu, HI 96813, USA.,Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, HI 96744, USA
| | - Keith E Korsmeyer
- Department of Natural Sciences, Hawaii Pacific University, 1 Aloha Tower Drive, Honolulu, HI 96813, USA
| |
Collapse
|
3
|
Semmler RF, Brandl SJ, Keith SA, Bellwood DR. Fine-scale foraging behavior reveals differences in the functional roles of herbivorous reef fishes. Ecol Evol 2021; 11:4898-4908. [PMID: 33976857 PMCID: PMC8093660 DOI: 10.1002/ece3.7398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 11/19/2022] Open
Abstract
Efforts to understand and protect ecosystem functioning have put considerable emphasis on classifying species according to the functions they perform. However, coarse classifications based on diet or feeding mode often oversimplify species' contributions to ecological processes. Behavioral variation among superficially similar species is easily missed but could indicate important differences in competitive interactions and the spatial scale at which species deliver their functions. To test the extent to which behavior can vary within existing functional classifications, we investigate the diversity of foraging movements in three herbivorous coral reef fishes across two functional groups. We find significant variation in foraging movements and spatial scales of operation between species, both within and across existing functional groups. Specifically, we show that movements and space use range from low frequency foraging bouts separated by short distances and tight turns across a small area, to high frequency, far-ranging forays separated by wide sweeping turns. Overall, we add to the burgeoning evidence that nuanced behavioral differences can underpin considerable complementarity within existing functional classifications, and that species assemblages may be considerably less redundant than previously thought.
Collapse
Affiliation(s)
| | - Simon J. Brandl
- Department of Marine ScienceMarine Science InstituteUniversity of Texas AustinPort AransasTXUSA
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQLDAustralia
- College of Science and EngineeringJames Cook UniversityTownsvilleQLDAustralia
| | - Sally A. Keith
- Lancaster Environment CentreLancaster UniversityLancasterUK
| | - David R. Bellwood
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQLDAustralia
- College of Science and EngineeringJames Cook UniversityTownsvilleQLDAustralia
| |
Collapse
|
4
|
Currier M, Rouse J, Coughlin DJ. Group swimming behaviour and energetics in bluegill Lepomis macrochirus and rainbow trout Oncorhynchus mykiss. JOURNAL OF FISH BIOLOGY 2021; 98:1105-1111. [PMID: 33277926 DOI: 10.1111/jfb.14641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/29/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Group swimming size influences metabolic energy consumption and swimming behaviour in fishes. Hydrodynamic flows and vortices of other fish are thought to be beneficial in terms of the energetic costs of swimming. Similarly, abiotic obstructions have been shown to have similar benefits with respect to metabolic consumption in swimming fish such as rainbow trout Oncorhynchus mykiss. The current study works to examine metabolic rates and swimming behaviours as a function of group swimming with bluegill sunfish Lepomis macrochirus and O. mykiss. Fishes were subjected to individual and group swimming in a respiratory swim tunnel to determine oxygen consumption as a proxy for the metabolic rate of swimming fish. In addition, fish movements within the swim tunnel test chamber were tracked to examine group swimming behaviour. We hypothesized that fish would benefit metabolically from group swimming. In the case of O. mykiss, we also hypothesized that groups would benefit from the presence of an abiotic structure, as has been previously observed in fish swimming individually. Our results suggest that the influence of group size on swimming metabolism is species specific. While L. macrochirus show decreased metabolic rate when swimming in a group compared to individually, O. mykiss did not show such a metabolic benefit from group swimming.
Collapse
Affiliation(s)
- Megan Currier
- Department of Biology, Widener University, Chester, Pennsylvania, USA
| | - Jon Rouse
- Department of Biology, Widener University, Chester, Pennsylvania, USA
| | - David J Coughlin
- Department of Biology, Widener University, Chester, Pennsylvania, USA
| |
Collapse
|
5
|
Leung DB, Eldredge JD, Gordon MS. A simplified computational model of possible hydrodynamic interactions between respiratory and swimming-related water flows in labriform-swimming fishes. BIOINSPIRATION & BIOMIMETICS 2021; 16:036002. [PMID: 33434901 DOI: 10.1088/1748-3190/abdab7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Hydrodynamic interactions in bony fishes between respiratory fluid flows leaving the opercular openings and simultaneous flows generated by movements of downstream pectoral fins are both poorly understood and likely to be complex. Labriform-swimming fishes that swim primarily by moving only their pectoral fins are good subjects for these studies. We performed a computational fluid dynamics investigation of a simplified 2D model of these interactions based on previously published experimental observations of both respiratory and pectoral fin movements under both resting and slow, steady swimming conditions in two similar labriform swimmers: the bluegill sunfish (L. macrochirus) and the largemouth bass (M. salmoides). We carried out a parametric study investigating the effects that swimming speed, strength of opercular flow and phase difference between the pectoral fin motion and the opercular opening and closing have on the thrust and sideslip forces generated by the pectoral fins during both the abduction and adduction portions of the fin movement cycle. We analyzed pressure distributions on the fin surface to determine physical differences in flows with and without opercular jets. The modeling indicates that complex flow structures emerge from the coupling between the opercular jets and vortex shedding from pectoral fins. The jets from the opercular openings appear to exert significant influence on the forces generated by the fins; they are potentially significant in the maneuverability of at least some labriform swimmers. The numerical simulations and the analysis establish a framework for the study of these interactions in various labriform swimmers in a variety of flow regimes. Similar situations in groups of fishes using other swimming modes should also be investigated.
Collapse
Affiliation(s)
- David B Leung
- Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, United States of America
| | - Jeff D Eldredge
- Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, United States of America
| | - Malcolm S Gordon
- Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, United States of America
| |
Collapse
|
6
|
Rubio-Gracia F, García-Berthou E, Guasch H, Zamora L, Vila-Gispert A. Size-related effects and the influence of metabolic traits and morphology on swimming performance in fish. Curr Zool 2020; 66:493-503. [PMID: 33376477 PMCID: PMC7750985 DOI: 10.1093/cz/zoaa013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/14/2020] [Indexed: 01/26/2023] Open
Abstract
Energy metabolism fuels swimming and other biological processes. We compared the swimming performance and energy metabolism within and across eight freshwater fish species. Using swim tunnel respirometers, we measured the standard metabolic rate (SMR) and maximum metabolic rate (MMR) and calculated the critical swimming speed (Ucrit). We accounted for body size, metabolic traits, and some morphometric ratios in an effort to understand the extent and underlying causes of variation. Body mass was largely the best predictor of swimming capacity and metabolic traits within species. Moreover, we found that predictive models using total length or SMR, in addition to body mass, significantly increased the explained variation of Ucrit and MMR in certain fish species. These predictive models also underlined that, once body mass has been accounted for, Ucrit can be independently affected by total length or MMR. This study exemplifies the utility of multiple regression models to assess within-species variability. At interspecific level, our results showed that variation in Ucrit can partly be explained by the variation in the interrelated traits of MMR, fineness, and muscle ratios. Among the species studied, bleak Alburnus alburnus performed best in terms of swimming performance and efficiency. By contrast, pumpkinseed Lepomis gibbosus showed very poor swimming performance, but attained lower mass-specific cost of transport (MCOT) than some rheophilic species, possibly reflecting a cost reduction strategy to compensate for hydrodynamic disadvantages. In conclusion, this study provides insight into the key factors influencing the swimming performance of fish at both intra- and interspecific levels.
Collapse
Affiliation(s)
| | | | - Helena Guasch
- Institute of Aquatic Ecology, University of Girona, 17003 Girona, Spain.,Integrative Freshwater Ecology Group, Centre d'Estudis Avançats de Blanes, CSIC, 17300 Blanes, Spain
| | - Lluís Zamora
- Institute of Aquatic Ecology, University of Girona, 17003 Girona, Spain
| | - Anna Vila-Gispert
- Institute of Aquatic Ecology, University of Girona, 17003 Girona, Spain
| |
Collapse
|
7
|
Cordero GA, Methling C, Tirsgaard B, Steffensen JF, Domenici P, Svendsen JC. Excess postexercise oxygen consumption decreases with swimming duration in a labriform fish: Integrating aerobic and anaerobic metabolism across time. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2019; 331:577-586. [PMID: 31692282 DOI: 10.1002/jez.2322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 11/07/2022]
Abstract
Many vertebrate animals employ anaerobic pathways during high-speed exercise, even if it imposes an energetic cost during postexercise recovery, expressed as excess postexercise oxygen consumption (EPOC). In ectotherms such a fish, the initial anaerobic contribution to exercise is often substantial. Even so, fish may recover from anaerobic pathways as swimming exercise ensues and aerobic metabolism stabilizes, thus total energetic costs of exercise could depend on swimming duration and subsequent physiological recovery. To test this hypothesis, we examined EPOC in striped surfperch (Embiotoca lateralis) that swam at high speeds (3.25 L s-1 ) during randomly ordered 2-, 5-, 10-, and 20-min exercise periods. We found that EPOC was highest after the 2-min period (20.9 mg O2 kg-1 ) and lowest after the 20-min period (13.6 mg O2 kg-1 ), indicating that recovery from anaerobic pathways improved with exercise duration. Remarkably, EPOC for the 2-min period accounted for 72% of the total O2 consumption, whereas EPOC for the 20-min period only accounted for 14%. Thus, the data revealed a striking decline in the total cost of transport from 0.772 to 0.226 mg O2 ·kg-1 ·m-1 during 2- and 20-min periods, respectively. Our study is the first to combine anaerobic and aerobic swimming costs to demonstrate an effect of swimming duration on EPOC in fish. Clarifying the dynamic nature of exercise-related costs is relevant to extrapolating laboratory findings to animals in the wild.
Collapse
Affiliation(s)
- Gerardo A Cordero
- Department of Geosciences, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Caroline Methling
- National Institute of Aquatic Resources (DTU-Aqua), Technical University of Denmark, Lyngby, Denmark
| | - Bjørn Tirsgaard
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - John F Steffensen
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Paolo Domenici
- CNR-IAMC, Instituto per l'Ambiente Marino Costiero, Torregrande, Oristano, Italy
| | - Jon C Svendsen
- National Institute of Aquatic Resources (DTU-Aqua), Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
8
|
The role of social network behavior, swimming performance, and fish size in the determination of angling vulnerability in bluegill. Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2754-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Red muscle activity in bluegill sunfish Lepomis macrochirus during forward accelerations. Sci Rep 2019; 9:8088. [PMID: 31147566 PMCID: PMC6542830 DOI: 10.1038/s41598-019-44409-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 05/09/2019] [Indexed: 11/13/2022] Open
Abstract
Fishes generate force to swim by activating muscles on either side of their flexible bodies. To accelerate, they must produce higher muscle forces, which leads to higher reaction forces back on their bodies from the environment. If their bodies are too flexible, the forces during acceleration could not be transmitted effectively to the environment, but fish can potentially use their muscles to increase the effective stiffness of their body. Here, we quantified red muscle activity during acceleration and steady swimming, looking for patterns that would be consistent with the hypothesis of body stiffening. We used high-speed video, electromyographic recordings, and a new digital inertial measurement unit to quantify body kinematics, red muscle activity, and 3D orientation and centre of mass acceleration during forward accelerations and steady swimming over several speeds. During acceleration, fish co-activated anterior muscle on the left and right side, and activated all muscle sooner and kept it active for a larger fraction of the tail beat cycle. These activity patterns are both known to increase effective stiffness for muscle tissue in vitro, which is consistent with our hypothesis that fish use their red muscle to stiffen their bodies during acceleration. We suggest that during impulsive movements, flexible organisms like fishes can use their muscles not only to generate propulsive power but to tune the effective mechanical properties of their bodies, increasing performance during rapid movements and maintaining flexibility for slow, steady movements.
Collapse
|
10
|
Tandler T, Gellman E, De La Cruz D, Ellerby DJ. Drag coefficient estimates from coasting bluegill sunfish Lepomis macrochirus. JOURNAL OF FISH BIOLOGY 2019; 94:532-534. [PMID: 30671967 DOI: 10.1111/jfb.13906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
The drag coefficient bluegill sunfish Lepomis macrochirus was estimated from coasting deceleration as (mean ± SD) 0.0154 ± 0.0070 at a Reynolds number of 41,000 ± 14,000. This was within the coasting range in other species and lower than values obtained from dead drag measurements in this species and others. Low momentum losses during coasting may allow its use during intermittent propulsion to modulate power output or maximize energy economy.
Collapse
Affiliation(s)
- Talia Tandler
- Department of Biological Sciences, Wellesley College, Wellesley, Massachusetts, USA
| | - Emma Gellman
- Department of Biological Sciences, Wellesley College, Wellesley, Massachusetts, USA
| | - Dayna De La Cruz
- Department of Biological Sciences, Wellesley College, Wellesley, Massachusetts, USA
| | - David J Ellerby
- Department of Biological Sciences, Wellesley College, Wellesley, Massachusetts, USA
| |
Collapse
|
11
|
Marcoux TM, Korsmeyer KE. Energetics and behavior of coral reef fishes during oscillatory swimming in a simulated wave surge. ACTA ACUST UNITED AC 2019; 222:jeb.191791. [PMID: 30659085 DOI: 10.1242/jeb.191791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/11/2019] [Indexed: 11/20/2022]
Abstract
Oxygen consumption rates were measured for coral reef fishes during swimming in a bidirectional, oscillatory pattern to simulate station-holding in wave-induced, shallow-water flows. For all species examined, increases in wave intensity, as simulated by increases in frequency and amplitude of oscillation, yielded increased metabolic rates and net costs of swimming (NCOS; swimming metabolic rate minus standard metabolic rate). Comparing species with different swimming modes, the caudal fin swimming Kuhlia spp. (Kuhliidae) and simultaneous pectoral-caudal fin swimming Amphiprion ocellaris (Pomacentridae) turned around to face the direction of swimming most of the time, whereas the median-paired fin (MPF) swimmers, the pectoral fin swimming Ctenochaetus strigosus (Acanthuridae) and dorsal-anal fin swimming Sufflamen bursa (Balistidae), more frequently swam in reverse for one half of the oscillation to avoid turning. Contrary to expectations, the body-caudal fin (BCF) swimming Kuhlia spp. had the lowest overall NCOS in the oscillatory swimming regime compared with the MPF swimmers. However, when examining the effect of increasing frequency of oscillation at similar average velocities, Ku hlia spp. showed a 24% increase in NCOS with a 50% increase in direction changes and accelerations. The two strict MPF swimmers had lower increases on average, suggestive of reduced added costs with increasing frequency of direction changes with this swimming mode. Further studies are needed on the costs of unsteady swimming to determine whether these differences can explain the observed prevalence of fishes using the MPF pectoral fin swimming mode in reef habitats exposed to high, wave-surge-induced water flows.
Collapse
Affiliation(s)
- Travis M Marcoux
- Department of Natural Sciences, Hawaii Pacific University, 1 Aloha Tower Drive, Honolulu, HI 96813, USA
| | - Keith E Korsmeyer
- Department of Natural Sciences, Hawaii Pacific University, 1 Aloha Tower Drive, Honolulu, HI 96813, USA
| |
Collapse
|
12
|
Frenette BD, Bruckerhoff LA, Tobler M, Gido KB. Temperature effects on performance and physiology of two prairie stream minnows. CONSERVATION PHYSIOLOGY 2019; 7:coz063. [PMID: 31687142 PMCID: PMC6822539 DOI: 10.1093/conphys/coz063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 04/10/2019] [Accepted: 07/28/2019] [Indexed: 05/10/2023]
Abstract
Earth's atmosphere has warmed by ~1°C over the past century and continues to warm at an increasing rate. Effects of atmospheric warming are already visible in most major ecosystems and are evident across all levels of biological organization. Linking functional responses of individuals to temperature is critical for predicting responses of populations and communities to global climate change. The southern redbelly dace Chrosomus erythrogaster and the central stoneroller Campostoma anomalum are two minnows (Cyprinidae) that commonly occur in the Flint Hills region of the USA but show different patterns of occurrence, with dace largely occupying headwater reaches and stonerollers persisting in both headwater and intermediate-sized streams. We tested for differences between species in critical thermal maximum, energy metabolism, sustained swimming and activity over an ecologically relevant temperature gradient of acclimation temperatures. Typically, metrics increased with acclimation temperature for both species, although stoneroller activity decreased with temperature. We observed a significant interaction between species and temperature for critical thermal maxima, where stonerollers only had higher critical thermal maxima at the coldest temperature and at warm temperatures compared to the dace. We did not find evidence suggesting differences in the energy metabolism of dace and stonerollers. We detected interspecific differences in sustained swimming performance, with dace having higher swimming speed than stonerollers regardless of acclimation temperature. Finally, there was a significant interaction between temperature and species for activity; dace activity was higher at intermediate and warm temperatures compared to stonerollers. We observed subtle interspecific differences in how performance metrics responded to temperature that did not always align with observed patterns of distribution for these species. Thus, other ecological factors likely are important drivers of distributional patterns in these species.
Collapse
Affiliation(s)
- Bryan D Frenette
- Division of Biology, Kansas State University, 166 Ackert Hall, Manhattan, KS 66506, USA
- Corresponding author: Division of Biology, Kansas State University, 166 Ackert Hall, Manhattan, KS 66506, USA.
| | - Lindsey A Bruckerhoff
- Division of Biology, Kansas State University, 166 Ackert Hall, Manhattan, KS 66506, USA
| | - Michael Tobler
- Division of Biology, Kansas State University, 166 Ackert Hall, Manhattan, KS 66506, USA
| | - Keith B Gido
- Division of Biology, Kansas State University, 166 Ackert Hall, Manhattan, KS 66506, USA
| |
Collapse
|
13
|
Ellerby DJ, Cyr S, Han AX, Lin M, Trueblood LA. Linking muscle metabolism and functional variation to field swimming performance in bluegill sunfish (Lepomis macrochirus). J Comp Physiol B 2018; 188:461-469. [PMID: 29350264 DOI: 10.1007/s00360-018-1145-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/06/2018] [Indexed: 11/30/2022]
Abstract
Skeletal muscle has diverse mechanical roles during locomotion. In swimming fish, power-producing muscles work in concert with the accessory muscles of the fins which augment and control power transfer to the water. Although fin muscles represent a significant proportion of the locomotor muscle mass, their physiological properties are poorly characterized. To examine the relationship between muscle metabolism and the differing mechanical demands placed on distinct muscle groups, we quantified the aerobic and glycolytic capacities of the myotomal, pectoral and caudal muscles of bluegill sunfish. These were indicated by the activities of citrate synthase and lactate dehydrogenase, rate-limiting enzymes for aerobic respiration and glycolysis, respectively. The well-established roles of slow and fast myotomal muscle types in sustained and transient propulsive movements allows their use as benchmarks to which other muscles can be compared to assess their function. Slow myotomal muscle had the highest CS activity, consistent with meeting the high metabolic and mechanical power demands of body-caudal fin (BCF) swimming at the upper end of the aerobically supported speed range. The largest pectoral adductors and abductors had CS activities lower than the slow myotomal muscle, in line with their role supplying thrust for low-speed, low-power swimming. The metabolic capacities of the caudal muscles were surprisingly low and inconsistent with their activity during steady-state BCF swimming at high speeds. This may reflect adaptation to the observed swimming behavior in the field, which typically involved short bouts of BCF-propulsive cycles rather than sustained propulsive activity.
Collapse
Affiliation(s)
- David J Ellerby
- Department of Biological Sciences, Wellesley College, 106 Central St, Wellesley, MA, 02481, USA.
| | - Shauna Cyr
- Department of Biological Sciences, La Sierra University, Riverside, CA, 92505, USA
| | - Angela X Han
- Department of Biological Sciences, Wellesley College, 106 Central St, Wellesley, MA, 02481, USA
| | - Mika Lin
- Department of Biological Sciences, Wellesley College, 106 Central St, Wellesley, MA, 02481, USA
| | - Lloyd A Trueblood
- Department of Biological Sciences, La Sierra University, Riverside, CA, 92505, USA
| |
Collapse
|
14
|
Cathcart K, Shin SY, Milton J, Ellerby D. Field swimming performance of bluegill sunfish, Lepomis macrochirus: implications for field activity cost estimates and laboratory measures of swimming performance. Ecol Evol 2017; 7:8657-8666. [PMID: 29075479 PMCID: PMC5648661 DOI: 10.1002/ece3.3454] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 11/25/2022] Open
Abstract
Mobility is essential to the fitness of many animals, and the costs of locomotion can dominate daily energy budgets. Locomotor costs are determined by the physiological demands of sustaining mechanical performance, yet performance is poorly understood for most animals in the field, particularly aquatic organisms. We have used 3‐D underwater videography to quantify the swimming trajectories and propulsive modes of bluegills sunfish (Lepomis macrochirus, Rafinesque) in the field with high spatial (1–3 mm per pixel) and temporal (60 Hz frame rate) resolution. Although field swimming trajectories were variable and nonlinear in comparison to quasi steady‐state swimming in recirculating flumes, they were much less unsteady than the volitional swimming behaviors that underlie existing predictive models of field swimming cost. Performance analyses suggested that speed and path curvature data could be used to derive reasonable estimates of locomotor cost that fit within measured capacities for sustainable activity. The distinct differences between field swimming behavior and performance measures obtained under steady‐state laboratory conditions suggest that field observations are essential for informing approaches to quantifying locomotor performance in the laboratory.
Collapse
Affiliation(s)
- Kelsey Cathcart
- Department of Biological Sciences Wellesley College Wellesley MA USA
| | - Seo Yim Shin
- Department of Biological Sciences Wellesley College Wellesley MA USA
| | - Joanna Milton
- Department of Biological Sciences Wellesley College Wellesley MA USA
| | - David Ellerby
- Department of Biological Sciences Wellesley College Wellesley MA USA
| |
Collapse
|
15
|
Hardy AR, Steinworth BM, Hale ME. Touch sensation by pectoral fins of the catfish Pimelodus pictus. Proc Biol Sci 2017; 283:rspb.2015.2652. [PMID: 26865307 DOI: 10.1098/rspb.2015.2652] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mechanosensation is fundamental to many tetrapod limb functions, yet it remains largely uninvestigated in the paired fins of fishes, limb homologues. Here we examine whether membranous fins may function as passive structures for touch sensation. We investigate the pectoral fins of the pictus catfish (Pimelodus pictus), a species that lives in close association with the benthic substrate and whose fins are positioned near its ventral margin. Kinematic analysis shows that the pectoral fins are held partially protracted during routine forward swimming and do not appear to generate propulsive force. Immunohistochemistry reveals that the fins are highly innervated, and we observe putative mechanoreceptors at nerve fibre endings. To test for the ability to sense mechanical perturbations, activity of fin ray nerve fibres was recorded in response to touch and bend stimulation. Both pressure and light surface brushing generated afferent nerve activity. Fin ray nerves also respond to bending of the rays. These data demonstrate for the first time that membranous fins can function as passive mechanosensors. We suggest that touch-sensitive fins may be widespread in fishes that maintain a close association with the bottom substrate.
Collapse
Affiliation(s)
- Adam R Hardy
- Department of Organismal Biology and Anatomy, The University of Chicago, 1027 E. 57th Street, Chicago, IL 60637, USA
| | - Bailey M Steinworth
- Department of Organismal Biology and Anatomy, The University of Chicago, 1027 E. 57th Street, Chicago, IL 60637, USA The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
| | - Melina E Hale
- Department of Organismal Biology and Anatomy, The University of Chicago, 1027 E. 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
16
|
Svendsen JC, Tirsgaard B, Cordero GA, Steffensen JF. Intraspecific variation in aerobic and anaerobic locomotion: gilthead sea bream (Sparus aurata) and Trinidadian guppy (Poecilia reticulata) do not exhibit a trade-off between maximum sustained swimming speed and minimum cost of transport. Front Physiol 2015; 6:43. [PMID: 25741285 PMCID: PMC4330683 DOI: 10.3389/fphys.2015.00043] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/29/2015] [Indexed: 11/17/2022] Open
Abstract
Intraspecific variation and trade-off in aerobic and anaerobic traits remain poorly understood in aquatic locomotion. Using gilthead sea bream (Sparus aurata) and Trinidadian guppy (Poecilia reticulata), both axial swimmers, this study tested four hypotheses: (1) gait transition from steady to unsteady (i.e., burst-assisted) swimming is associated with anaerobic metabolism evidenced as excess post exercise oxygen consumption (EPOC); (2) variation in swimming performance (critical swimming speed; Ucrit) correlates with metabolic scope (MS) or anaerobic capacity (i.e., maximum EPOC); (3) there is a trade-off between maximum sustained swimming speed (Usus) and minimum cost of transport (COTmin); and (4) variation in Usus correlates positively with optimum swimming speed (Uopt; i.e., the speed that minimizes energy expenditure per unit of distance traveled). Data collection involved swimming respirometry and video analysis. Results showed that anaerobic swimming costs (i.e., EPOC) increase linearly with the number of bursts in S. aurata, with each burst corresponding to 0.53 mg O2 kg−1. Data are consistent with a previous study on striped surfperch (Embiotoca lateralis), a labriform swimmer, suggesting that the metabolic cost of burst swimming is similar across various types of locomotion. There was no correlation between Ucrit and MS or anaerobic capacity in S. aurata indicating that other factors, including morphological or biomechanical traits, influenced Ucrit. We found no evidence of a trade-off between Usus and COTmin. In fact, data revealed significant negative correlations between Usus and COTmin, suggesting that individuals with high Usus also exhibit low COTmin. Finally, there were positive correlations between Usus and Uopt. Our study demonstrates the energetic importance of anaerobic metabolism during unsteady swimming, and provides intraspecific evidence that superior maximum sustained swimming speed is associated with superior swimming economy and optimum speed.
Collapse
Affiliation(s)
- Jon C Svendsen
- Molecular Eco-physiology, Interdisciplinary Center of Marine and Environmental Research, University of Porto Porto, Portugal ; Fisheries and Maritime Museum Esbjerg, Denmark
| | - Bjørn Tirsgaard
- Marine Biological Section, Biological Institute, University of Copenhagen Helsingør, Denmark
| | - Gerardo A Cordero
- Ecology, Evolution, and Organismal Biology, Iowa State University Ames, IA, USA
| | - John F Steffensen
- Marine Biological Section, Biological Institute, University of Copenhagen Helsingør, Denmark
| |
Collapse
|
17
|
Svendsen JC, Genz J, Anderson WG, Stol JA, Watkinson DA, Enders EC. Evidence of circadian rhythm, oxygen regulation capacity, metabolic repeatability and positive correlations between forced and spontaneous maximal metabolic rates in lake sturgeon Acipenser fulvescens. PLoS One 2014; 9:e94693. [PMID: 24718688 PMCID: PMC3981817 DOI: 10.1371/journal.pone.0094693] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/17/2014] [Indexed: 11/25/2022] Open
Abstract
Animal metabolic rate is variable and may be affected by endogenous and exogenous factors, but such relationships remain poorly understood in many primitive fishes, including members of the family Acipenseridae (sturgeons). Using juvenile lake sturgeon (Acipenser fulvescens), the objective of this study was to test four hypotheses: 1) A. fulvescens exhibits a circadian rhythm influencing metabolic rate and behaviour; 2) A. fulvescens has the capacity to regulate metabolic rate when exposed to environmental hypoxia; 3) measurements of forced maximum metabolic rate (MMRF) are repeatable in individual fish; and 4) MMRF correlates positively with spontaneous maximum metabolic rate (MMRS). Metabolic rates were measured using intermittent flow respirometry, and a standard chase protocol was employed to elicit MMRF. Trials lasting 24 h were used to measure standard metabolic rate (SMR) and MMRS. Repeatability and correlations between MMRF and MMRS were analyzed using residual body mass corrected values. Results revealed that A. fulvescens exhibit a circadian rhythm in metabolic rate, with metabolism peaking at dawn. SMR was unaffected by hypoxia (30% air saturation (O2sat)), demonstrating oxygen regulation. In contrast, MMRF was affected by hypoxia and decreased across the range from 100% O2sat to 70% O2sat. MMRF was repeatable in individual fish, and MMRF correlated positively with MMRS, but the relationships between MMRF and MMRS were only revealed in fish exposed to hypoxia or 24 h constant light (i.e. environmental stressor). Our study provides evidence that the physiology of A. fulvescens is influenced by a circadian rhythm and suggests that A. fulvescens is an oxygen regulator, like most teleost fish. Finally, metabolic repeatability and positive correlations between MMRF and MMRS support the conjecture that MMRF represents a measure of organism performance that could be a target of natural selection.
Collapse
Affiliation(s)
- Jon C. Svendsen
- Environmental Science, Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- * E-mail:
| | - Janet Genz
- Biology Department, University of West Georgia, Carrollton, Georgia, United States of America
| | - W. Gary Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jennifer A. Stol
- Environmental Science, Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada
| | | | - Eva C. Enders
- Environmental Science, Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada
| |
Collapse
|
18
|
Walker JA, Alfaro ME, Noble MM, Fulton CJ. Body fineness ratio as a predictor of maximum prolonged-swimming speed in coral reef fishes. PLoS One 2013; 8:e75422. [PMID: 24204575 PMCID: PMC3799785 DOI: 10.1371/journal.pone.0075422] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 08/14/2013] [Indexed: 11/19/2022] Open
Abstract
The ability to sustain high swimming speeds is believed to be an important factor affecting resource acquisition in fishes. While we have gained insights into how fin morphology and motion influences swimming performance in coral reef fishes, the role of other traits, such as body shape, remains poorly understood. We explore the ability of two mechanistic models of the causal relationship between body fineness ratio and endurance swimming-performance to predict maximum prolonged-swimming speed (Umax ) among 84 fish species from the Great Barrier Reef, Australia. A drag model, based on semi-empirical data on the drag of rigid, submerged bodies of revolution, was applied to species that employ pectoral-fin propulsion with a rigid body at U max. An alternative model, based on the results of computer simulations of optimal shape in self-propelled undulating bodies, was applied to the species that swim by body-caudal-fin propulsion at Umax . For pectoral-fin swimmers, Umax increased with fineness, and the rate of increase decreased with fineness, as predicted by the drag model. While the mechanistic and statistical models of the relationship between fineness and Umax were very similar, the mechanistic (and statistical) model explained only a small fraction of the variance in Umax . For body-caudal-fin swimmers, we found a non-linear relationship between fineness and Umax , which was largely negative over most of the range of fineness. This pattern fails to support either predictions from the computational models or standard functional interpretations of body shape variation in fishes. Our results suggest that the widespread hypothesis that a more optimal fineness increases endurance-swimming performance via reduced drag should be limited to fishes that swim with rigid bodies.
Collapse
Affiliation(s)
- Jeffrey A. Walker
- Department of Biological Sciences, University of Southern Maine, Portland, Maine, United States of America
| | - Michael E. Alfaro
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, United States of America
| | - Mae M. Noble
- ARC Centre of Excellence for Coral Reef Studies, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Christopher J. Fulton
- ARC Centre of Excellence for Coral Reef Studies, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
19
|
Svendsen JC, Banet AI, Christensen RHB, Steffensen JF, Aarestrup K. Effects of intraspecific variation in reproductive traits, pectoral fin use and burst swimming on metabolic rates and swimming performance in the Trinidadian guppy (Poecilia reticulata). ACTA ACUST UNITED AC 2013; 216:3564-74. [PMID: 23737561 DOI: 10.1242/jeb.083089] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There is considerable intraspecific variation in metabolic rates and locomotor performance in aquatic ectothermic vertebrates; however, the mechanistic basis remains poorly understood. Using pregnant Trinidadian guppies (Poecilia reticulata), a live-bearing teleost, we examined the effects of reproductive traits, pectoral fin use and burst-assisted swimming on swimming metabolic rate, standard metabolic rate (O2std) and prolonged swimming performance (Ucrit). Reproductive traits included reproductive allocation and pregnancy stage, the former defined as the mass of the reproductive tissues divided by the total body mass. Results showed that the metabolic rate increased curvilinearly with swimming speed. The slope of the relationship was used as an index of swimming cost. There was no evidence that reproductive traits correlated with swimming cost, O2std or Ucrit. In contrast, data revealed strong effects of pectoral fin use on swimming cost and Ucrit. Poecilia reticulata employed body-caudal fin (BCF) swimming at all tested swimming speeds; however, fish with a high simultaneous use of the pectoral fins exhibited increased swimming cost and decreased Ucrit. These data indicated that combining BCF swimming and pectoral fin movement over a wide speed range, presumably to support swimming stability and control, is an inefficient swimming behaviour. Finally, transition to burst-assisted swimming was associated with an increase in aerobic metabolic rate. Our study highlights factors other than swimming speed that affect swimming cost and suggests that intraspecific diversity in biomechanical performance, such as pectoral fin use, is an important source of variation in both locomotor cost and maximal performance.
Collapse
Affiliation(s)
- Jon C Svendsen
- Technical University of Denmark, National Institute of Aquatic Resources, Freshwater Fisheries, Vejlsøvej 39, DK-8600 Silkeborg, Denmark.
| | | | | | | | | |
Collapse
|
20
|
The function of fin rays as proprioceptive sensors in fish. Nat Commun 2013; 4:1729. [DOI: 10.1038/ncomms2751] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 03/14/2013] [Indexed: 11/08/2022] Open
|
21
|
Svendsen JC, Steffensen JF, Aarestrup K, Frisk M, Etzerodt A, Jyde M. Excess posthypoxic oxygen consumption in rainbow trout (Oncorhynchus mykiss): recovery in normoxia and hypoxia. CAN J ZOOL 2012. [DOI: 10.1139/z11-095] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Under certain conditions, a number of fish species may perform brief excursions into severe hypoxia and return to water with a higher oxygen content. The term severe hypoxia describes oxygen conditions that are below the critical oxygen saturation (Scrit), defined here as the oxygen threshold at which the standard metabolic rate becomes dependent upon the ambient oxygen content. Using rainbow trout ( Oncorhynchus mykiss (Walbaum, 1792), this study quantified the excess posthypoxic oxygen consumption (EPHOC) occurring after exposure to oxygen availability below Scrit. Tests showed that Scrit was 13.5% air saturation (O2sat). Fish were exposed to 10% O2sat for 0.97 h, and the EPHOC was quantified in normoxia (≥95% O2sat) and hypoxia (30% O2sat) to test the hypothesis that reduced oxygen availability would decrease the peak metabolic rate (MO2peak) and prolong the duration of the metabolic recovery. Results showed that MO2peak during the recovery was reduced from 253 to 127 mg O2·kg–1·h–1 in hypoxia compared with normoxia. Metabolic recovery lasted 5.2 h in normoxia and 9.8 h in hypoxia. The EPHOC, however, did not differ between the two treatments. Impeded metabolic recovery in hypoxia may have implications for fish recovering from exposure to oxygen availability below Scrit.
Collapse
Affiliation(s)
- Jon Christian Svendsen
- University of Copenhagen, Marine Biological Laboratory, Biological Institute, Strandpromenaden 5, DK-3000 Helsingør, Denmark
| | - John Fleng Steffensen
- University of Copenhagen, Marine Biological Laboratory, Biological Institute, Strandpromenaden 5, DK-3000 Helsingør, Denmark
| | - Kim Aarestrup
- Technical University of Denmark, National Institute of Aquatic Resources, Freshwater Fisheries, Vejlsøvej 39, DK-8600 Silkeborg, Denmark
| | - Michael Frisk
- University of Copenhagen, Marine Biological Laboratory, Biological Institute, Strandpromenaden 5, DK-3000 Helsingør, Denmark
| | - Anne Etzerodt
- University of Copenhagen, Marine Biological Laboratory, Biological Institute, Strandpromenaden 5, DK-3000 Helsingør, Denmark
| | - Mads Jyde
- University of Copenhagen, Marine Biological Laboratory, Biological Institute, Strandpromenaden 5, DK-3000 Helsingør, Denmark
| |
Collapse
|
22
|
|
23
|
Gerry SP, Wang J, Ellerby DJ. A new approach to quantifying morphological variation in bluegill Lepomis macrochirus. JOURNAL OF FISH BIOLOGY 2011; 78:1023-1034. [PMID: 21463305 DOI: 10.1111/j.1095-8649.2011.02911.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Bluegill Lepomis macrochirus showed intraspecific morphological and behavioural differences dependent on the environment. Pelagic L. macrochirus had more fusiform bodies, a higher pectoral fin aspect ratio, a larger spiny dorsal fin area and pectoral fins located farther from the centre of mass than littoral L. macrochirus (P < 0·05). The shape of the body and pectoral fins, in particular, were suggestive of adaptation for sustained high-speed and economical labriform swimming. Littoral L. macrochirus had a deeper and wider body, deeper caudal fins and wider mouths than pelagic L. macrochirus (P < 0·05). Additionally, the soft dorsal, pelvic, anal and caudal fins of littoral L. macrochirus were positioned farther from the centre of mass (P < 0·05). The size and placement of these fins suggested that they will be effective in creating turning moments to facilitate manoeuvring in the macrophyte-dense littoral habitat.
Collapse
Affiliation(s)
- S P Gerry
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481, USA.
| | | | | |
Collapse
|
24
|
Svendsen JC, Tudorache C, Jordan AD, Steffensen JF, Aarestrup K, Domenici P. Partition of aerobic and anaerobic swimming costs related to gait transitions in a labriform swimmer. J Exp Biol 2010; 213:2177-83. [PMID: 20543115 DOI: 10.1242/jeb.041368] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Members of the family Embiotocidae exhibit a distinct gait transition from exclusively pectoral fin oscillation to combined pectoral and caudal fin propulsion with increasing swimming speed. The pectoral–caudal gait transition occurs at a threshold speed termed Up–c. The objective of this study was to partition aerobic and anaerobic swimming costs at speeds below and above the Up–c in the striped surfperch Embiotoca lateralis using swimming respirometry and video analysis to test the hypothesis that the gait transition marks the switch from aerobic to anaerobic power output. Exercise oxygen consumption rate was measured at 1.4, 1.9 and 2.3 L s–1. The presence and magnitude of excess post-exercise oxygen consumption (EPOC) were evaluated after each swimming speed. The data demonstrated that 1.4 L s–1 was below the Up–c, whereas 1.9 and 2.3 L s–1 were above the Up–c. These last two swimming speeds included caudal fin propulsion in a mostly steady and unsteady (burst-assisted) mode, respectively. There was no evidence of EPOC after swimming at 1.4 and 1.9 L s–1, indicating that the pectoral–caudal gait transition was not a threshold for anaerobic metabolism. At 2.3 L s–1, E. lateralis switched to an unsteady burst and flap gait. This swimming speed resulted in EPOC, suggesting that anaerobic metabolism constituted 25% of the total costs. Burst activity correlated positively with the magnitude of the EPOC. Collectively, these data indicate that steady axial propulsion does not lead to EPOC whereas transition to burst-assisted swimming above Up–c is associated with anaerobic metabolism in this labriform swimmer.
Collapse
Affiliation(s)
- Jon C. Svendsen
- Technical University of Denmark, National Institute of Aquatic Resources, Freshwater Fisheries, Vejlsøvej 39, DK-8600 Silkeborg, Denmark
- University of Copenhagen, Marine Biological Laboratory, Biological Institute, Strandpromenaden 5, DK-3000 Helsingør, Denmark
| | - Christian Tudorache
- Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Anders D. Jordan
- University of Copenhagen, Marine Biological Laboratory, Biological Institute, Strandpromenaden 5, DK-3000 Helsingør, Denmark
| | - John F. Steffensen
- University of Copenhagen, Marine Biological Laboratory, Biological Institute, Strandpromenaden 5, DK-3000 Helsingør, Denmark
| | - Kim Aarestrup
- Technical University of Denmark, National Institute of Aquatic Resources, Freshwater Fisheries, Vejlsøvej 39, DK-8600 Silkeborg, Denmark
| | - Paolo Domenici
- CNR – IAMC, Istituto per l'Ambiente Marino Costiero, Località Sa Mardini, 09072 Torregrande, Oristano, Italy
| |
Collapse
|
25
|
Webb PW, Cotel AJ. Turbulence: Does Vorticity Affect the Structure and Shape of Body and Fin Propulsors? Integr Comp Biol 2010; 50:1155-66. [PMID: 21558264 DOI: 10.1093/icb/icq020] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- P W Webb
- School of Natural Resources and the Environment, Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
26
|
McGovern ST, Abbot M, Emery R, Alici G, Truong VT, Spinks GM, Wallace GG. Evaluation of thrust force generated for a robotic fish propelled with polypyrrole actuators. POLYM INT 2010. [DOI: 10.1002/pi.2777] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Wilson AD, Godin JGJ. Boldness and intermittent locomotion in the bluegill sunfish, Lepomis macrochirus. Behav Ecol 2009. [DOI: 10.1093/beheco/arp157] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
28
|
Lim SM, Ellerby DJ. The effects of acute temperature change on cost of transport at maximal labriform speed in bluegill Lepomis macrochirus. JOURNAL OF FISH BIOLOGY 2009; 75:938-943. [PMID: 20738591 DOI: 10.1111/j.1095-8649.2009.02349.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The effects of acute temperature change on the cost of bluegill Lepomis macrochirus swimming were quantified. At 14 degrees C, maximum labriform swimming speed (U(lab,max)) was reduced relative to that at the acclimation temperature of 22 degrees C, but total cost of transport (T(TC)) remained unchanged. At 30 degrees C, U(lab,max) was the same as at 22 degrees C, but T(TC) was 66% greater.
Collapse
Affiliation(s)
- S M Lim
- Department of Biological Sciences, Wellesley College, 106 Central Street, Wellesley, MA 02482, USA
| | | |
Collapse
|
29
|
Jones EA, Jong AS, Ellerby DJ. The effects of acute temperature change on swimming performance in bluegill sunfishLepomis macrochirus. J Exp Biol 2008; 211:1386-93. [DOI: 10.1242/jeb.014688] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYMany fish change gait within their aerobically supported range of swimming speeds. The effects of acute temperature change on this type of locomotor behavior are poorly understood. Bluegill sunfish swim in the labriform mode at low speeds and switch to undulatory swimming as their swimming speed increases. Maximum aerobic swimming speed (Umax),labriform-undulatory gait transition speed (Utrans) and the relationships between fin beat frequency and speed were measured at 14,18, 22, 26 and 30°C in bluegill acclimated to 22°C. At temperatures below the acclimation temperature (Ta), Umax, Utrans and the caudal and pectoral fin beat frequencies at these speeds were reduced relative to the acclimation level. At temperatures above Ta there was no change in these variables relative to the acclimation level. Supplementation of oxygen levels at 30°C had no effect on swimming performance. The mechanical power output of the abductor superficialis, a pectoral fin abductor muscle, was measured in vitro at the same temperatures used for the swimming experiments. At and below Ta, maximal power output was produced at a cycle frequency approximately matching the in vivo pectoral fin beat frequency. At temperatures above Ta muscle power output and cycle frequency could be increased above the in vivo levels at Utrans. Our data suggest that the factors triggering the labriform–undulatory gait transition change with temperature. Muscle mechanical performance limited labriform swimming speed at Ta and below, but other mechanical or energetic factors limited labriform swimming speed at temperatures above Ta.
Collapse
Affiliation(s)
- Emily A. Jones
- Department of Biological Sciences, Wellesley College, 106 Central Street,Wellesley, MA 02481, USA
| | - Arianne S. Jong
- Department of Biological Sciences, Wellesley College, 106 Central Street,Wellesley, MA 02481, USA
| | - David J. Ellerby
- Department of Biological Sciences, Wellesley College, 106 Central Street,Wellesley, MA 02481, USA
| |
Collapse
|
30
|
Kendall JL, Lucey KS, Jones EA, Wang J, Ellerby DJ. Mechanical and energetic factors underlying gait transitions in bluegill sunfish (Lepomis macrochirus). J Exp Biol 2007; 210:4265-71. [DOI: 10.1242/jeb.009498] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYAs their swimming speed increased, bluegill sunfish (Lepomis macrochirus) switched from pectoral-fin-powered labriform swimming to undulations of the body axis. This gait transition occurred at a mean swimming speed of 0.24±0.01 m s–1 and a pectoral fin beat frequency of 2.79±0.11 Hz (mean ± s.e.m., N=6). The power output available from the main upstroke (adductor profundus) and downstroke (abductor superficialis) muscles, measured using the work-loop technique was maximal at the gait transition point. The cost of transport,measured by respirometry, increased as the fish switched from labriform to undulatory swimming. Our data show that bluegill changed gait as swimming speed increased to recruit additional muscle mass, rather than to maximize economy, as is the case for many terrestrial animals.
Collapse
Affiliation(s)
- Jennifer L. Kendall
- Department of Biological Sciences, Wellesley College, 106 Central Street, Wellesley, MA 02481, USA
| | - Kaitlyn S. Lucey
- Department of Biological Sciences, Wellesley College, 106 Central Street, Wellesley, MA 02481, USA
| | - Emily A. Jones
- Department of Biological Sciences, Wellesley College, 106 Central Street, Wellesley, MA 02481, USA
| | - Jasmine Wang
- Department of Biological Sciences, Wellesley College, 106 Central Street, Wellesley, MA 02481, USA
| | - David J. Ellerby
- Department of Biological Sciences, Wellesley College, 106 Central Street, Wellesley, MA 02481, USA
| |
Collapse
|