1
|
Stecyk JAW, Barber RG, Cussins J, Hall D. Indirect evidence that anoxia exposure and cold acclimation alter transarcolemmal Ca 2+ flux in the cardiac pacemaker, right atrium and ventricle of the red-eared slider turtle (Trachemys scripta). Comp Biochem Physiol A Mol Integr Physiol 2021; 261:111043. [PMID: 34332046 DOI: 10.1016/j.cbpa.2021.111043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022]
Abstract
We indirectly assessed if altered transarcolemmal Ca2+ flux accompanies the decreased cardiac activity displayed by Trachemys scripta with anoxia exposure and cold acclimation. Turtles were first acclimated to 21 °C or 5 °C and held under normoxic (21N; 5N) or anoxic conditions (21A; 5A). We then compared the response of intrinsic heart rate (fH) and maximal developed force of spontaneously contracting right atria (Fmax,RA), and maximal developed force of isometrically-contracting ventricular strips (Fmax,V), to Ni2+ (0.1-10 mM), which respectively blocks T-type Ca2+ channels, L-type Ca2+ channels and the Na+-Ca2+-exchanger at the low, intermediate and high concentrations employed. Dose-response curves were established in simulated in vivo normoxic (Sim Norm) or simulated in vivo anoxic extracellular conditions (Sim Anx; 21A and 5A preparations). Ni2+ decreased intrinsic fH, Fmax,RA and Fmax,V of 21N tissues in a concentration-dependent manner, but the responses were blunted in 21A tissues in Sim Norm. Similarly, dose-response curves for Fmax,RA and Fmax,V of 5N tissues were right-shifted, whereas anoxia exposure at 5 °C did not further alter the responses. The influence of Sim Anx was acclimation temperature-, cardiac chamber- and contractile parameter-dependent. Combined, the findings suggest that: (1) reduced transarcolemmal Ca2+ flux in the cardiac pacemaker is a potential mechanism underlying the slowed intrinsic fH of anoxic turtles at 21 °C, but not 5 °C, (2) a downregulation of transarcolemmal Ca2+ flux may aid cardiac anoxia survival at 21 °C and prime the turtle myocardium for winter anoxia and (3) confirm that altered extracellular conditions with anoxia exposure can modify turtle cardiac transarcolemmal Ca2+ flux.
Collapse
Affiliation(s)
- Jonathan A W Stecyk
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, United States of America.
| | - Riley G Barber
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, United States of America
| | - Jace Cussins
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, United States of America
| | - Diarmid Hall
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, United States of America
| |
Collapse
|
2
|
Goulding AT, Farrell AP. The effect of temperature acclimation on the force-frequency relationship and adrenergic sensitivity of the ventricle of two populations of juvenile sockeye salmon. J Comp Physiol B 2020; 190:717-730. [PMID: 32770260 DOI: 10.1007/s00360-020-01299-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 06/08/2020] [Accepted: 07/15/2020] [Indexed: 11/26/2022]
Abstract
We tested the hypothesis that cardiorespiratory differences known to exist among adult sockeye salmon populations also exist in the juveniles. To test this hypothesis, we compared cardiac contractility and adrenergic responsiveness of juvenile sockeye salmon from two geographically isolated populations that were reared from eggs under common garden conditions and at two acclimation temperatures (5 °C and 14 °C). However, we found no substantive differences in the force-frequency response (FFR) and the cardiac pumping capacity of juveniles from Weaver Creek and Chilko River populations, even when we considered wild-reared juveniles from one of the populations. An unexpected discovery for all fish groups at 5 °C was a rather flat FFR during tonic β-adrenergic stimulation (βAR) stimulation. Curiously, while active tension nearly doubled with maximum βAR stimulation at low pacing frequencies for all fish groups, a negative FFR with maximum βAR stimulation meant that this inotropic benefit was lost at the highest pacing frequency (0.8 Hz). Active tension with tonic βAR stimulation was similar at 14 °C, but maximum pacing frequency doubled and all fish groups displayed a modest negative FFR. Maximum βAR stimulation again doubled active tension and this benefit was retained even at the highest pacing frequency (1.6 Hz) at 14 °C. Even though subtle population differences were apparent for the FFR and pumping capacity, their biological significance is unclear. What is clear, however, is that the cardiac pumping capacity of juvenile sockeye would benefit more from βAR stimulation swimming at 15 °C than when swimming at 5 °C.
Collapse
Affiliation(s)
- A T Goulding
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada.
| | - A P Farrell
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
- Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
3
|
Ekström A, Gräns A, Sandblom E. Can´t beat the heat? Importance of cardiac control and coronary perfusion for heat tolerance in rainbow trout. J Comp Physiol B 2019; 189:10.1007/s00360-019-01243-7. [PMID: 31707423 DOI: 10.1007/s00360-019-01243-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/11/2019] [Accepted: 10/24/2019] [Indexed: 12/11/2022]
Abstract
Coronary perfusion and cardiac autonomic regulation may benefit myocardial oxygen delivery and thermal performance of the teleost heart, and thus influence whole animal heat tolerance. Yet, no study has examined how coronary perfusion affects cardiac output during warming in vivo. Moreover, while β-adrenergic stimulation could protect cardiac contractility, and cholinergic decrease in heart rate may enhance myocardial oxygen diffusion at critically high temperatures, previous studies in rainbow trout (Oncorhynchus mykiss) using pharmacological antagonists to block cholinergic and β-adrenergic regulation showed contradictory results with regard to cardiac performance and heat tolerance. This could reflect intra-specific differences in the extent to which altered coronary perfusion buffered potential negative effects of the pharmacological blockade. Here, we first tested how cardiac performance and the critical thermal maximum (CTmax) were affected following a coronary ligation. We then assessed how these performances were influenced by pharmacological cholinergic or β-adrenergic blockade, hypothesising that the effects of the pharmacological treatment would be more pronounced in coronary ligated trout compared to trout with intact coronaries. Coronary blockade reduced CTmax by 1.5 °C, constrained stroke volume and cardiac output across temperatures, led to earlier cardiac failure and was associated with reduced blood oxygen-carrying capacity. Nonetheless, CTmax and the temperatures for cardiac failure were not affected by autonomic blockade. Collectively, our data show that coronary perfusion improves heat tolerance and cardiac performance in trout, while evidence for beneficial effects of altered cardiac autonomic tone during warming remains inconclusive.
Collapse
Affiliation(s)
- Andreas Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30, Göteborg, Sweden.
| | - Albin Gräns
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Göteborg, Sweden
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30, Göteborg, Sweden
| |
Collapse
|
4
|
Driedzic WR. Low plasma glucose limits glucose metabolism by RBCs and heart in some species of teleosts. Comp Biochem Physiol B Biochem Mol Biol 2017; 224:204-209. [PMID: 28803129 DOI: 10.1016/j.cbpb.2017.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 12/28/2022]
Abstract
Within teleosts there is a species range in plasma glucose levels from undetectable to 20mM. At low plasma glucose levels the gradient from the extracellular to the intracellular space is decreased. The impact of this on glucose metabolism by RBCs and heart from species with different steady state levels of plasma glucose (Atlantic cod ~5mM; Atlantic salmon ~5mM, cunner ~1mM, lumpfish <1mM; short-horned sculpin <1mM) is the subject of this review. Under normoxia, at physiological levels of extracellular glucose, RBCs and heart produce lactate although the contribution of anaerobic metabolism to ATP production is small. Sustained lactate production from extracellular glucose appears to be the primary fate of extracellular glucose. In many cases, glycogen is not mobilized and the rate of glucose metabolism=two times the rate of lactate production. As such, alternative metabolic sources are required to fuel oxidative metabolism. Under hypoxia, hearts from Atlantic cod and rainbow trout increase rates of both glucose metabolism and lactate production, partially supported by glycogen reserves. But in lumpfish and short-horned sculpin hearts there is no change in rates of glucose metabolism. The most likely explanation is that glucose uptake is compromised in lumpfish and short-horned sculpin hearts due to a low diffusion gradient. Under these conditions rates of lactate production are well below that of Atlantic cod or rainbow trout. Energy demand must be reduced under hypoxia in lumpfish and short-horned sculpin hearts in order to maintain ATP balance.
Collapse
Affiliation(s)
- William R Driedzic
- Department of Ocean Sciences, Memorial University, St. John's, N.L. A1C 1S7, Canada.
| |
Collapse
|
5
|
Filogonio R, Joyce W, Wang T. Nitrergic cardiovascular regulation in the African lungfish, Protopterus aethiopicus. Comp Biochem Physiol A Mol Integr Physiol 2017; 207:52-56. [DOI: 10.1016/j.cbpa.2016.12.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/28/2016] [Accepted: 12/14/2016] [Indexed: 02/05/2023]
|
6
|
|
7
|
Battiprolu PK, Rodnick KJ. Dichloroacetate selectively improves cardiac function and metabolism in female and male rainbow trout. Am J Physiol Heart Circ Physiol 2014; 307:H1401-11. [PMID: 25217653 PMCID: PMC4233302 DOI: 10.1152/ajpheart.00755.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 09/11/2014] [Indexed: 01/08/2023]
Abstract
Cardiac tissue from female rainbow trout demonstrates a sex-specific preference for exogenous glucose and glycolysis, impaired Ca(2+) handling, and a greater tolerance for hypoxia and reoxygenation than cardiac tissue from male rainbow trout. We tested the hypothesis that dichloroacetate (DCA), an activator of pyruvate dehydrogenase, enhances cardiac energy metabolism and Ca(2+) handling in female preparations and provide cardioprotection for hypoxic male tissue. Ventricle strips from sexually immature fish with very low (male) and nondetectable (female) plasma sex steroids were electrically paced in oxygenated or hypoxic Ringer solution with or without 1 mM DCA. In the presence of 5 mM glucose, aerobic tissue from male trout could be paced at a higher frequency (1.79 vs. 1.36 Hz) with lower resting tension and less contractile dysfunction than female tissue. At 0.5 Hz, DCA selectively reduced resting tension below baseline values and lactate efflux by 75% in aerobic female ventricle strips. DCA improved the functional recovery of developed twitch force, reduced lactate efflux by 50%, and doubled citrate in male preparations after hypoxia-reoxygenation. Independent of female sex steroids, reduced myocardial pyruvate dehydrogenase activity and impaired carbohydrate oxidation might explain the higher lactate efflux, compromised function of the sarcoplasmic reticulum, and reduced mechanical performance of aerobic female tissue. Elevated oxidative metabolism and reduced glycolysis might also underlie the beneficial effects of DCA on the mechanical recovery of male cardiac tissue after hypoxia-reoxygenation. These results support the use of rainbow trout as an experimental model of sex differences of cardiovascular energetics and function, with the potential for modifying metabolic phenotypes and cardioprotection independent of sex steroids.
Collapse
Affiliation(s)
- Pavan K Battiprolu
- Department of Biological Sciences, Idaho State University, Pocatello, Idaho
| | - Kenneth J Rodnick
- Department of Biological Sciences, Idaho State University, Pocatello, Idaho
| |
Collapse
|
8
|
Becker TA, DellaValle B, Gesser H, Rodnick KJ. Limited effects of exogenous glucose during severe hypoxia and a lack of hypoxia-stimulated glucose uptake in isolated rainbow trout cardiac muscle. ACTA ACUST UNITED AC 2013; 216:3422-32. [PMID: 23685969 DOI: 10.1242/jeb.085688] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We examined whether exogenous glucose affects contractile performance of electrically paced ventricle strips from rainbow trout under conditions known to alter cardiomyocyte performance, ion regulation and energy demands. Physiological levels of d-glucose did not influence twitch force development for aerobic preparations (1) paced at 0.5 or 1.1 Hz, (2) at 15 or 23°C, (3) receiving adrenergic stimulation or (4) during reoxygenation with or without adrenaline after severe hypoxia. Contractile responses to ryanodine, an inhibitor of Ca(2+) release from the sarcoplasmic reticulum, were also not affected by exogenous glucose. However, glucose did attenuate the fall in twitch force during severe hypoxia. Glucose uptake was assayed in non-contracting ventricle strips using 2-[(3)H] deoxy-d-glucose (2-DG) under aerobic and hypoxic conditions, at different incubation temperatures and with different inhibitors. Based upon a lack of saturation of 2-DG uptake and incomplete inhibition of uptake by cytochalasin B and d-glucose, 2-DG uptake was mediated by a combination of facilitated transport and simple diffusion. Hypoxia stimulated lactate efflux sixfold to sevenfold with glucose present, but did not increase 2-DG uptake or reduce lactate efflux in the presence of cytochalasin B. Increasing temperature (14 to 24°C) also did not increase 2-DG uptake, but decreasing temperature (14 to 4°C) reduced 2-DG uptake by 45%. In conclusion, exogenous glucose improves mechanical performance under hypoxia but not under any of the aerobic conditions applied. The extracellular concentration of glucose and cold temperature appear to determine and limit cardiomyocyte glucose uptake, respectively, and together may help define a metabolic strategy that relies predominantly on intracellular energy stores.
Collapse
Affiliation(s)
- Tracy A Becker
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209-8007, USA
| | | | | | | |
Collapse
|
9
|
Galli GL, Richards JG. The effect of temperature on mitochondrial respiration in permeabilized cardiac fibres from the freshwater turtle, Trachemys scripta. J Therm Biol 2012. [DOI: 10.1016/j.jtherbio.2011.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
10
|
Pedersen CL, Faggiano S, Helbo S, Gesser H, Fago A. Roles of nitric oxide, nitrite and myoglobin on myocardial efficiency in trout (Oncorhynchus mykiss) and goldfish (Carassius auratus): implications for hypoxia tolerance. ACTA ACUST UNITED AC 2010; 213:2755-62. [PMID: 20675545 DOI: 10.1242/jeb.041624] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The roles of nitric oxide synthase activity (NOS), nitrite and myoglobin (Mb) in the regulation of myocardial function during hypoxia were examined in trout and goldfish, a hypoxia-intolerant and hypoxia-tolerant species, respectively. We measured the effect of NOS inhibition, adrenaline and nitrite on the O(2) consumption rate and isometric twitch force development in electrically paced ventricular preparations during hypoxia, and measured O(2) affinity and nitrite reductase activity of the purified heart Mbs of both species. Upon hypoxia (9% O(2)), O(2) consumption and developed force decreased in both trout and goldfish myocardium, with trout showing a significant increase in the O(2) utilization efficiency, i.e. the ratio of twitch force to O(2) consumption, suggesting an increased anaerobic metabolism. NOS inhibition enhanced myocardial O(2) consumption and decreased efficiency, indicating that mitochondrial respiration is under a tone of NOS-produced NO. When trout myocardial twitch force and O(2) consumption are enhanced by adrenaline, this NO tone disappears. Consistent with its conversion to NO, nitrite reduced O(2) consumption and increased myocardial efficiency in trout but not in goldfish. Such a difference correlates with the lower O(2) affinity measured for trout Mb that would increase the fraction of deoxygenated heme available to catalyze the reduction of nitrite to NO. Whereas low-affinity trout Mb would favor O(2) diffusion within cardiomyocytes at high in vivo O(2) tensions, goldfish Mb having higher O(2) affinity and higher nitrite reductase activity appears better suited to facilitate O(2) diffusion and nitrite reduction in the heart during severe hypoxia, a condition particularly well tolerated by this species.
Collapse
Affiliation(s)
- Claus Lunde Pedersen
- Department of Biological Sciences, Universitetsparken, Aarhus University, DK-8000, Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
11
|
Petersen LH, Gamperl AK. In situ cardiac function in Atlantic cod (Gadus morhua): effects of acute and chronic hypoxia. J Exp Biol 2010; 213:820-30. [DOI: 10.1242/jeb.033753] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SUMMARY
Recent in vivo experiments on Atlantic cod (Gadus morhua) acclimated to chronic hypoxia (6-12 weeks at 10°C; PwO2 ~8-9 kPa) revealed a considerable decrease in the pumping capacity of the heart. To examine whether this diminished cardiac performance was due to the direct effects of chronic moderate hypoxia on the myocardium (as opposed to alterations in neural and/or hormonal control), we measured the resting and maximum in situ function of hearts from normoxia- and hypoxia-acclimated cod: (1) when initially perfused with oxygenated saline; (2) at the end of a 15 min exposure to severe hypoxia (PO2 ~0.6 kPa); and (3) 30 min after the hearts had been reperfused with oxygenated saline. Acclimation to hypoxia did not influence resting (basal) in situ cardiac performance during oxygenated or hypoxic conditions. However, it caused a decrease in maximum cardiac output () under oxygenated conditions (from 49.5 to 40.3 ml min−1 kg−1; by 19%), that was due to diminished values for maximum stroke volume (VS) and scope for VS. Severe hypoxia reduced in both groups to ~20 ml min−1 kg−1, yet, the hearts of hypoxia-acclimated fish were better able to sustain this level of under hypoxia, and the recovery of (as compared with initial values under oxygenated conditions) was significantly improved (94% vs 83%). These data show that acclimation to hypoxia has a direct effect on cod myocardial function and/or physiology, and suggest that the cod heart shows some adaptations to prolonged hypoxia.
Collapse
Affiliation(s)
- L. H. Petersen
- Ocean Sciences Centre, Memorial University of Newfoundland, St John's, NL, Canada, A1C 5S7
| | - A. K. Gamperl
- Ocean Sciences Centre, Memorial University of Newfoundland, St John's, NL, Canada, A1C 5S7
| |
Collapse
|
12
|
Stecyk JAW, Bock C, Overgaard J, Wang T, Farrell AP, Pörtner HO. Correlation of cardiac performance with cellular energetic components in the oxygen-deprived turtle heart. Am J Physiol Regul Integr Comp Physiol 2009; 297:R756-68. [PMID: 19587113 DOI: 10.1152/ajpregu.00102.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The relationship between cardiac energy metabolism and the depression of myocardial performance during oxygen deprivation has remained enigmatic. Here, we combine in vivo (31)P-NMR spectroscopy and MRI to provide the first temporal profile of in vivo cardiac energetics and cardiac performance of an anoxia-tolerant vertebrate, the freshwater turtle (Trachemys scripta) during long-term anoxia exposure (approximately 3 h at 21 degrees C and 11 days at 5 degrees C). During anoxia, phosphocreatine (PCr), unbound levels of inorganic phosphate (effective P(i)(2-)), intracellular pH (pH(i)), and free energy of ATP hydrolysis (dG/dxi) exhibited asymptotic patterns of change, indicating that turtle myocardial high-energy phosphate metabolism and energetic state are reset to new, reduced steady states during long-term anoxia exposure. At 21 degrees C, anoxia caused a reduction in pH(i) from 7.40 to 7.01, a 69% decrease in PCr and a doubling of effective P(i)(2-). ATP content remained unchanged, but the free energy of ATP hydrolysis (dG/dxi) decreased from -59.6 to -52.5 kJ/mol. Even so, none of these cellular changes correlated with the anoxic depression of cardiac performance, suggesting that autonomic cardiac regulation may override putative cellular feedback mechanisms. In contrast, during anoxia at 5 degrees C, when autonomic cardiac control is severely blunted, the decrease of pH(i) from 7.66 to 7.12, 1.9-fold increase of effective P(i)(2-), and 6.4 kJ/mol decrease of dG/dxi from -53.8 to -47.4 kJ/mol were significantly correlated to the anoxic depression of cardiac performance. Our results provide the first evidence for a close, long-term coordination of functional cardiac changes with cellular energy status in a vertebrate, with a potential for autonomic control to override these immediate relationships.
Collapse
Affiliation(s)
- Jonathan A W Stecyk
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada.
| | | | | | | | | | | |
Collapse
|
13
|
Misfeldt M, Fago A, Gesser H. Nitric oxide increases myocardial efficiency in the hypoxia-tolerant turtle Trachemys scripta. J Exp Biol 2009; 212:954-60. [DOI: 10.1242/jeb.025171] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
SUMMARY
Nitric oxide (NO) may influence cardiac mechanical performance relative to O2 consumption by depressing respiration rate and by affecting the excitation–contraction coupling. Such effects of NO should be particularly important during hypoxia in species such as the hypoxia-tolerant turtle Trachemys scripta. In heart ventricle preparations from this species, the ratio of twitch force to O2 consumption increased by approximately 15% during full oxygenation and by approximately 60% during hypoxia in the presence of added l-arginine [the substrate for nitric oxide synthase (NOS)]. This effect was primarily due to a decrease in O2 consumption and may represent an increase in the twitch force obtained per ATP and/or in the ATP obtained per O2. Lactate production during hypoxia did not differ between preparations treated with either l-arginine or asymmetric dimethylarginine (ADMA), an inhibitor of NOS, suggesting that NO does not elicit a compensatory increase in anaerobic metabolism. ADMA did not reverse the effects of l-arginine on O2 consumption significantly, although pre-treatment with ADMA abolished the effect of l-arginine,consistent with the competitive binding of l-arginine and ADMA to NOS. Histochemical studies using the fluorescent probe 4,5-diaminofluorescein diacetate (DAF-2 DA) revealed NO production in the presence of added l-arginine. In conclusion, NO may augment heart contractility obtained per O2 by deceasing O2 consumption without affecting either lactate production or developed force. This effect was particularly pronounced under O2 deficiency and may therefore contribute towards preserving cardiac function and to the overall excellent hypoxic tolerance of the turtle.
Collapse
Affiliation(s)
- Mikkel Misfeldt
- Department of Biological Sciences, Building 1131, University of Aarhus,DK-8000, Aarhus C, Denmark
| | - Angela Fago
- Department of Biological Sciences, Building 1131, University of Aarhus,DK-8000, Aarhus C, Denmark
| | - Hans Gesser
- Department of Biological Sciences, Building 1131, University of Aarhus,DK-8000, Aarhus C, Denmark
| |
Collapse
|
14
|
|
15
|
Haagensen L, Jensen DH, Gesser H. Dependence of myosin-ATPase on structure bound creatine kinase in cardiac myofibrils from rainbow trout and freshwater turtle. Comp Biochem Physiol A Mol Integr Physiol 2008; 150:404-9. [PMID: 18515165 DOI: 10.1016/j.cbpa.2008.04.604] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 04/21/2008] [Accepted: 04/21/2008] [Indexed: 10/22/2022]
Abstract
The influence of myofibrillar creatine kinase on the myosin-ATPase activity was examined in cardiac ventricular myofibrils isolated from rainbow trout (Oncorhynchus mykiss) and freshwater turtle (Trachemys scripta). The ATPase rate was assessed by recording the rephosphorylation of ADP by the pyruvate kinase reaction alone or together with the amount of creatine formed, when myofibrillar bound creatine kinase was activated with phosphocreatine. The steady-state concentration of ADP in the solution was varied through the activity of pyruvate kinase added to the solution. For rainbow trout myofibrils at a high pyruvate kinase activity, creatine kinase competed for ADP but did not influence the total ATPase activity. When the ADP concentration was elevated within the physiological range by lowering the pyruvate kinase activity, creatine kinase competed efficiently and increased the ATPase activity twice or more for both trout and turtle. As examined for trout myofibrils, the ATPase activity was reduced about four times by inhibiting the activity of myofibril-bound creatine kinase with iodoacetamide and this reduction was only partially counteracted, when the creatine kinase activity was restored by adding creatine kinase to the solution. Hence, the results suggest that myofibril-bound creatine kinase is needed to fully activate the myosin-ATPase activity in hearts from ectothermic vertebrates despite their low energy turn-over relative to endothermic species.
Collapse
Affiliation(s)
- L Haagensen
- Department of Biological Sciences, University of Aarhus, Building 1131, DK-8000 Aarhus C, Denmark
| | | | | |
Collapse
|
16
|
Overgaard J, Gesser H, Wang T. Tribute to P. L. Lutz: cardiac performance and cardiovascular regulation during anoxia/hypoxia in freshwater turtles. ACTA ACUST UNITED AC 2008; 210:1687-99. [PMID: 17488932 DOI: 10.1242/jeb.001925] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Freshwater turtles overwintering in ice-covered ponds in North America may be exposed to prolonged anoxia, and survive this hostile environment by metabolic depression. Here, we review their cardiovascular function and regulation, with particular emphasis on the factors limiting cardiac performance. The pronounced anoxia tolerance of the turtle heart is based on the ability to match energy consumption with the low anaerobic ATP production during anoxia. Together with a well-developed temporal and spatial energy buffering by creatine kinase, this allows for cellular energy charge to remain high during anoxia. Furthermore, the turtle heart is well adapted to handle the adverse effects of free phosphate arising when phosphocreatine stores are used. Anoxia causes tenfold reductions in heart rate and blood flows that match the metabolic depression, and blood pressure is largely maintained through increased systemic vascular resistance. Depression of the heart rate is not driven by the autonomic nervous system and seems to arise from direct effects of oxygen lack and the associated hyperkalaemia and acidosis on the cardiac pacemaker. These intra- and extracellular changes also affect cardiac contractility, and both acidosis and hyperkalaemia severely depress cardiac contractility. However, increased levels of adrenaline and calcium may, at least partially, salvage cardiac function under prolonged periods of anoxia.
Collapse
Affiliation(s)
- Johannes Overgaard
- National Environmental Research Institute, Aarhus University, Silkeborg, Denmark
| | | | | |
Collapse
|
17
|
Farrell AP, Stecyk JAW. The heart as a working model to explore themes and strategies for anoxic survival in ectothermic vertebrates. Comp Biochem Physiol A Mol Integr Physiol 2007; 147:300-12. [PMID: 17337222 DOI: 10.1016/j.cbpa.2007.01.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Revised: 01/23/2007] [Accepted: 01/24/2007] [Indexed: 10/23/2022]
Abstract
Most vertebrates die within minutes when deprived of molecular oxygen (anoxia), in part because of cardiac failure, which can be traced to an inadequate matching of cardiac ATP supply to ATP demand. Cardiac power output (PO; estimated from the product of cardiac output and central arterial pressure and an indirect measure of cardiac ATP demand) is directly related to cardiac ATP supply up to some maximal level during both normoxia (ATP supply estimated from myocardial O(2) consumption) and anoxia (ATP supply estimated from lactate production rates). Thus, steady state PO provides an excellent means to examine anoxia tolerance strategies among ectothermic vertebrates by indicating a matching of cardiac glycolytic ATP supply and demand. Here, we summarize in vitro measurements of PO data from rainbow trout, freshwater turtles and hagfishes to provide a reasonable benchmark PO of 0.7 mW g(-1) for maximum glycolytic potential of ectothermic hearts at 15 degrees C, which corresponds to a glycolytic ATP turnover rate of about 70 nmol ATP g(-1) s(-1). Using this benchmark to evaluate in vivo PO data for hagfishes, carps and turtles, we identify two cardiac survival strategies, which in conjunction with creative waste management techniques to reduce waste accumulation, allow for long-term cardiac survival during anoxia in these anoxia-tolerant species. Hagfish and crucian carp exemplify a strategy of evolving such a low routine PO that routine cardiac ATP demand lies within the range of the maximum cardiac glycolytic potential. Common carp and freshwater turtles exemplify an active strategy of temporarily and substantially decreasing cardiac and whole body metabolism so that PO is below maximum cardiac glycolytic potential during chronic anoxia despite being quite close to this potential under normoxia.
Collapse
Affiliation(s)
- A P Farrell
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada V6T 1Z4.
| | | |
Collapse
|
18
|
Gesser H. Force development at elevated [Mg2+]o and [K+]o in myocardium from the freshwater turtle (Trachemys scripta) and influence of factors associated with hibernation. Comp Biochem Physiol A Mol Integr Physiol 2006; 145:334-9. [PMID: 16928457 DOI: 10.1016/j.cbpa.2006.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 06/28/2006] [Accepted: 07/06/2006] [Indexed: 11/28/2022]
Abstract
The effects of high [Mg(2+)](o) on force development were examined for heart muscle of freshwater turtle. Plasma [Mg(2+)] during hibernation may increase drastically and like plasma [K(+)] approach values as high as 10 mM. Each experiment performed at either 20 or 5 degrees C involved four ventricular preparations of which one pair was exposed to 10, and one to 1 mMMg(2+). One preparation of each pair was furthermore exposed to 10 mM K(+), whereas the other was maintained at 2.5 mM K(+). During oxygenation, high relative to low [Mg(2+)](o) displayed a weak tendency to reduce twitch force; a tendency that was not reduced by elevations of [Ca(2+)](o). Severe hypoxia accentuated the negative effect of high [Mg(2+)](o). This effect disappeared, however, when hypoxia was combined with acidosis obtained by 24 mM lactic acid. In comparison to [Mg(2+)](o), high [K(+)](o) strongly depressed force development under both oxygenation and hypoxia, but no consistent interplay between the two ions was revealed. The negative inotropic effects of both high [Mg(2+)](o) and high [K(+)](o) were reduced or eliminated by 10 muM adrenaline. In conclusion the cardiac effects of elevations in [Mg(2+)](o) appear to be small during hibernation, in particular when considering the concomitant adrenergic stimulation and acidosis.
Collapse
Affiliation(s)
- H Gesser
- Institute of Biological Sciences, University of Aarhus, Building 1131, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
19
|
Battiprolu PK, Harmon KJ, Rodnick KJ. Sex differences in energy metabolism and performance of teleost cardiac tissue. Am J Physiol Regul Integr Comp Physiol 2006; 292:R827-36. [PMID: 17038442 DOI: 10.1152/ajpregu.00379.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examined the effects of different oxygenation levels and substrate availability on cardiac performance, metabolism, and biochemistry in sexually immature male and female rainbow trout (Oncorhynchus mykiss). Ventricle strips were electrically paced (0.5 Hz, 14 degrees C) in hyperoxic or hypoxic Ringer solution. Our results demonstrate that 1) males sustain isometric force production (F) longer than females under hyperoxia (P O2 = 640 mmHg) with exogenous glucose present; 2) contractility is not maintained under moderate (P O2 = 130 mmHg) or severe hypoxia (P O2 = 10-20 mmHg) with glucose in either sex; however, following reoxygenation, F is higher in females compared with males; and 3) female tissue has higher lactate levels, net lactate efflux, and lactate dehydrogenase activity than males, whereas males have higher glycogen, citrate synthase, and beta-hydroxy acyl-CoA dehydrogenase activities, and greater inotropic responses to exogenous glucose and octanoate. No sex differences were detected in responsiveness to epinephrine and inhibitors of glucose transport or activities of hexokinase and pyruvate kinase. We conclude that sex differences exist in rainbow trout cardiac tissue: females appear to prefer glycolysis for ATP production, whereas males have a higher capacity for aerobic and lipid metabolism.
Collapse
Affiliation(s)
- Pavan K Battiprolu
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209-8007, USA
| | | | | |
Collapse
|
20
|
Hanson LM, Obradovich S, Mouniargi J, Farrell AP. The role of adrenergic stimulation in maintaining maximum cardiac performance in rainbow trout (Oncorhynchus mykiss) during hypoxia,hyperkalemia and acidosis at 10°C. J Exp Biol 2006; 209:2442-51. [PMID: 16788027 DOI: 10.1242/jeb.02237] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYAs rainbow trout approach exhaustion during prolonged exercise, they maintain maximum cardiac output despite the fact their venous blood, which bathes the heart, becomes hypoxic, acidotic and hyperkalemic. Because these factors are individually recognized to have detrimental inotropic and chronotropic effects on cardiac performance, we hypothesized that adrenergic stimulation is critical in maintaining maximum cardiac performance under these collectively adverse conditions in vivo. To test this hypothesis,maximum cardiac performance in the presence and absence of maximal adrenergic stimulation was assessed with in situ rainbow trout hearts using relevant hyperkalemic (5.0 mmol l–1 K+), acidotic(pH 7.5) and hypoxic challenges. With tonic adrenergic stimulation (5.0 nmol l–1 adrenaline), hearts produced only 44.8±14.6% of their normal maximum cardiac output when exposed under normoxic conditions (20 kPa) to the hyperkalemic, acidotic perfusate, indicating that in vivothere was no refuge from cardiac impairment even if venous blood was fully oxygenated. By contrast, maximum adrenergic stimulation (500 nmol l–1 adrenaline), fully protected maximum cardiac performance under hyperkalemic and acidotic conditions over a wide range of oxygen availability, from normoxia to 2.0 kPa, a venous oxygen tension close to routine values in vivo. Extending the level of hypoxia to 1.3 kPa resulted in a 43.6±2.8% decrease in maximum cardiac output, with hearts failing when tested at 1.0 kPa. Our results suggest that adrenergic stimulation of the trout heart is critical in maintaining maximum performance during prolonged swimming tests, and probably during all forms of exhaustive activity and recovery, when venous blood is hyperkalemic, acidotic and hypoxic.
Collapse
Affiliation(s)
- Linda M Hanson
- Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada.
| | | | | | | |
Collapse
|
21
|
Overgaard J, Wang T, Nielsen OB, Gesser H. Extracellular Determinants of Cardiac Contractility in the Cold Anoxic Turtle. Physiol Biochem Zool 2005; 78:976-95. [PMID: 16228937 DOI: 10.1086/432853] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2005] [Indexed: 11/03/2022]
Abstract
Painted turtles (Chrysemys picta) survive months of anoxic submergence, which is associated with large changes in the extracellular milieu where pH falls by 1, while extracellular K+, Ca++, and adrenaline levels all increase massively. While the effect of each of these changes in the extracellular environment on the heart has been previously characterized in isolation, little is known about their interactions and combined effects. Here we examine the isolated and combined effects of hyperkalemia, acidosis, hypercalcemia, high adrenergic stimulation, and anoxia on twitch force during isometric contractions in isolated ventricular strip preparations from turtles. Experiments were performed on turtles that had been previously acclimated to warm (25 degrees C), cold (5 degrees C), or cold anoxia (submerged in anoxic water at 5 degrees C). The differences between acclimation groups suggest that cold acclimation, but not anoxic acclimation per se, results in a downregulation of processes in the excitation-contraction coupling. Hyperkalemia (10 mmol L(-1) K+) exerted a strong negative inotropic effect and caused irregular contractions; the effect was most pronounced at low temperature (57%-97% reductions in twitch force). Anoxia reduced twitch force at both temperatures (14%-38%), while acidosis reduced force only at 5 degrees C (15%-50%). Adrenergic stimulation (10 micromol L(-1)) increased twitch force by 5%-19%, but increasing extracellular [Ca++] from 2 to 6 mmol L(-1) had only small effects. When all treatments were combined with anoxia, twitch force was higher at 5 degrees C than at 25 degrees C, whereas in normoxia twitch force was higher at 25 degrees C. We propose that hyperkalemia may account for a large part of the depressed cardiac contractility during long-term anoxic submergence.
Collapse
Affiliation(s)
- Johannes Overgaard
- Department of Zoophysiology, Institute of Biological Sciences, University of Aarhus, Aarhus, Denmark.
| | | | | | | |
Collapse
|