1
|
Askew GN. Adaptations for extremely high muscular power output: why do muscles that operate at intermediate cycle frequencies generate the highest powers? J Muscle Res Cell Motil 2023; 44:107-114. [PMID: 36627504 PMCID: PMC10329623 DOI: 10.1007/s10974-022-09640-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023]
Abstract
The pectoralis muscles of the blue-breasted quail Coturnix chinensis generate the highest power output over a contraction cycle measured to date, approximately 400 W kg- 1. The power generated during a cyclical contraction is the product of work and cycle frequency (or standard operating frequency), suggesting that high powers should be favoured by operating at high cycle frequencies. Yet the quail muscles operate at an intermediate cycle frequency (23 Hz), which is much lower than the highest frequency skeletal muscles are capable of operating (~ 200 Hz in vertebrates). To understand this apparent anomaly, in this paper I consider the adaptations that favour high mechanical power as well as the trade-offs that occur between force and muscle operating frequency that limit power. It will be shown that adaptations that favour rapid cyclical contractions compromise force generation; consequently, maximum power increases with cycle frequency to approximately 15-25 Hz, but decreases at higher cycle frequencies. At high cycle frequencies, muscle stress is reduced by a decrease in the crossbridge duty cycle and an increase in the proportion of the muscle occupied by non-contractile elements such as sarcoplasmic reticulum and mitochondria. Muscles adapted to generate high powers, such as the pectoralis muscle of blue-breasted quail, exhibit: (i) intermediate contraction kinetics; (ii) a high relative myofibrillar volume; and (iii) a high maximum shortening velocity and a relatively flat force-velocity relationship. They are also characterised by (iv) operating at an intermediate cycle frequency; (v) utilisation of asymmetrical length trajectories, with a high proportion of the cycle spent shortening; and, finally, (vi) relatively large muscles. In part, the high power output of the blue-breasted quail pectoralis muscle can be attributed to its body size and the intermediate wing beat frequency required to generate aerodynamic force to support body mass, but in addition specialisations in the contractile and morphological properties of the muscle favour the generation of high stress at high strain rates.
Collapse
Affiliation(s)
- Graham N Askew
- School of Biomedical Sciences, University of Leeds, LS2 9JT, Leeds, England.
| |
Collapse
|
2
|
Krishnan K, Garde B, Bennison A, Cole NC, Cole EL, Darby J, Elliott KH, Fell A, Gómez-Laich A, de Grissac S, Jessopp M, Lempidakis E, Mizutani Y, Prudor A, Quetting M, Quintana F, Robotka H, Roulin A, Ryan PG, Schalcher K, Schoombie S, Tatayah V, Tremblay F, Weimerskirch H, Whelan S, Wikelski M, Yoda K, Hedenström A, Shepard ELC. The role of wingbeat frequency and amplitude in flight power. J R Soc Interface 2022; 19:20220168. [PMID: 36000229 PMCID: PMC9403799 DOI: 10.1098/rsif.2022.0168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023] Open
Abstract
Body-mounted accelerometers provide a new prospect for estimating power use in flying birds, as the signal varies with the two major kinematic determinants of aerodynamic power: wingbeat frequency and amplitude. Yet wingbeat frequency is sometimes used as a proxy for power output in isolation. There is, therefore, a need to understand which kinematic parameter birds vary and whether this is predicted by flight mode (e.g. accelerating, ascending/descending flight), speed or morphology. We investigate this using high-frequency acceleration data from (i) 14 species flying in the wild, (ii) two species flying in controlled conditions in a wind tunnel and (iii) a review of experimental and field studies. While wingbeat frequency and amplitude were positively correlated, R2 values were generally low, supporting the idea that parameters can vary independently. Indeed, birds were more likely to modulate wingbeat amplitude for more energy-demanding flight modes, including climbing and take-off. Nonetheless, the striking variability, even within species and flight types, highlights the complexity of describing the kinematic relationships, which appear sensitive to both the biological and physical context. Notwithstanding this, acceleration metrics that incorporate both kinematic parameters should be more robust proxies for power than wingbeat frequency alone.
Collapse
Affiliation(s)
| | - Baptiste Garde
- Department of Biosciences, Swansea University, Swansea SA1 8PP, UK
| | - Ashley Bennison
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork T23 N73 K, Ireland
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
| | - Nik C. Cole
- Durrell Wildlife Conservation Trust, La Profonde Rue, Jersey JE3 5BP, Jersey
| | - Emma-L. Cole
- Department of Biosciences, Swansea University, Swansea SA1 8PP, UK
| | - Jamie Darby
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork T23 N73 K, Ireland
| | - Kyle H. Elliott
- Department of Natural Resources Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Adam Fell
- Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Agustina Gómez-Laich
- Departamento de Ecología, Genética y Evolución and Instituto de Ecología, Genética Y Evolución de Buenos Aires (IEGEBA), CONICET, Pabellón II Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Sophie de Grissac
- Diomedea Science – Research and Scientific Communication, 819 route de la Jars, 38 950 Quaix-en-Chartreuse, France
| | - Mark Jessopp
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork T23 N73 K, Ireland
| | | | - Yuichi Mizutani
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Aurélien Prudor
- Centres d'Etudes Biologiques de Chizé – CNRS, Villiers-en-Bois, France
| | - Michael Quetting
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
| | - Flavio Quintana
- Instituto de Biología de Organismos Marinos (IBIOMAR), CONICET, Boulevard Brown, 2915, U9120ACD, Puerto Madryn, Chubut, Argentina
| | | | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Building Biophore, 1015 Lausanne, Switzerland
| | - Peter G. Ryan
- FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | - Kim Schalcher
- Department of Ecology and Evolution, University of Lausanne, Building Biophore, 1015 Lausanne, Switzerland
| | - Stefan Schoombie
- FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | - Vikash Tatayah
- Mauritian Wildlife Foundation, Grannum Road, Vacoas 73418, Mauritius
| | - Fred Tremblay
- Department of Natural Resources Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | | | - Shannon Whelan
- Department of Natural Resources Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Martin Wikelski
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78457 Konstanz, Germany
| | - Ken Yoda
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Anders Hedenström
- Department of Biology, Centre for Animal Movement Research, Lund University, Lund, Sweden
| | | |
Collapse
|
3
|
Henningsson P. Flying through gaps: how does a bird deal with the problem and what costs are there? ROYAL SOCIETY OPEN SCIENCE 2021; 8:211072. [PMID: 34430051 PMCID: PMC8355674 DOI: 10.1098/rsos.211072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Animals flying in the wild often show remarkable abilities to negotiate obstacles and narrow openings in complex environments. Impressive as these abilities are, this must result in costs in terms of impaired flight performance. In this study, I used a budgerigar as a model for studying these costs. The bird was filmed in stereo when flying through a wide range of gap widths from well above wingspan down to a mere 1/4 of wingspan. Three-dimensional flight trajectories were acquired and speed, wingbeat frequency and accelerations/decelerations were calculated. The bird used two different wing postures to get through the gaps and could use very small safety margins (down to 6 mm on either side) but preferred to use larger when gap width allowed. When gaps were smaller than wingspan, flight speed was reduced with reducing gap width down to half for the smallest and wingbeat frequency was increased. I conclude that flying through gaps potentially comes with multiple types of cost to a bird of which the main may be: (i) reduced flight speed increases the flight duration and hence the energy consumption to get from point A to B, (ii) the underlying U-shaped speed to power relationship means further cost from reduced flight speed, and associated with it (iii) elevated wingbeat frequency includes a third direct cost.
Collapse
Affiliation(s)
- Per Henningsson
- Department of Biology, Lund University, Ecology Building, Sölvegatan 35, 223 62 Lund, Sweden
| |
Collapse
|
4
|
Rummel AD, Swartz SM, Marsh RL. A proximal-distal difference in bat wing muscle thermal sensitivity parallels a difference in operating temperatures along the wing. Proc Biol Sci 2021; 288:20210009. [PMID: 33975475 PMCID: PMC8113918 DOI: 10.1098/rspb.2021.0009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/14/2021] [Indexed: 11/12/2022] Open
Abstract
Flight is a demanding form of locomotion, requiring fast activation and relaxation in wing muscles to produce the necessary wingbeat frequencies. Bats maintain high body temperatures during flight, but their wing muscles cool under typical environmental conditions. Because distal wing muscles are colder during flight than proximal muscles, we hypothesized that they would be less temperature sensitive to compensate for temperature effects, resulting in proximal-distal differences in temperature sensitivity that match differences in muscle operating temperature. We measured contractile rates across temperatures in the proximal pectoralis muscle and an interosseous in the handwing of Carollia perspicillata, a small neotropical fruit bat, and compared their thermal dependence with that of a forearm muscle measured in a previous study. We found that the contractile properties of the pectoralis were significantly more temperature sensitive than those of the distal muscles. This suggests that cooling of the distal wing muscles imposes a selective pressure on muscle contractile function which has led to shifts in temperature sensitivity. This study is the first to demonstrate differences in temperature sensitivity along the length of a single limb in an endotherm and suggests that temperature variation may be underappreciated as a determinant of locomotor performance in endotherms generally.
Collapse
Affiliation(s)
- Andrea D. Rummel
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Sharon M. Swartz
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - Richard L. Marsh
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
5
|
Bahlman JW, Baliga VB, Altshuler DL. Flight muscle power increases with strain amplitude and decreases with cycle frequency in zebra finches ( Taeniopygia guttata). J Exp Biol 2020; 223:jeb225839. [PMID: 33046567 DOI: 10.1242/jeb.225839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 10/05/2020] [Indexed: 11/20/2022]
Abstract
Birds that use high flapping frequencies can modulate aerodynamic force by varying wing velocity, which is primarily a function of stroke amplitude and wingbeat frequency. Previous measurements from zebra finches (Taeniopygia guttata) flying across a range of speeds in a wind tunnel demonstrate that although the birds modulated both wingbeat kinematic parameters, they exhibited greater changes in stroke amplitude. These two kinematic parameters contribute equally to aerodynamic force, so the preference for modulating amplitude over frequency may instead derive from limitations of muscle physiology at high frequency. We tested this hypothesis by developing a novel in situ work loop approach to measure muscle force and power output from the whole pectoralis major of zebra finches. This method allowed for multiple measurements over several hours without significant degradation in muscle power. We explored the parameter space of stimulus, strain amplitude and cycle frequencies measured previously from zebra finches, which revealed overall high net power output of the muscle, despite substantial levels of counter-productive power during muscle lengthening. We directly compared how changes to muscle shortening velocity via strain amplitude and cycle frequency affected muscle power. Increases in strain amplitude led to increased power output during shortening with little to no change in power output during lengthening. In contrast, increases in cycle frequency did not lead to increased power during shortening but instead increased counter-productive power during lengthening. These results demonstrate why at high wingbeat frequency, increasing wing stroke amplitude could be a more effective mechanism to cope with increased aerodynamic demands.
Collapse
Affiliation(s)
- Joseph W Bahlman
- Department of Biological Sciences, California State University, Sacramento, CA 95819, USA
| | - Vikram B Baliga
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Douglas L Altshuler
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| |
Collapse
|
6
|
Lapsansky AB, Igoe JA, Tobalske BW. Zebra finch ( Taeniopygia guttata) shift toward aerodynamically efficient flight kinematics in response to an artificial load. Biol Open 2019; 8:bio042572. [PMID: 31142468 PMCID: PMC6602328 DOI: 10.1242/bio.042572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/15/2019] [Indexed: 11/20/2022] Open
Abstract
We investigated the effect of an added mass emulating a transmitter on the flight kinematics of zebra finches (Taeniopygia guttata), both to identify proximal effects of loading and to test fundamental questions regarding the intermittent flight of this species. Zebra finch, along with many species of relatively small birds, exhibit flap-bounding, wherein the bird alternates periods of flapping with flexed-wing bounds. Mathematical modeling suggests that flap-bounding is less aerodynamically efficient than continuous flapping, except in limited circumstances. This has prompted the introduction of two major hypotheses for flap-bounding - the 'fixed-gear' and 'cost of muscle activation/deactivation' hypotheses - based on intrinsic properties of muscle. We equipped zebra finches flying at 10 m s-1 with a transmitter-like load to determine if their response was consistent with the predictions of these hypotheses. Loading caused finches to diverge significantly from their unloaded wingbeat kinematics. Researchers should carefully consider whether these effects impact traits of interest when planning telemetry studies to ensure that tagged individuals can reasonably be considered representative of the overall population. In response to loading, average wingbeat amplitude and angular velocity decreased, inconsistent with the predictions of the fixed-gear hypothesis. If we assume that finches maintained muscular efficiency, the reduction in amplitude is inconsistent with the cost of the muscle activation/deactivation hypothesis. However, we interpret the reduction in wingbeat amplitude and increase in the proportion of time spent flapping as evidence that loaded finches opted to increase their aerodynamic efficiency - a response which is consistent with the latter hypothesis.
Collapse
Affiliation(s)
- Anthony B Lapsansky
- Field Research Station at Fort Missoula, Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Jennifer A Igoe
- University College Cork, School of Biological, Earth & Environmental Sciences, Distillery Fields, North Mall, Cork, T23 N73K Ireland
| | - Bret W Tobalske
- Field Research Station at Fort Missoula, Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
7
|
Theriault JS, Bahlman JW, Shadwick RE, Altshuler DL. Work loop dynamics of the pigeon ( Columba livia) humerotriceps demonstrate potentially diverse roles for active wing morphing. ACTA ACUST UNITED AC 2019; 222:jeb.195578. [PMID: 30890622 DOI: 10.1242/jeb.195578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/14/2019] [Indexed: 11/20/2022]
Abstract
Control of wing shape is believed to be a key feature that allows most birds to produce aerodynamically efficient flight behaviors and high maneuverability. Anatomical organization of intrinsic wing muscles suggests specific roles for the different motor elements in wing shape modulation, but testing these hypothesized functions requires challenging measurements of muscle activation and strain patterns, and force dynamics. The wing muscles that have been best characterized during flight are the elbow muscles of the pigeon (Columba livia). In vivo studies during different flight modes revealed variation in strain profile, activation timing and duration, and contractile cycle frequency of the humerotriceps, suggesting that this muscle may alter wing shape in diverse ways. To examine the multifunction potential of the humerotriceps, we developed an in situ work loop approach to measure how activation duration and contractile cycle frequency affected muscle work and power across the full range of activation onset times. The humerotriceps produced predominantly net negative power, likely due to relatively long stimulus durations, indicating that it absorbs work, but the work loop shapes also suggest varying degrees of elastic energy storage and release. The humerotriceps consistently exhibited positive and negative instantaneous power within a single contractile cycle, across all treatments. When combined with previous in vivo studies, our results indicate that both within and across contractile cycles, the humerotriceps can dynamically shift among roles of actuator, brake, and stiff or compliant spring, based on activation properties that vary with flight mode.
Collapse
Affiliation(s)
- Jolan S Theriault
- Department of Zoology, University of British Columbia, 4200-6270 University Blvd, Vancouver, BC V6T 1Z4, Canada
| | - Joseph W Bahlman
- Department of Biology, California State University, Sacramento, 6000 J St., Sacramento, CA 95819, USA
| | - Robert E Shadwick
- Department of Zoology, University of British Columbia, 4200-6270 University Blvd, Vancouver, BC V6T 1Z4, Canada
| | - Douglas L Altshuler
- Department of Zoology, University of British Columbia, 4200-6270 University Blvd, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
8
|
Chen AW, Herzog W. Software for convenient correction of artifacts in sonomicrometry. ACTA ACUST UNITED AC 2018; 221:jeb.172726. [PMID: 29691311 DOI: 10.1242/jeb.172726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 04/16/2018] [Indexed: 10/17/2022]
Abstract
Sonomicrometry is widely applied in biomechanics and physiology to measure precise distances with high temporal resolution. Although commonly used, its usefulness is often limited by the presence of artifacts that require correction. Unfortunately, procedures reported in the literature for artifact correction are often unclear. Furthermore, currently available tools for artifact correction require significant manual manipulations, the consistency of which takes painstaking effort to verify. To improve the efficiency and consistency of sonomicrometry, we have developed a new software tool for the correction of sonomicrometry artifacts. This tool provides a framework for artifact correction requiring fewer and more limited manipulations from the user. We aimed to make this tool more transparent and easier to use than commercially available tools. To facilitate its application, we describe the relevant properties of sonomicrometry artifacts and detail the software's correction algorithm. The software is available for MacOS and Linux with source code and documentation.
Collapse
Affiliation(s)
- Alexander W Chen
- Human Performance Laboratory, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Walter Herzog
- Human Performance Laboratory, University of Calgary, Calgary, AB, Canada T2N 1N4
| |
Collapse
|
9
|
Konow N, Cheney JA, Roberts TJ, Iriarte-Díaz J, Breuer KS, Waldman JRS, Swartz SM. Speed-dependent modulation of wing muscle recruitment intensity and kinematics in two bat species. ACTA ACUST UNITED AC 2017; 220:1820-1829. [PMID: 28235906 DOI: 10.1242/jeb.144550] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 02/21/2017] [Indexed: 02/05/2023]
Abstract
Animals respond to changes in power requirements during locomotion by modulating the intensity of recruitment of their propulsive musculature, but many questions concerning how muscle recruitment varies with speed across modes of locomotion remain unanswered. We measured normalized average burst EMG (aEMG) for pectoralis major and biceps brachii at different flight speeds in two relatively distantly related bat species: the aerial insectivore Eptesicus fuscus, and the primarily fruit-eating Carollia perspicillata These ecologically distinct species employ different flight behaviors but possess similar wing aspect ratio, wing loading and body mass. Because propulsive requirements usually correlate with body size, and aEMG likely reflects force, we hypothesized that these species would deploy similar speed-dependent aEMG modulation. Instead, we found that aEMG was speed independent in E. fuscus and modulated in a U-shaped or linearly increasing relationship with speed in C. perspicillata This interspecific difference may be related to differences in muscle fiber type composition and/or overall patterns of recruitment of the large ensemble of muscles that participate in actuating the highly articulated bat wing. We also found interspecific differences in the speed dependence of 3D wing kinematics: E. fuscus modulates wing flexion during upstroke significantly more than C. perspicillata Overall, we observed two different strategies to increase flight speed: C. perspicillata tends to modulate aEMG, and E. fuscus tends to modulate wing kinematics. These strategies may reflect different requirements for avoiding negative lift and overcoming drag during slow and fast flight, respectively, a subject we suggest merits further study.
Collapse
Affiliation(s)
- Nicolai Konow
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Jorn A Cheney
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Thomas J Roberts
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Jose Iriarte-Díaz
- Department of Oral Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Kenneth S Breuer
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA.,School of Engineering, Brown University, Providence, RI 02912, USA
| | - J Rhea S Waldman
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA.,Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Sharon M Swartz
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA.,School of Engineering, Brown University, Providence, RI 02912, USA
| |
Collapse
|
10
|
Usherwood JR. Physiological, aerodynamic and geometric constraints of flapping account for bird gaits, and bounding and flap-gliding flight strategies. J Theor Biol 2016; 408:42-52. [PMID: 27418386 PMCID: PMC5042028 DOI: 10.1016/j.jtbi.2016.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 06/27/2016] [Accepted: 07/01/2016] [Indexed: 11/22/2022]
Abstract
Aerodynamically economical flight is steady and level. The high-amplitude flapping and bounding flight style of many small birds departs considerably from any aerodynamic or purely mechanical optimum. Further, many large birds adopt a flap-glide flight style in cruising flight which is not consistent with purely aerodynamic economy. Here, an account is made for such strategies by noting a well-described, general, physiological cost parameter of muscle: the cost of activation. Small birds, with brief downstrokes, experience disproportionately high costs due to muscle activation for power during contraction as opposed to work. Bounding flight may be an adaptation to modulate mean aerodynamic force production in response to (1) physiological pressure to extend the duration of downstroke to reduce power demands during contraction; (2) the prevention of a low-speed downstroke due to the geometric constraints of producing thrust; (3) an aerodynamic cost to flapping with very low lift coefficients. In contrast, flap-gliding birds, which tend to be larger, adopt a strategy that reduces the physiological cost of work due both to activation and contraction efficiency. Flap-gliding allows, despite constraints to modulation of aerodynamic force lever-arm, (1) adoption of moderately large wing-stroke amplitudes to achieve suitable muscle strains, thereby reducing the activation costs for work; (2) reasonably quick downstrokes, enabling muscle contraction at efficient velocities, while being (3) prevented from very slow weight-supporting upstrokes due to the cost of performing 'negative' muscle work.
Collapse
Affiliation(s)
- James Richard Usherwood
- Structure and Motion Lab., The Royal Veterinary College, North Mymms, Hatfield, Herts AL9 7TA, United Kingdom.
| |
Collapse
|
11
|
Altshuler DL, Bahlman JW, Dakin R, Gaede AH, Goller B, Lentink D, Segre PS, Skandalis DA. The biophysics of bird flight: functional relationships integrate aerodynamics, morphology, kinematics, muscles, and sensors. CAN J ZOOL 2015. [DOI: 10.1139/cjz-2015-0103] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bird flight is a remarkable adaptation that has allowed the approximately 10 000 extant species to colonize all terrestrial habitats on earth including high elevations, polar regions, distant islands, arid deserts, and many others. Birds exhibit numerous physiological and biomechanical adaptations for flight. Although bird flight is often studied at the level of aerodynamics, morphology, wingbeat kinematics, muscle activity, or sensory guidance independently, in reality these systems are naturally integrated. There has been an abundance of new studies in these mechanistic aspects of avian biology but comparatively less recent work on the physiological ecology of avian flight. Here we review research at the interface of the systems used in flight control and discuss several common themes. Modulation of aerodynamic forces to respond to different challenges is driven by three primary mechanisms: wing velocity about the shoulder, shape within the wing, and angle of attack. For birds that flap, the distinction between velocity and shape modulation synthesizes diverse studies in morphology, wing motion, and motor control. Recently developed tools for studying bird flight are influencing multiple areas of investigation, and in particular the role of sensory systems in flight control. How sensory information is transformed into motor commands in the avian brain remains, however, a largely unexplored frontier.
Collapse
Affiliation(s)
- Douglas L. Altshuler
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Joseph W. Bahlman
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Roslyn Dakin
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Andrea H. Gaede
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Benjamin Goller
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - David Lentink
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Paolo S. Segre
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Dimitri A. Skandalis
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
12
|
Mahalingam S, Welch KC. Neuromuscular control of hovering wingbeat kinematics in response to distinct flight challenges in the ruby-throated hummingbird, Archilochus colubris. ACTA ACUST UNITED AC 2013; 216:4161-71. [PMID: 23948477 DOI: 10.1242/jeb.089383] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
While producing one of the highest sustained mass-specific power outputs of any vertebrate, hovering hummingbirds must also precisely modulate the activity of their primary flight muscles to vary wingbeat kinematics and modulate lift production. Although recent studies have begun to explore how pectoralis (the primary downstroke muscle) neuromuscular activation and wingbeat kinematics are linked in hummingbirds, it is unclear whether different species modulate these features in similar ways, or consistently in response to distinct flight challenges. In addition, little is known about how the antagonist, the supracoracoideus, is modulated to power the symmetrical hovering upstroke. We obtained simultaneous recordings of wingbeat kinematics and electromyograms from the pectoralis and supracoracoideus in ruby-throated hummingbirds (Archilochus colubris) hovering under the following conditions: (1) ambient air, (2) air density reduction trials, (3) submaximal load-lifting trials and (4) maximal load-lifting trials. Increased power output was achieved through increased stroke amplitude during air density reduction and load-lifting trials, but wingbeat frequency only increased at low air densities. Overall, relative electromyographic (EMG) intensity was the best predictor of stroke amplitude and is correlated with angular velocity of the wingtip. The relationship between muscle activation intensity and kinematics was independent of treatment type, indicating that reduced drag on the wings in hypodense air did not lead to high wingtip angular velocities independently of increased muscle work. EMG bursts consistently began and ended before muscle shortening under all conditions. During all sustained hovering, spike number per burst consistently averaged 1.2 in the pectoralis and 2.0 in the supracoracoideus. The number of spikes increased to 2.5-3 in both muscles during maximal load-lifting trials. Despite the relative kinematic symmetry of the hovering downstroke and upstroke, the supracoracoideus was activated ~1 ms earlier, EMG bursts were longer (~0.9 ms) and they exhibited 1.6 times as many spikes per burst. We hypothesize that earlier and more sustained activation of the supracoracoideus fibres is necessary to offset the greater compliance resulting from the presence of the supracoracoid tendon.
Collapse
Affiliation(s)
- Sajeni Mahalingam
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada, M1C 1A4
| | | |
Collapse
|
13
|
Donovan ER, Keeney BK, Kung E, Makan S, Wild JM, Altshuler DL. Muscle Activation Patterns and Motor Anatomy of Anna’s HummingbirdsCalypte annaand Zebra FinchesTaeniopygia guttata. Physiol Biochem Zool 2013; 86:27-46. [DOI: 10.1086/668697] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Robertson AMB, Biewener AA. Muscle function during takeoff and landing flight in the pigeon (Columba livia). ACTA ACUST UNITED AC 2012; 215:4104-14. [PMID: 22972885 DOI: 10.1242/jeb.075275] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study explored the muscle strain and activation patterns of several key flight muscles of the pigeon (Columba livia) during takeoff and landing flight. Using electromyography (EMG) to measure muscle activation, and sonomicrometry to quantify muscle strain, we evaluated the muscle function patterns of the pectoralis, biceps, humerotriceps and scapulotriceps as pigeons flew between two perches. These recordings were analyzed in the context of three-dimensional wing kinematics. To understand the different requirements of takeoff, midflight and landing, we compared the activity and strain of these muscles among the three flight modes. The pectoralis and biceps exhibited greater fascicle strain rates during takeoff than during midflight or landing. However, the triceps muscles did not exhibit notable differences in strain among flight modes. All observed strain, activation and kinematics were consistent with hypothesized muscle functions. The biceps contracted to stabilize and flex the elbow during the downstroke. The humerotriceps contracted to extend the elbow at the upstroke-downstroke transition, followed by scapulotriceps contraction to maintain elbow extension during the downstroke. The scapulotriceps also appeared to contribute to humeral elevation. Greater muscle activation intensity was observed during takeoff, compared with mid-flight and landing, in all muscles except the scapulotriceps. The timing patterns of muscle activation and length change differed among flight modes, yet demonstrated that pigeons do not change the basic mechanical actions of key flight muscles as they shift from flight activities that demand energy production, such as takeoff and midflight, to maneuvers that require absorption of energy, such as landing. Similarly, joint kinematics were consistent among flight modes. The stereotypy of these neuromuscular and joint kinematic patterns is consistent with previously observed stereotypy of wing kinematics relative to the pigeon's body (in the local body frame) across these flight behaviors. Taken together, these observations suggest that the control of takeoff and landing flight primarily involves modulation of overall body pitch to effect changes in stroke plane angle and resulting wing aerodynamics.
Collapse
Affiliation(s)
- Angela M Berg Robertson
- Center for Neuromotor and Biomechanics Research, University of Houston, Houston, TX 77054, USA.
| | | |
Collapse
|
15
|
Rowbottom DPR, Alexander RM. The role of hypotheses in biomechanical research. SCIENCE IN CONTEXT 2012; 25:247-262. [PMID: 23045751 DOI: 10.1017/s0269889712000051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This paper investigates whether there is a discrepancy between stated and actual aims in biomechanical research, particularly with respect to hypothesis testing. We present an analysis of one hundred papers recently published in The Journal of Experimental Biology and journal of Biomechanics, and examine the prevalence of papers which (a) have hypothesis testing as a stated aim, (b) contain hypothesis testing claims that appear to be purely presentational (i.e. which seem not to have influenced the actual study), and (c) have exploration as a stated aim. We found that whereas no papers had exploration as a stated aim, 58 per cent of papers had hypothesis testing as a stated aim. We had strong suspicions, at the bare minimum, that presentational hypotheses were present in 31 per cent of the papers in this latter group.
Collapse
|
16
|
Abstract
Two styles of bird locomotion, hovering and intermittent flight, have great potential to inform future development of autonomous flying vehicles. Hummingbirds are the smallest flying vertebrates, and they are the only birds that can sustain hovering. Their ability to hover is due to their small size, high wingbeat frequency, relatively large margin of mass-specific power available for flight and a suite of anatomical features that include proportionally massive major flight muscles (pectoralis and supracoracoideus) and wing anatomy that enables them to leave their wings extended yet turned over (supinated) during upstroke so that they can generate lift to support their weight. Hummingbirds generate three times more lift during downstroke compared with upstroke, with the disparity due to wing twist during upstroke. Much like insects, hummingbirds exploit unsteady mechanisms during hovering including delayed stall during wing translation that is manifest as a leading-edge vortex (LEV) on the wing and rotational circulation at the end of each half stroke. Intermittent flight is common in small- and medium-sized birds and consists of pauses during which the wings are flexed (bound) or extended (glide). Flap-bounding appears to be an energy-saving style when flying relatively fast, with the production of lift by the body and tail critical to this saving. Flap-gliding is thought to be less costly than continuous flapping during flight at most speeds. Some species are known to shift from flap-gliding at slow speeds to flap-bounding at fast speeds, but there is an upper size limit for the ability to bound (~0.3 kg) and small birds with rounded wings do not use intermittent glides.
Collapse
Affiliation(s)
- Bret W Tobalske
- Field Research Station at Fort Missoula, Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA.
| |
Collapse
|
17
|
Morris CR, Askew GN. The mechanical power output of the pectoralis muscle of cockatiel (Nymphicus hollandicus): the in vivo muscle length trajectory and activity patterns and their implications for power modulation. ACTA ACUST UNITED AC 2010; 213:2770-80. [PMID: 20675547 DOI: 10.1242/jeb.035691] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In order to meet the varying demands of flight, pectoralis muscle power output must be modulated. In birds with pectoralis muscles with a homogeneous fibre type composition, power output can be modulated at the level of the motor unit (via changes in muscle length trajectory and the pattern of activation), at the level of the muscle (via changes in the number of motor units recruited), and at the level of the whole animal (through the use of intermittent flight). Pectoralis muscle length trajectory and activity patterns were measured in vivo in the cockatiel (Nymphicus hollandicus) at a range of flight speeds (0-16 m s(-1)) using sonomicrometry and electromyography. The work loop technique was used to measure the mechanical power output of a bundle of fascicles isolated from the pectoralis muscle during simulated in vivo length change and activity patterns. The mechanical power-speed relationship was U-shaped, with a 2.97-fold variation in power output (40-120 W kg(-1)). In this species, modulation of neuromuscular activation is the primary strategy utilised to modulate pectoralis muscle power output. Maximum in vivo power output was 22% of the maximum isotonic power output (533 W kg(-1)) and was generated at a lower relative shortening velocity (0.28 V(max)) than the maximum power output during isotonic contractions (0.34 V(max)). It seems probable that the large pectoralis muscle strains result in a shift in the optimal relative shortening velocity in comparison with the optimum during isotonic contractions as a result of length-force effects.
Collapse
Affiliation(s)
- Charlotte R Morris
- Institute of Integrative and Comparative Biology, University of Leeds, Leeds, UK
| | | |
Collapse
|
18
|
Altshuler DL, Welch KC, Cho BH, Welch DB, Lin AF, Dickson WB, Dickinson MH. Neuromuscular control of wingbeat kinematics in Anna's hummingbirds (Calypte anna). ACTA ACUST UNITED AC 2010; 213:2507-14. [PMID: 20581280 DOI: 10.1242/jeb.043497] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hummingbirds can maintain the highest wingbeat frequencies of any flying vertebrate - a feat accomplished by the large pectoral muscles that power the wing strokes. An unusual feature of these muscles is that they are activated by one or a few spikes per cycle as revealed by electromyogram recordings (EMGs). The relatively simple nature of this activation pattern provides an opportunity to understand how motor units are recruited to modulate limb kinematics. Hummingbirds made to fly in low-density air responded by moderately increasing wingbeat frequency and substantially increasing the wing stroke amplitude as compared with flight in normal air. There was little change in the number of spikes per EMG burst in the pectoralis major muscle between flight in normal and low-density heliox (mean=1.4 spikes cycle(-1)). However the spike amplitude, which we take to be an indication of the number of active motor units, increased in concert with the wing stroke amplitude, 1.7 times the value in air. We also challenged the hummingbirds using transient load lifting to elicit maximum burst performance. During maximum load lifting, both wing stroke amplitude and wingbeat frequency increased substantially above those values during hovering flight. The number of spikes per EMG burst increased to a mean of 3.3 per cycle, and the maximum spike amplitude increased to approximately 1.6 times those values during flight in heliox. These results suggest that hummingbirds recruit additional motor units (spatial recruitment) to regulate wing stroke amplitude but that temporal recruitment is also required to maintain maximum stroke amplitude at the highest wingbeat frequencies.
Collapse
Affiliation(s)
- Douglas L Altshuler
- Department of Biology, University of California at Riverside, Riverside, CA 92521, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Morris CR, Askew GN. Comparison between mechanical power requirements of flight estimated using an aerodynamic model and in vitro muscle performance in the cockatiel (Nymphicus hollandicus). J Exp Biol 2010; 213:2781-7. [DOI: 10.1242/jeb.035709] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
There have been few comparisons between the relationship between the mechanical power requirements of flight and flight speed obtained using different approaches. It is unclear whether differences in the power–speed relationships reported in the literature are due to the use of different techniques for determining flight power or due to inter-specific differences. Here we compare the power–speed relationships in cockatiels (Nymphicus hollandicus) determined using both an aerodynamic model and measurements of in vitro performance of bundles of pectoralis muscle fibres under simulated in vivo strain and activity patterns. Aerodynamic power was calculated using different ranges of values for the coefficients in the equations: induced power factor (k 1.0–1.4), the profile (CD,pro 0.01–0.03) and parasite drag (CD,par 0.05–0.195) coefficients. We found that the aerodynamic power-speed relationship was highly sensitive to the values assumed for these coefficients and best fit the power calculated from in vitro muscle performance when k=1.2, CD,pro=0.02 and CD,par=0.13.
Collapse
Affiliation(s)
- Charlotte R. Morris
- Institute of Integrative and Comparative Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Graham N. Askew
- Institute of Integrative and Comparative Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
20
|
Tobalske BW, Biewener AA, Warrick DR, Hedrick TL, Powers DR. Effects of flight speed upon muscle activity in hummingbirds. J Exp Biol 2010; 213:2515-23. [DOI: 10.1242/jeb.043844] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Hummingbirds have the smallest body size and highest wingbeat frequencies of all flying vertebrates, so they represent one endpoint for evaluating the effects of body size on sustained muscle function and flight performance. Other bird species vary neuromuscular recruitment and contractile behavior to accomplish flight over a wide range of speeds, typically exhibiting a U-shaped curve with maxima at the slowest and fastest flight speeds. To test whether the high wingbeat frequencies and aerodynamically active upstroke of hummingbirds lead to different patterns, we flew rufous hummingbirds (Selasphorus rufus, 3 g body mass, 42 Hz wingbeat frequency) in a variable-speed wind tunnel (0–10 m s−1). We measured neuromuscular activity in the pectoralis (PECT) and supracoracoideus (SUPRA) muscles using electromyography (EMG, N=4 birds), and we measured changes in PECT length using sonomicrometry (N=1). Differing markedly from the pattern in other birds, PECT deactivation occurred before the start of downstroke and the SUPRA was deactivated before the start of upstroke. The relative amplitude of EMG signal in the PECT and SUPRA varied according to a U-shaped curve with flight speed; additionally, the onset of SUPRA activity became relatively later in the wingbeat at intermediate flight speeds (4 and 6 m s−1). Variation in the relative amplitude of EMG was comparable with that observed in other birds but the timing of muscle activity was different. These data indicate the high wingbeat frequency of hummingbirds limits the time available for flight muscle relaxation before the next half stroke of a wingbeat. Unlike in a previous study that reported single-twitch EMG signals in the PECT of hovering hummingbirds, across all flight speeds we observed 2.9±0.8 spikes per contraction in the PECT and 3.8±0.8 spikes per contraction in the SUPRA. Muscle strain in the PECT was 10.8±0.5%, the lowest reported for a flying bird, and average strain rate was 7.4±0.2 muscle lengths s−1. Among species of birds, PECT strain scales proportional to body mass to the 0.2 power (∞Mb0.2) using species data and ∞Mb0.3 using independent contrasts. This positive scaling is probably a physiological response to an adverse scaling of mass-specific power available for flight.
Collapse
Affiliation(s)
- Bret W. Tobalske
- Field Research Station at Fort Missoula, Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Andrew A. Biewener
- Concord Field Station, Department of Organismic and Evolutionary Biology, Harvard University, Old Causeway Road, Bedford, MA 01730, USA
| | - Douglas R. Warrick
- Department of Zoology, Oregon State University, 2002 Cordley Hall, Corvallis, OR 97331, USA
| | - Tyson L. Hedrick
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Donald R. Powers
- Biology Department, George Fox University, 414 N. Meridian Street, Newberg, OR 97132, USA
| |
Collapse
|
21
|
Engel S, Bowlin MS, Hedenstrom A. The Role of Wind-Tunnel Studies in Integrative Research on Migration Biology. Integr Comp Biol 2010; 50:323-35. [DOI: 10.1093/icb/icq063] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
22
|
Welch KC, Altshuler DL. Fiber type homogeneity of the flight musculature in small birds. Comp Biochem Physiol B Biochem Mol Biol 2009; 152:324-31. [PMID: 19162216 DOI: 10.1016/j.cbpb.2008.12.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 12/16/2008] [Accepted: 12/17/2008] [Indexed: 10/21/2022]
Abstract
Studies of medium- and large-bodied avian species have suggested that variation in flight muscle composition is related to differences in flight behavior. For example, slow-twitch or tonic fibers are generally found only in the flight muscles of non-volant or soaring/gliding birds. However, we know comparatively little about fiber composition of the muscles of the smallest birds. Here we describe the fiber composition of muscles from the wings, shoulders, and legs of two small avian species, which also display very high wingbeat frequencies: Anna's hummingbirds (Calypte anna) and zebra finches (Taeniopygia guttata). All flight muscles examined in both species contained exclusively fast oxidative glycolytic (FOG) fibers. These unique results suggest that fast oxidative fibers are both necessary and sufficient for the full range of flight behaviors in these small-bodied birds. Like all other studied birds, the zebra finch gastrocnemius, a tarsometatarsal extensor, contained a mixture of FOG (27.1%), slow oxidative (SO, 12.7%), and fast glycolytic (FG, 60.2%) fibers. By contrast, the hummingbird gastrocnemius lacked FG fibers (85.5% FOG, 14.5% SO), which may reflect the reduced role of the hindlimb during take-off. We further hypothesize that thermogenic requirements constrain fiber type heterogeneity in these small endothermic vertebrates.
Collapse
Affiliation(s)
- Kenneth C Welch
- Department of Biology, University of California, Riverside, 92521-0427, USA
| | | |
Collapse
|
23
|
Ellerby DJ, Askew GN. Modulation of flight muscle power output in budgerigars Melopsittacus undulatus and zebra finches Taeniopygia guttata: in vitro muscle performance. ACTA ACUST UNITED AC 2008; 210:3780-8. [PMID: 17951419 DOI: 10.1242/jeb.006288] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The pectoralis muscles are the main source of mechanical power for avian flight. The power output of these muscles must be modulated to meet the changing power requirements of flight across a range of speeds. This can be achieved at the muscle level by manipulation of strain trajectory and recruitment patterns, and/or by intermittent flight strategies. We have measured the in vitro power outputs of pectoralis muscle fascicles from budgerigars Melopsittacus undulatus and zebra finches Taeniopygia guttata under conditions replicating those previously measured in vivo during flight. This has allowed us to quantify the extent to which different power modulation mechanisms control flight muscle power output. Intermittent flight behaviour is a more important determinant of flight power in zebra finches than budgerigars. This behaviour accounts for 25-62% of power modulation relative to the maximum available mechanical power output in zebra finch, compared to 0-38% in budgerigars. Muscle level changes in fascicle strain trajectory and motor unit recruitment, rather than intermittent flight behaviours, are the main determinants of pectoralis muscle power output in budgerigars at all speeds, and in zebra finch at speeds below 14 m s(-1).
Collapse
Affiliation(s)
- David J Ellerby
- Institute of Integrative and Comparative Biology, University of Leeds, Leeds, UK
| | | |
Collapse
|