1
|
Boyan GS, Williams L, Müller T, Bacon JP. Ontogeny and development of the tritocerebral commissure giant (TCG): an identified neuron in the brain of the grasshopper Schistocerca gregaria. Dev Genes Evol 2018; 228:149-162. [PMID: 29666910 DOI: 10.1007/s00427-018-0612-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/03/2018] [Indexed: 11/26/2022]
Abstract
The tritocerebral commissure giant (TCG) of the grasshopper Schistocerca gregaria is one of the best anatomically and physiologically described arthropod brain neurons. A member of the so-called Ventral Giant cluster of cells, it integrates sensory information from visual, antennal and hair receptors, and synapses with thoracic motor neurons in order to initiate and regulate flight behavior. Its ontogeny, however, remains unclear. In this study, we use bromodeoxyuridine incorporation and cyclin labeling to reveal proliferative neuroblasts in the region of the embryonic brain where the ventral giant cluster is located. Engrailed labeling confirms the deutocerebral identity of this cluster. Comparison of soma locations and initial neurite projections into tracts of the striate deutocerebrum help identify the cells of the ventral cluster in both the embryonic and adult brain. Reconstructions of embryonic cell lineages suggest deutocerebral NB1 as being the putative neuroblast of origin. Intracellular dye injection coupled with immunolabeling against neuron-specific horseradish peroxidase is used to identify the VG1 (TCG) and VG3 neurons from the ventral cluster in embryonic brain slices. Dye injection and backfilling are used to document axogenesis and the progressive expansion of the dendritic arbor of the TCG from mid-embryogenesis up to hatching. Comparative maps of embryonic neuroblasts from several orthopteroid insects suggest equivalent deutocerebral neuroblasts from which the homologous TCG neurons already identified in the adult brain could originate. Our data offer the prospect of identifying further lineage-related neurons from the cluster and so understand a brain connectome from both a developmental and evolutionary perspective.
Collapse
Affiliation(s)
- George Stephen Boyan
- Graduate School of Systemic Neuroscience, Biocenter, Ludwig-Maximilians-Universität München, Grosshadernerstrasse 2, Planegg-Martinsried, 82152, Germany.
| | - Leslie Williams
- Graduate School of Systemic Neuroscience, Biocenter, Ludwig-Maximilians-Universität München, Grosshadernerstrasse 2, Planegg-Martinsried, 82152, Germany
| | - Tobias Müller
- Faculty of Biology, University of Konstanz, 78457, Constance, Germany
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Jonathan P Bacon
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| |
Collapse
|
2
|
Cuesta N, Martínez A, Cuttitta F, Zudaire E. Identification of Adrenomedullin in Avian Type II Pneumocytes: Increased Expression after Exposure to Air Pollutants. J Histochem Cytochem 2016; 53:773-80. [PMID: 15928326 DOI: 10.1369/jhc.4a6498.2005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adrenomedullin (AM) is a potent vasodilator peptide present in the lung of mammals where it is expressed mainly in the columnar epithelium and alveolar macrophages. AM increases the secretion of phosphatidylcholine by type II pneumocytes, which suggests a role as an autocrine modulator of surfactant secretion. In this study we show the expression of an AM-like protein in the lung of the pigeon, Columba livia. Using an antibody against its human ortholog, AM-like immunoreactivity was found to be associated with membranous structures of the multivesicular bodies of type II pneumocytes. We also studied the differential expression of AM-like peptide in the lung of pigeons exposed to polluted city air vs cleaner countryside conditions and found that AM-like expression was higher in city animals. Similar results were obtained in an experimental study in which pigeons were exposed to increasing concentrations of a single pollutant, ozone. Taken together, our findings support the implication of AM in the response of type II pneumocytes to air pollutants.
Collapse
Affiliation(s)
- Natalia Cuesta
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|
3
|
Cytotoxic effects of neem oil in the midgut of the predator Ceraeochrysa claveri. Micron 2015; 80:96-111. [PMID: 26520254 DOI: 10.1016/j.micron.2015.10.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/09/2015] [Accepted: 10/14/2015] [Indexed: 11/24/2022]
Abstract
Studies of morphological and ultrastructural alterations in target organs have been useful for evaluating the sublethal effects of biopesticides regarded as safe for non-target organisms in ecotoxicological analyses. One of the most widely used biopesticides is neem oil, and its safety and compatibility with natural enemies have been further clarified through bioassays performed to analyze the effects of indirect exposure by the intake of poisoned prey. Thus, this study examined the cellular response of midgut epithelial cells of the adult lacewing, Ceraeochrysa claveri, to neem oil exposure via intake of neem oil-contaminated prey during the larval stage. C. claveri larvae were fed Diatraea saccharalis eggs treated with neem oil at concentrations of 0.5%, 1% and 2% throughout the larval stage. The adult females obtained from these treatments were used at two ages (newly emerged and at the start of oviposition) in morphological and ultrastructural analyses. Neem oil was found to cause pronounced cytotoxic effects in the adult midgut, such as cell dilation, emission of cytoplasmic protrusions, cell lysis, loss of integrity of the cell cortex, dilation of cisternae of the rough endoplasmic reticulum, swollen mitochondria, vesiculated appearance of the Golgi complex and dilated invaginations of the basal labyrinth. Epithelial cells responded to those injuries with various cytoprotective and detoxification mechanisms, including increases in cell proliferation, the number of calcium-containing cytoplasmic granules, and HSP 70 expression, autophagic processes and the development of smooth endoplasmic reticulum, but these mechanisms were insufficient for recovery from all of the cellular damage to the midgut. This study demonstrates that neem oil exposure impairs the midgut by causing sublethal effects that may affect the physiological functions of this organ, indicating the importance of studies of different life stages of this species and similar species to evaluate the safe and compatible integrated use of biopesticides.
Collapse
|
4
|
Ultrastructure and Immunofluorescence of the midgut of Bombus morio (Hymenoptera: Apidae: Bombini). C R Biol 2014; 337:365-72. [DOI: 10.1016/j.crvi.2014.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/01/2014] [Accepted: 04/01/2014] [Indexed: 11/22/2022]
|
5
|
Boyan G, Liu Y. Timelines in the insect brain: fates of identified neural stem cells generating the central complex in the grasshopper Schistocerca gregaria. Dev Genes Evol 2013; 224:37-51. [PMID: 24343526 DOI: 10.1007/s00427-013-0462-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 12/02/2013] [Indexed: 11/27/2022]
Abstract
This study employs labels for cell proliferation and cell death, as well as classical histology to examine the fates of all eight neural stem cells (neuroblasts) whose progeny generate the central complex of the grasshopper brain during embryogenesis. These neuroblasts delaminate from the neuroectoderm between 25 and 30 % of embryogenesis and form a linear array running from ventral (neuroblasts Z, Y, X, and W) to dorsal (neuroblasts 1-2, 1-3, 1-4, and 1-5) along the medial border of each protocerebral hemisphere. Their stereotypic location within the array, characteristic size, and nuclear morphologies, identify these neuroblasts up to about 70 % of embryogenesis after which cell shrinkage and shape changes render progressively more cells histologically unrecognizable. Molecular labels show all neuroblasts in the array are proliferative up to 70 % of embryogenesis, but subsequently first the more ventral cells (72-75 %), and then the dorsal ones (77-80 %), cease proliferation. By contrast, neuroblasts elsewhere in the brain and optic lobe remain proliferative. Apoptosis markers label the more ventral neuroblasts first (70-72 %), then the dorsal cells (77 %), and the absence of any labeling thereafter confirms that central complex neuroblasts have exited the cell cycle via programmed cell death. Our data reveal appearance, proliferation, and cell death proceeding as successive waves from ventral to dorsal along the array of neuroblasts. The resulting timelines offer a temporal blueprint for building the neuroarchitecture of the various modules of the central complex.
Collapse
Affiliation(s)
- George Boyan
- Developmental Neurobiology Group, Biocenter, Ludwig-Maximilians-Universität, Grosshadernerstrasse 2, 82152, Planegg-Martinsried, Germany,
| | | |
Collapse
|
6
|
Glia associated with central complex lineages in the embryonic brain of the grasshopper Schistocerca gregaria. Dev Genes Evol 2013; 223:213-23. [PMID: 23494665 DOI: 10.1007/s00427-013-0439-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 02/27/2013] [Indexed: 12/17/2022]
Abstract
We have investigated the pattern of glia associated with central complex lineages in the embryonic brain of the grasshopper Schistocerca gregaria. Using the glia-specific marker Repo, we identified glia associated externally with such lineages, termed lineage-extrinsic glia, and glia located internally within the lineages, termed lineage-intrinsic glia. Populations of both glial types increase up to 60 % of embryogenesis, and thereafter decrease. Extrinsic glia change their locations over time, while intrinsic ones are consistently found in the more apical part of a lineage. Apoptosis is not observed for either glial type, suggesting migration is a likely mechanism accounting for changes in glial number. Proliferative glia are present both within and without individual lineages and two glial clusters associated with the lineages, one apically and the other basally, may represent sources of glia.
Collapse
|
7
|
Castagnola A, Eda S, Jurat-Fuentes JL. Monitoring stem cell proliferation and differentiation in primary midgut cell cultures from Heliothis virescens larvae using flow cytometry. Differentiation 2010; 81:192-8. [PMID: 21190786 DOI: 10.1016/j.diff.2010.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/23/2010] [Accepted: 12/04/2010] [Indexed: 01/25/2023]
Abstract
In the midgut of Heliothis virescens larvae, proliferation and differentiation of stem cell populations allow for midgut growth and regeneration. Basic epithelial regenerative function can be assessed in vitro by purifying these two cell type populations, yet efficient high throughput methods to monitor midgut stem cell proliferation and differentiation are not available. We describe a flow cytometry method to differentiate stem from mature midgut cells and use it to monitor proliferation, differentiation and death in primary midgut stem cell cultures from H. virescens larvae. Our method is based on differential light scattering and vital stain fluorescence properties to distinguish between stem and mature midgut cells. Using this method, we monitored proliferation and differentiation of H. virescens midgut cells cultured in the presence of fetal bovine serum (FBS) or AlbuMAX II. Supplementation with FBS resulted in increased stem cell differentiation after 5 days of culture, while AlbuMAX II-supplemented medium promoted stem cell proliferation. These data demonstrate utility of our flow cytometry method for studying stem cell-based epithelial regeneration, and indicate that AlbuMAX II-supplemented medium may be used to maintain pluripotency in primary midgut stem cell cultures.
Collapse
Affiliation(s)
- A Castagnola
- Department of Entomology and Plant Pathology, University of Tennessee, 2431 Joe Johnson Drive, 205 Ellington Plant Sciences Building, Knoxville, TN 37996, USA
| | | | | |
Collapse
|
8
|
Clissold FJ, Tedder BJ, Conigrave AD, Simpson SJ. The gastrointestinal tract as a nutrient-balancing organ. Proc Biol Sci 2010; 277:1751-9. [PMID: 20129973 DOI: 10.1098/rspb.2009.2045] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Failure to provision tissues with an appropriate balance of nutrients engenders fitness costs. Maintaining nutrient balance can be achieved by adjusting the selection and consumption of foods, but this may not be possible when the nutritional environment is limiting. Under such circumstances, rebalancing of an imbalanced nutrient intake requires post-ingestive mechanisms. The first stage at which such post-ingestive rebalancing might occur is within the gastrointestinal tract (GIT), by differential release of digestive enzymes-releasing less of those enzymes for nutrients present in excess while maintaining or boosting levels of enzymes for nutrients in deficit. Here, we use an insect herbivore, the locust, to show for the first time that such compensatory responses occur within the GIT. Furthermore, we show that differential release of proteases and carbohydrases in response to nutritional state translate into differential extraction of macronutrients from host plants. The prevailing view is that physiological and structural plasticity in the GIT serves to maximize the rate of nutrient gain in relation to costs of maintaining the GIT; our findings show that GIT plasticity is integral to the maintenance of nutrient balance.
Collapse
|
9
|
Hoffmann P, Holtmann M, Dorn A. Degenerative and regenerative processes involved in midgut pseudotumor formation in the stick insect (Carausius morosus). J Morphol 2009; 270:1454-74. [PMID: 19603413 DOI: 10.1002/jmor.10770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spontaneous and experimentally induced pseudotumor formation in Carausius morosus impairs the midgut tissue homeostasis. Spontaneous pseudotumor formation begins by the break down of a single or a small group of columnar cells (CCs) and is followed by the degeneration of neighboring CCs. There are not only marked similarities but also decisive differences between normal dying CCs in healthy specimens and the degeneration of CCs leading to pseudotumors: in both cases, the apical cell parts with the nucleus are extruded into the midgut lumen, but only during of pseudotumor formation an "amorphous substance" originates from the basal parts of the CCs. Hemocytes are attracted to this substance and form a nodule-like aggregation, which is responsible for the phenotype of pseudotumors. Pseudotumor infestation has also an impact on the midgut nidi, which consist of an intestinal stem cell and several CC progenitor cells. In healthy specimens only one progenitor cell per nidus differentiates at a time, but, several to all progenitor cells differentiate simultaneously in pseudotumor-infested specimens. Extirpation of the ingluvial ganglion in healthy specimens results in an immediate onset of pseudotumor formation and a dramatic acceleration of pseudotumor growth. Importantly, the ultrastructural characteristics of spontaneous and experimentally induced pseudotumors are identical. This supports the idea that the stomatogastric nervous system plays an integral role in the maintenance of midgut tissue homeostasis.
Collapse
Affiliation(s)
- Paul Hoffmann
- Institute of Zoology, Johannes Gutenberg University, Mainz, Germany
| | | | | |
Collapse
|
10
|
Park MS, Takeda M. Starvation suppresses cell proliferation that rebounds after refeeding in the midgut of the American cockroach, Periplaneta americana. JOURNAL OF INSECT PHYSIOLOGY 2008; 54:386-392. [PMID: 18067918 DOI: 10.1016/j.jinsphys.2007.10.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 10/17/2007] [Accepted: 10/19/2007] [Indexed: 05/25/2023]
Abstract
Starvation affects behavior, development, metabolism, reproduction, and longevity in almost all animals including insects. In the American cockroach, Periplaneta americana, we investigated the effect of starvation on organ size and cell proliferation activity of the midgut, over a period of one month, using anti-bromodeoxyuridine (BrdU), and anti-phospho-histone H3 antibodies. Under starvation conditions, the midgut became clear and fragile while its length and diameter were reduced. Both the rate of BrdU-uptake in the nucleus and the mitotic activity shown by anti-phospho-histone H3 antibody decreased under long starvation up to half that of the continuously fed control. Refeeding restored BrdU-uptake and mitosis that overshot the fed control. When casein, starch, or cooking oil was fed as representative nutrient sources to the starved cockroaches, all restored BrdU-uptake, but non-nutrient, talc, did not. This study supports the hypothesis that P. americana has a homeostatic mechanism to regulate the cell population of the midgut epithelium according to changes in the nutritional environment.
Collapse
Affiliation(s)
- Moon Soo Park
- Graduate School of Science and Technology, Kobe University, Kobe, Japan
| | | |
Collapse
|
11
|
Abstract
Baculoviruses play an important ecological role regulating the size of insect populations. For many years, baculoviruses have been applied as targeted biocontrol agents against forestry and agriculture pests. Baculovirus insecticides are effective against insect pests such as velvetbean caterpillar (Anticarsia gemmatalis ), cotton bollworm (Helicoverpa zea ), and gypsy moth (Lymantria dispar ). Baculoviruses are transmitted to insects by the oral route mediated by the occlusion-derived virus (ODV). The ODV is also specialized to exploit the insect midgut that is one of the most extreme biological environments where the viruses are subject to caustic pH and digestive proteases. The molecular biology of the ODV reveals new frontiers in protein chemistry. Finally, ODVs establishes infection in insect gut tissues that are virtually nonsupportive to virus replication and which are continuously sloughed away. ODVs carry with them a battery of proteins that enable them to rapidly exploit and harness these unstable cells for virus replication.
Collapse
Affiliation(s)
- Jeffery Slack
- Laboratory for Molecular Virology, Great Lakes Forestry Centre, Sault Ste. Marie, Ontario, Canada
| | | |
Collapse
|
12
|
Bede JC, McNeil JN, Tobe SS. The role of neuropeptides in caterpillar nutritional ecology. Peptides 2007; 28:185-96. [PMID: 17161504 DOI: 10.1016/j.peptides.2006.08.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 08/10/2006] [Accepted: 08/10/2006] [Indexed: 11/17/2022]
Abstract
Plant diet strongly impacts the fitness of insect herbivores. Immediately, we think of plant defensive compounds that may act as feeding deterrents or toxins. We are, probably, less aware that plants also influence insect growth and fecundity through their nutritional quality. However, most herbivores respond to their environment and select the diet which optimizes their growth and development. This regulation of nutritional balance may occur on many levels: through selecting and ingesting appropriate plant tissue and nutrient digestion, absorption and utilization. Here, we review evidence of how nutritional requirements, particularly leaf protein to digestible carbohydrate ratios, affect caterpillar herbivores. We propose a model where midgut endocrine cells assess and integrate hemolymph nutritional status and gut content and release peptides which influence digestive processes. Understanding the effects of diet on the insect herbivore is essential for the rational design and implementation of sustainable pest management practices.
Collapse
Affiliation(s)
- Jacqueline C Bede
- Department of Plant Science, McGill University, Ste-Anne-de-Bellevue, Que., Canada H9X 3V9.
| | | | | |
Collapse
|
13
|
Illa-Bochaca I, Montuenga LM. The regenerative nidi of the locust midgut as a model to study epithelial cell differentiation from stem cells. ACTA ACUST UNITED AC 2006; 209:2215-23. [PMID: 16709922 DOI: 10.1242/jeb.02249] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A better knowledge of the regulatory mechanisms involved in stem cell proliferation and/or differentiation could reveal new methods for the treatment of some diseases. Most previous studies in the field of stem cell biology have been carried out on cultured isolated cells. In the case of adult tissue stem cells, mesenchymal bone marrow derived cells have been most widely studied, while the undifferentiated stem cells present in the epithelial tissues are less known. In order to advance further our understanding of epithelial tissue stem cells, new in vivo models are required. The present study focuses on the dynamics of a new and simple model of intestinal epithelial regeneration found in the midgut of the migratory locust, Locusta migratoria (Linnaeus 1758). The locust midgut consists of three cell types: columnar cells, endocrine cells and undifferentiated regenerative clustered cells. The undifferentiated epithelial midgut cells give rise to two other cell types and are located in a nest of regenerative cells known as regenerative niche. We have performed single and continuous bromodeoxyuridine (BrdU) administration experiments to study regeneration niches and their cellular dynamics. Immunocytochemistry and immunofluorescence techniques were used to detect the incorporation of BrdU into regenerative niches and the presence of FMRFamide-like immunoreactivity, as a marker for endocrine cell differentiation. Some isolated label retaining cells (LRC) were observed at the niche base 10-15 days after the final BrdU administration. We propose that these cells are the stem cells of this epithelial tissue. We also calculated the length of the cell cycle phases for a subpopulation of transit amplifying cells within the regenerative niche: G1, 2.5+/-0.5 h; S, 5.5+/-0.5 h; G2, 0.75+/-0.25 h; M, 2.5+/-0.5 h. These amplifying cells will give rise to the columnar epithelial non-endocrine lineage. The differentiation of an endocrine cell from a niche stem cell occurs less frequently and thus leads to a lower proportion of endocrine cells as compared with epithelial columnar digestive cells (up to three endocrine cells per niche). Endocrine cell commitment seems to occur very early in the differentiation process within the niche, as double-labelled BrdU and FMRF endocrine cells have never been found. The only exception is the endocrine cells located in the ampullar region of the midgut, some of which show double immunostaining after long-term chronic BrdU injection. In summary, we have characterized a new and simple animal model of epithelial stem cell regeneration that may be useful for understanding the complex biological process that drives tissue renewal from undifferentiated and uncommitted progenitor cells.
Collapse
Affiliation(s)
- Irineu Illa-Bochaca
- Department of Histology and Pathology, Schools of Sciences and Medicine, University of Navarra, E-31080 Pamplona, Spain
| | | |
Collapse
|
14
|
Yocum GD, Coudron TA, Brandt SL. Differential gene expression in Perillus bioculatus nymphs fed a suboptimal artificial diet. JOURNAL OF INSECT PHYSIOLOGY 2006; 52:586-92. [PMID: 16580014 DOI: 10.1016/j.jinsphys.2006.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 02/10/2006] [Accepted: 02/13/2006] [Indexed: 05/08/2023]
Abstract
Fragments of two artificial diet up-regulated and two prey up-regulated transcripts were isolated from the predatory Pentatomid Perillus bioculatus using suppression subtractive hybridization. A BlastX search found similarities for two diet-upregulated clones, i.e., the tyrosine-3-monooxygenase gene and the gene for the chitin binding protein, Gasp. The probe generated from the tyrosine-3-monooxygenase clone hybridized to two transcripts 2.3 and 1.2kb in size. The two transcripts were differentially regulated: the 2.3kb transcript was upregulated in the first and late third instar diet-fed nymphs, whereas the 1.2kb transcript was upregulated in the second and early third instar diet-fed nymphs. The Gasp gene was upregulated in late third instar nymphs. A positive correlation was found between levels of expression of the isolated genes and the number of generations the insects had been reared on the artificial diet.
Collapse
Affiliation(s)
- G D Yocum
- Biosciences Research Laboratory, USDA-ARS Red River Valley Agricultural Research Center, 1605 Albrecht Boulevard, Fargo, ND 58105, USA.
| | | | | |
Collapse
|