1
|
Wolz M, Rueckert S, Müller C. Fluctuating Starvation Conditions Modify Host-Symbiont Relationship Between a Leaf Beetle and Its Newly Identified Gregarine Species. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.850161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gregarines are ubiquitous endosymbionts in invertebrates, including terrestrial insects. However, the biodiversity of gregarines is probably vastly underestimated and the knowledge about their role in shaping fitness-related traits of their host in dependence of fluctuating environmental conditions is limited. Using morphological and molecular analyses, we identified a new gregarine species, Gregarina cochlearium sp. n., in the mustard leaf beetle, Phaedon cochleariae. Applying a full-factorial design, we investigated the effects of a gregarine infection in combination with fluctuating starvation conditions during the larval stage on the development time and fitness-related traits of adult beetles. Under benign environmental conditions, the relationship between gregarines and the host seemed neutral, as host development, body mass, reproduction and survival were not altered by a gregarine infection. However, when additionally exposed to starvation, the combination of gregarine infection and this stress resulted in the lowest reproduction and survival of the host, which points to a parasitic relationship. Furthermore, when the host experienced starvation, the development time was prolonged and the adult females were lighter compared to non-starved individuals, independent of the presence of gregarines. Counting of gregarines in the guts of larvae revealed a lower gregarine load with increasing host body mass under stable food conditions, which indicates a regulation of the gregarine burden in dependence of the host condition. Contrary, in starved individuals the number of gregarines was the highest, hence the already weakened host suffered additionally from a higher gregarine burden. This interactive effect between gregarine infection and fluctuating starvation conditions led to an overall reduced fitness of P. cochleariae. Our study emphasizes the need to study endosymbionts as important components of the natural environment and to investigate the role of host-symbiont relationships under fluctuating environmental conditions in an evolutionary and ecological context.
Collapse
|
2
|
Portman SL, Felton GW, Kariyat RR, Marden JH. Host plant defense produces species-specific alterations to flight muscle protein structure and flight-related fitness traits of two armyworms. J Exp Biol 2020; 223:jeb224907. [PMID: 32647018 DOI: 10.1242/jeb.224907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/29/2020] [Indexed: 01/03/2023]
Abstract
Insects manifest phenotypic plasticity in their development and behavior in response to plant defenses, via molecular mechanisms that produce tissue-specific changes. Phenotypic changes might vary between species that differ in their preferred hosts and these effects could extend beyond larval stages. To test this, we manipulated the diet of southern armyworm (SAW; Spodoptera eridania) and fall armyworm (FAW; Spodoptera frugiperda) using a tomato mutant for jasmonic acid plant defense pathway (def1), and wild-type plants, and then quantified gene expression of Troponin t (Tnt) and flight muscle metabolism of the adult insects. Differences in Tnt spliceform ratios in insect flight muscles correlate with changes to flight muscle metabolism and flight muscle output. We found that SAW adults reared on induced def1 plants had a higher relative abundance (RA) of the A isoform of Troponin t (Tnt A) in their flight muscles; in contrast, FAW adults reared on induced def1 plants had a lower RA of Tnt A in their flight muscles compared with adults reared on def1 and controls. Although mass-adjusted flight metabolic rate showed no independent host plant effects in either species, higher flight metabolic rates in SAW correlated with increased RA of Tnt A Flight muscle metabolism also showed an interaction of host plants with Tnt A in both species, suggesting that host plants might be influencing flight muscle metabolic output by altering Tnt This study illustrates how insects respond to variation in host plant chemical defense by phenotypic modifications to their flight muscle proteins, with possible implications for dispersal.
Collapse
Affiliation(s)
- Scott L Portman
- Invasive Species and Pollinator Health Research Unit, Western Regional Research Center, United States Department of Agriculture - Agricultural Research Services, 800 Buchanan St, Albany, CA 94710, USA
| | - Gary W Felton
- Department of Entomology, 501 ASI Building, Pennsylvania State University, University Park, PA 16802, USA
| | - Rupesh R Kariyat
- Department of Biology, University of Texas Rio Grande Valley, 1201 W University Drive, Edinburg, TX 78539, USA
- School of Earth, Environment and Marine Sciences, University of Texas Rio Grande Valley, 1201 W University Drive, Edinburg, TX 78539, USA
| | - James H Marden
- Department of Biology, 208 Mueller Laboratory, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
3
|
Schilder RJ, Stewart H. Parasitic gut infection in Libellula pulchella causes functional and molecular resemblance of dragonfly flight muscle to skeletal muscle of obese vertebrates. ACTA ACUST UNITED AC 2019; 222:jeb.188508. [PMID: 30659084 DOI: 10.1242/jeb.188508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/11/2019] [Indexed: 12/31/2022]
Abstract
We previously demonstrated the existence of a naturally occurring metabolic disease phenotype in Libellula pulchella dragonflies that shows high similarity to vertebrate obesity and type II diabetes, and is caused by a protozoan gut parasite. To further mechanistic understanding of how this metabolic disease phenotype affects fitness of male L. pulchella in vivo, we examined infection effects on in situ muscle performance and molecular traits relevant to dragonfly flight performance in nature. Importantly, these traits were previously shown to be affected in obese vertebrates. Similarly to obesity effects in rat skeletal muscle, dragonfly gut infection caused a disruption of relationships between body mass, flight muscle power output and alternative pre-mRNA splicing of troponin T, which affects muscle calcium sensitivity and performance in insects and vertebrates. In addition, when simulated in situ to contract at cycle frequencies ranging from 20 to 45 Hz, flight muscles of infected individuals displayed a left shift in power-cycle frequency curves, indicating a significant reduction in their optimal cycle frequency. Interestingly, these power-cycle curves were similar to those produced by flight muscles of non-infected teneral (i.e. physiologically immature) adult L. pulchella males. Overall, our results indicate that the effects of metabolic disease on skeletal muscle physiology in natural insect systems are similar to those observed in vertebrates maintained in laboratory settings. More generally, they indicate that study of natural, host-parasite interactions can contribute important insight into how environmental factors other than diet and exercise may contribute to the development of metabolic disease phenotypes.
Collapse
Affiliation(s)
- Rudolf J Schilder
- Pennsylvania State University, Department of Entomology, 501 Ag Sciences & Industries Building, State College, PA 16802, USA .,Pennsylvania State University, Department of Biology, 501 Ag Sciences & Industries Building, State College, PA 16802, USA
| | - Hannah Stewart
- Pennsylvania State University, Department of Entomology, 501 Ag Sciences & Industries Building, State College, PA 16802, USA
| |
Collapse
|
4
|
Cai Z, Yao Z, Li Y, Xi Z, Bourtzis K, Zhao Z, Bai S, Zhang H. Intestinal probiotics restore the ecological fitness decline of Bactrocera dorsalis by irradiation. Evol Appl 2018; 11:1946-1963. [PMID: 30459840 PMCID: PMC6231467 DOI: 10.1111/eva.12698] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 08/09/2018] [Accepted: 08/15/2018] [Indexed: 12/18/2022] Open
Abstract
The sterile insect technique (SIT) as an eco-friendly and reliable strategy has been used to control populations of insect pests of agricultural, veterinary and human health importance. Successful applications of SIT rely on the high-level ecological fitness of sterile males. A suitable and stable gut microbiome can contribute to the ecological fitness of insect by influencing their physiology, biochemistry and development processes. Here, we show that a shift in the gut bacterial composition and structure by sterilizing irradiation, characterized by a decrease in the major gut microbiota community Enterobacteriaceae, an expansion of the minor members (e.g., Bacillaceae) and a higher richness and diversity, is tightly linked to radiation-induced ecological fitness (male mating competitiveness, flight capacity, survival rate and life span) decline in Bactrocera dorsalis (Hendel) sterile males. Function prediction of gut microbiota indicated that changes in microbiome taxonomy tend to drive microbiome functional shifts. A higher nutrient consumption of the flourishing minor gut microbiota may cause a decline in nutrients and energy metabolic activity of host and then result in the reduced ecological fitness of irradiated flies. Furthermore, we found that a gut bacterial strain Klebsiella oxytoca (BD177) can restore ecological fitness by improving food intake and increasing haemolymph sugar and amino acid levels of irradiated B. dorsalis flies. Our findings suggest that gut symbiont-based probiotics can be used as agents for reversing radiation-induced ecological fitness decrease.
Collapse
Affiliation(s)
- Zhaohui Cai
- State Key Laboratory of Agricultural MicrobiologyKey Laboratory of Horticultural Plant Biology (MOE)China‐Australia Joint Research Centre for Horticultural and Urban PestsInstitute of Urban and Horticultural EntomologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Zhichao Yao
- State Key Laboratory of Agricultural MicrobiologyKey Laboratory of Horticultural Plant Biology (MOE)China‐Australia Joint Research Centre for Horticultural and Urban PestsInstitute of Urban and Horticultural EntomologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yushan Li
- State Key Laboratory of Agricultural MicrobiologyKey Laboratory of Horticultural Plant Biology (MOE)China‐Australia Joint Research Centre for Horticultural and Urban PestsInstitute of Urban and Horticultural EntomologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Zhiyong Xi
- Department of Microbiology and Molecular GeneticsMichigan State UniversityEast LansingMichigan
| | - Kostas Bourtzis
- Insect Pest Control LaboratoryJoint FAO/IAEA Division of Nuclear Techniques in Food and AgricultureVienna International CentreViennaAustria
| | - Zheng Zhao
- State Key Laboratory of Agricultural MicrobiologyKey Laboratory of Horticultural Plant Biology (MOE)China‐Australia Joint Research Centre for Horticultural and Urban PestsInstitute of Urban and Horticultural EntomologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Shuai Bai
- State Key Laboratory of Agricultural MicrobiologyKey Laboratory of Horticultural Plant Biology (MOE)China‐Australia Joint Research Centre for Horticultural and Urban PestsInstitute of Urban and Horticultural EntomologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Hongyu Zhang
- State Key Laboratory of Agricultural MicrobiologyKey Laboratory of Horticultural Plant Biology (MOE)China‐Australia Joint Research Centre for Horticultural and Urban PestsInstitute of Urban and Horticultural EntomologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
5
|
Pathogenic and endosymbiont apicomplexans in Ctenocephalides felis (Siphonaptera: Pulicidae) from cats in Jerusalem, Israel. Comp Immunol Microbiol Infect Dis 2018; 57:29-33. [PMID: 30017075 DOI: 10.1016/j.cimid.2018.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/20/2018] [Accepted: 03/12/2018] [Indexed: 11/20/2022]
Abstract
This study was conducted to determine the prevalence of pathogenic and endosymbiont apicomplexans in the cat flea, Ctenocephalides felis (Bouché) infesting 185 stray cats in Jerusalem, Israel using PCR assay and sequencing approach. Two pathogens, Hepatozoon felis and Babesia vogeli and an endosymbiont Steinina ctenocephali were detected in 1.9%, 0.2% and 5.8% of 685 C. felis evaluated respectively. There was a significant association (p < 0.05) between the prevalence of H. felis and the sex of cats hosting the fleas as well as the season of sampling but not for age or health status of the cats or sex of the fleas tested. Prevalence of S. ctenocephali was significantly (p < 0.001) associated with season, being higher in the warm season. This report represents the first molecular detection of S. ctenocephali in C. felis. Further studies to determine the potential role of C. felis in the epidemiology of H. felis and B. vogeli are warranted.
Collapse
|
6
|
Ravi S, Schilder RJ, Berg AS, Kimball SR. Effects of age and hindlimb immobilization and remobilization on fast troponin T precursor mRNA alternative splicing in rat gastrocnemius muscle. Appl Physiol Nutr Metab 2015; 41:142-9. [PMID: 26799695 DOI: 10.1139/apnm-2015-0381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fast skeletal muscle troponin T (TNNT3) is an important component of the skeletal muscle contractile machinery. The precursor mRNA (pre-mRNA) encoding TNNT3 is alternatively spliced, and changes in the pattern of TNNT3 splice form expression are associated with alterations in thin-filament calcium sensitivity and force production during muscle contraction and thereby regulate muscle function. Interestingly, during aging, the muscle force/cross-sectional area is reduced, suggesting that loss of mass does not completely account for the impaired muscle function that develops during the aging process. Therefore, in this study, we tested the hypothesis that age and changes in muscle loading are associated with alterations in Tnnt3 alternative splicing in the rat gastrocnemius muscle. We found that the relative abundance of several Tnnt3 splice forms varied significantly with age among 2-, 9-, and 18-month-old rats and that the pattern correlated with changes in body mass rather than muscle mass. Hindlimb immobilization for 7 days resulted in dramatic alterations in splice form relative abundance such that the pattern was similar to that observed in lighter animals. Remobilization for 7 days restored the splicing pattern toward that observed in the nonimmobilized limb, even though muscle mass had not yet begun to recover. In conclusion, the results suggest that Tnnt3 pre-mRNA alternative splicing is modulated rapidly (i.e., within days) in response to changes in the load placed on the muscle. Moreover, the results show that restoration of Tnnt3 alternative splicing to control patterns is initiated prior to an increase in muscle mass.
Collapse
Affiliation(s)
- Suhana Ravi
- a Department of Cellular and Molecular Physiology, H166, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | - Rudolf J Schilder
- b Departments of Entomology and Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Arthur S Berg
- c Department of Public Health Sciences, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | - Scot R Kimball
- a Department of Cellular and Molecular Physiology, H166, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
7
|
Coble J, Schilder RJ, Berg A, Drummond MJ, Rasmussen BB, Kimball SR. Influence of ageing and essential amino acids on quantitative patterns of troponin T alternative splicing in human skeletal muscle. Appl Physiol Nutr Metab 2015. [PMID: 26201856 DOI: 10.1139/apnm-2014-0568] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ageing is associated with a loss of skeletal muscle performance, a condition referred to as sarcopenia. In part, the age-related reduction in performance is due to a selective loss of muscle fiber mass, but mass-independent effects have also been demonstrated. An important mass-independent determinant of muscle performance is the pattern of expression of isoforms of proteins that participate in muscle contraction (e.g., the troponins). In the present study, we tested the hypothesis that ageing impairs alternative splicing of the pre-mRNA encoding fast skeletal muscle troponin T (TNNT3) in human vastus lateralis muscle. Furthermore, we hypothesized that resistance exercise alone or in combination with consumption of essential amino acids would attenuate age-associated effects on TNNT3 alternative splicing. Our results indicate that ageing negatively affects the pattern of TNNT3 alternative splicing in a manner that correlates quantitatively with age-associated reductions in muscle performance. Interestingly, whereas vastus lateralis TNNT3 alternative splicing was unaffected by a bout of resistance exercise 24 h prior to muscle biopsy, ingestion of a mixture of essential amino acids after resistance exercise resulted in a significant shift in the pattern of TNNT3 splice form expression in both age groups to one predicted to promote greater muscle performance. We conclude that essential amino acid supplementation after resistance exercise may provide a means to reduce impairments in skeletal muscle quality during ageing in humans.
Collapse
Affiliation(s)
- Joel Coble
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Rudolf J Schilder
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
| | - Arthur Berg
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Micah J Drummond
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, TX 77555
| | - Blake B Rasmussen
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, TX 77555
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| |
Collapse
|
8
|
Portman SL, Kariyat RR, Johnston MA, Stephenson AG, Marden JH. Cascading effects of host plant inbreeding on the larval growth, muscle molecular composition, and flight capacity of an adult herbivorous insect. Funct Ecol 2014. [DOI: 10.1111/1365-2435.12358] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Scott L. Portman
- Department of Biology The Pennsylvania State University 208 Mueller LaboratoryUniversity Park Pennsylvania 16802 USA
| | - Rupesh R. Kariyat
- Department of Environmental Systems Science ETH Zürich8092 Zürich Switzerland
| | - Michelle A. Johnston
- Department of Biology The Pennsylvania State University 208 Mueller LaboratoryUniversity Park Pennsylvania 16802 USA
| | - Andrew G. Stephenson
- Department of Biology The Pennsylvania State University 208 Mueller LaboratoryUniversity Park Pennsylvania 16802 USA
| | - James H. Marden
- Department of Biology The Pennsylvania State University 208 Mueller LaboratoryUniversity Park Pennsylvania 16802 USA
| |
Collapse
|
9
|
Scruggs SB, Reisdorph R, Armstrong ML, Warren CM, Reisdorph N, Solaro RJ, Buttrick PM. A novel, in-solution separation of endogenous cardiac sarcomeric proteins and identification of distinct charged variants of regulatory light chain. Mol Cell Proteomics 2010; 9:1804-18. [PMID: 20445002 DOI: 10.1074/mcp.m110.000075] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular conformation of the cardiac myosin motor is modulated by intermolecular interactions among the heavy chain, the light chains, myosin binding protein-C, and titin and is governed by post-translational modifications (PTMs). In-gel digestion followed by LC/MS/MS has classically been applied to identify cardiac sarcomeric PTMs; however, this approach is limited by protein size, pI, and difficulties in peptide extraction. We report a solution-based work flow for global separation of endogenous cardiac sarcomeric proteins with a focus on the regulatory light chain (RLC) in which specific sites of phosphorylation have been unclear. Subcellular fractionation followed by OFFGEL electrophoresis resulted in isolation of endogenous charge variants of sarcomeric proteins, including regulatory and essential light chains, myosin heavy chain, and myosin-binding protein-C of the thick filament. Further purification of RLC using reverse-phase HPLC separation and UV detection enriched for RLC PTMs at the intact protein level and provided a stoichiometric and quantitative assessment of endogenous RLC charge variants. Digestion and subsequent LC/MS/MS unequivocally identified that the endogenous charge variants of cardiac RLC focused in unique OFFGEL electrophoresis fractions were unphosphorylated (78.8%), singly phosphorylated (18.1%), and doubly phosphorylated (3.1%) RLC. The novel aspects of this study are that 1) milligram amounts of endogenous cardiac sarcomeric subproteome were focused with resolution comparable with two-dimensional electrophoresis, 2) separation and quantification of post-translationally modified variants were achieved at the intact protein level, 3) separation of intact high molecular weight thick filament proteins was achieved in solution, and 4) endogenous charge variants of RLC were separated; a novel doubly phosphorylated form was identified in mouse, and singly phosphorylated, singly deamidated, and deamidated/phosphorylated forms were identified and quantified in human non-failing and failing heart samples, thus demonstrating the clinical utility of the method.
Collapse
Affiliation(s)
- Sarah B Scruggs
- Department of Physiology and Biophysics, University of Illinois, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Molleman F, Ding J, Boggs CL, Carey JR, Arlet ME. Does dietary restriction reduce life span in male fruit-feeding butterflies? Exp Gerontol 2009; 44:601-6. [PMID: 19580860 DOI: 10.1016/j.exger.2009.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 06/16/2009] [Accepted: 06/25/2009] [Indexed: 12/29/2022]
Abstract
Male life history and resource allocation is not frequently studied in aging and life span research. Here, we verify that males of long-lived fruit-feeding butterfly species have reduced longevity on restricted diets [Beck, J., 2007. The importance of amino acids in the adult diet of male tropical rainforest butterflies. Oecologia 151, 741-747], in contrast to the common finding of longevity extension in dietary restriction experiments in Drosophila and some other organisms. Males of some of the most long-lived species of fruit-feeding butterflies were collected from Kibale Forest, Uganda, and kept on diets of either sugar or mashed banana. Seven out of eight species had non-significantly longer life spans on mashed banana diets. Data analysis using a time-varying Cox-model with species as covariate showed that males had reduced survival on the sugar diet during the first 35 days of captive life, but the effect was absent or reversed at more advanced ages. These results challenge the generality of dietary restriction as a way to extend life span in animals. We argue that such studies on males are promising tools for better understanding life history evolution and aging because males display a wider variety of tactics for obtaining reproductive success than females.
Collapse
Affiliation(s)
- Freerk Molleman
- Department of Entomology, University of California, Davis, Davis, CA 95616, USA.
| | | | | | | | | |
Collapse
|
11
|
Serrano-Meneses MA, Córdoba-Aguilar A, Azpilicueta-Amorín M, González-Soriano E, Székely T. Sexual selection, sexual size dimorphism and Rensch’s rule in Odonata. J Evol Biol 2008; 21:1259-73. [PMID: 18636976 DOI: 10.1111/j.1420-9101.2008.01567.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|