1
|
Xu C, Chen J, Muijres FT, Yu Y, Jarzembowski EA, Zhang H, Wang B. Enhanced flight performance and adaptive evolution of Mesozoic giant cicadas. SCIENCE ADVANCES 2024; 10:eadr2201. [PMID: 39454006 PMCID: PMC11506159 DOI: 10.1126/sciadv.adr2201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/23/2024] [Indexed: 10/27/2024]
Abstract
Insects have evolved diverse ecological flight behaviors and adaptations that played a key role in their large-scale evolutionary patterns. However, the evolution of their flight performance is poorly understood because reconstructing flight abilities of extinct insects is highly challenging. Here, we propose an integrated approach to reveal the evolution of flight performance of Palaeontinidae (giant cicadas), a Mesozoic arboreal insect clade with large bodies and wings. Our analyses unveil a faunal turnover from early to late Palaeontinidae during the latest Jurassic-earliest Cretaceous, accompanied by a morphological adaptive shift and remarkable improvement in flight abilities including increased flight speed and enhanced maneuverability. The adaptive aerodynamic evolution of Palaeontinidae may have been stimulated by the rise of early birds, supporting the hypothesis of an aerial evolutionary arms race (Air Race) between Palaeontinidae and birds. Our results provide a potential example of predator-induced morphological and behavioral macroevolution and contribute to our understanding of how powered flight has shaped animal evolution.
Collapse
Affiliation(s)
- Chunpeng Xu
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Jena 07743, Germany
| | - Jun Chen
- Institute of Geology and Paleontology, Linyi University, Linyi 276000, China
| | - Florian T. Muijres
- Experimental Zoology Group, Wageningen University, Wageningen 6708 WD, Netherlands
| | - Yilun Yu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Edmund A. Jarzembowski
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
- Department of Earth Sciences, Natural History Museum, London SW7 5BD, UK
| | - Haichun Zhang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Bo Wang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
2
|
Li X, Zheng Y. Structural response and mechanical properties of the hind wing of the beetle Protaetia brevitarsis. Microsc Res Tech 2024; 87:2013-2026. [PMID: 38623765 DOI: 10.1002/jemt.24576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/06/2024] [Accepted: 03/23/2024] [Indexed: 04/17/2024]
Abstract
The folding/unfolding mechanism and collision recovery effect of the beetle's hind wings can provide biomimetic inspiration for the optimization of wing deplorability and the investigation of collision prevention recovery mechanism of new amphibious morphing vehicle. In this study, a method is described to investigate the structural response and mechanical properties of the hind wings of the beetle Protetia brevitarsis under natural conditions. The specially processed test samples were conducted to tensile testing, which facilitates the evaluation of the mechanical properties of specific areas of the hind wing. The micro geometric morphological characteristics of the cross-section of the specimen after tensile fracture were observed by scanning electron microscopy. The three-dimensional morphology of the ventral and dorsal sides of the hind wing was characterized using three-dimensional scanning and reverse modeling methods. The finite element model of the hind wing is developed to investigate the structural deformation and modal response characteristics of its flapping. The uniformly distributed load on the hind wing surface is derived from the lift characteristics obtained from the computational fluid dynamics simulation of flapping wing motion. RESEARCH HIGHLIGHTS: Scanning electron microscope is used to observe the cross-sectional characteristics of the veins and membranes. The material properties of the wing membranes and veins of the hind wings were measured using the tensile testing system. The three-dimensional morphology of the hind wing was characterized using 3D scanning and reverse modeling methods. The finite element model of the hind wing is developed to investigate the structural deformation and modal response characteristics of its flapping.
Collapse
Affiliation(s)
- Xin Li
- College of Mechanical and Electrical Engineering, Suqian University, Suqian, People's Republic of China
| | - Yu Zheng
- College of Mechanical and Electrical Engineering, Suqian University, Suqian, People's Republic of China
| |
Collapse
|
3
|
Shen H, Ji A, Li Q, Li X, Ma Y. Tensile mechanical properties and finite element simulation of the wings of the butterfly Tirumala limniace. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:239-251. [PMID: 35840718 DOI: 10.1007/s00359-022-01556-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 11/28/2022]
Abstract
This study examined the morphological characteristics and mechanical properties of the wings of Tirumala limniace. The wings of this butterfly, including the forewings and hindwings, are composed mainly of a flexible wing membrane and supporting wing veins. Scanning electron microscopy was employed to observe specific positions of the wing membrane and veins and reveal the morphological characteristics. Tensile experiments were conducted to evaluate the mechanical properties of the wings and proved that the multifiber layer structures have a significantly fixed orientation of fiber alignment. A butterfly wing model reconstructed in reverse based on the finite element method was used to analyze the static characteristics of the wing structure in detail. Evaluation of stress and strain after applying uniform loading, perpendicular loading, and torsion revealed that minor wing deformation occurred and was concentrated near the main wing vein, which verifies the steadiness of the butterfly wing structure. Additionally, the flapping of butterfly wings was simulated using computational fluid dynamics to study the flow field near the butterfly wings and the distribution of pressure gradient on the wings. The results confirmed the effect of wing veins on maintaining the flight performance.
Collapse
Affiliation(s)
- Huan Shen
- Institute of Bio-Inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, 210016, China
| | - Aihong Ji
- Institute of Bio-Inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, 210016, China.
| | - Qian Li
- Institute of Bio-Inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, 210016, China
| | - Xin Li
- School of Mechanical and Electrical Engineering, Suqian University, Suqian, 223800, China
| | - Yaopeng Ma
- Institute of Bio-Inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, 210016, China
| |
Collapse
|
4
|
Li Q, Ji A, Shen H, Han Q, Qin G. The forewing of a black cicada Cryptotympana atrata (Hemiptera, Homoptera: Cicadidae): Microscopic structures and mechanical properties. Microsc Res Tech 2022; 85:3153-3164. [PMID: 35656939 DOI: 10.1002/jemt.24173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/18/2022] [Accepted: 05/19/2022] [Indexed: 11/06/2022]
Abstract
Insects in nature flap their wings to generate lift force and driving torque to adjust their attitude and control stability. An insect wing is a biomaterial composed of flexible membranes and tough veins. In this paper, we study the microscopic structures and mechanical properties of the forewing of the black cicada, Cryptotympana atrata. The thickness of the wing membranes and the diameter of veins varied from the wing root to the tip. The thickness of the wing membranes ranged from 6.0 to 29.9 μm, and the diameter of the wing veins decreased in a gradient from the wing root to the tip, demonstrating that the forewing of the black cicada is a nonuniform biomaterial. The elastic modulus of the membrane near the wing root ranged from 4.45 to 5.03 GPa, which is comparable to that of some industrial membranes. The microstructure of the wing vein exhibited a hollow tubular structure with flocculent structure inside. The "fresh" sample stored more water than the "dry" sample, resulting in a significant difference in the elastic modulus between the fresh and dried veins. The different membrane thicknesses and elastic moduli of the wing veins near the root and tip resulted in varied degrees of deformation on both sides of the flexion line of the forewing during twisting. The measurements of the forewing of the cicada may serve as a guide for selecting airfoil materials for the bionic flapping-wing aircraft and promote the design and manufacture of more durable bionic wings in the future.
Collapse
Affiliation(s)
- Qian Li
- Institute of Bio-Inspired Structure and Surface Engineering, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Aihong Ji
- Institute of Bio-Inspired Structure and Surface Engineering, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Huan Shen
- Institute of Bio-Inspired Structure and Surface Engineering, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Qingfei Han
- Institute of Bio-Inspired Structure and Surface Engineering, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Guodong Qin
- Institute of Bio-Inspired Structure and Surface Engineering, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| |
Collapse
|
5
|
Ma Y, Quan C, Jiang H, He X, Yang F. Measurement of natural frequencies and mode shapes of transparent insect wings using common-path ESPI. OPTICS EXPRESS 2022; 30:18447-18460. [PMID: 36221645 DOI: 10.1364/oe.451968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/06/2022] [Indexed: 06/16/2023]
Abstract
In this study, a common-path electronic speckle pattern interferometry system which upholds the natural property of transparency of insect's wings has been developed to measure the wings' natural frequencies and mode shapes for the first time. A novel base-exciting method was designed to enable the simultaneous application of sinusoidal and static forces to excite wings and introduce an additional phase. The moiré effect induced by the amplitude modulation was employed to accurately recognize the resonance state. Subsequently, the mode shapes were visualized by phase-shifting and real-time frame subtraction. Eight pairs of forewings from cicadas were investigated. The first three order natural frequencies of the wings are approximately 145 Hz, 272 Hz and 394 Hz, respectively, which are dispersed to prevent modal coupling. The cambered mode shapes exhibit a strongly spanwise-chordwise anisotropy flexural stiffness distribution, generally dominated by bending and twisting deformation. The details of the high-order mode shapes show that the tip exhibits distinct deformation, indicating more flexibility to cope with external impact load, and the nodal lines usually comply with the direction of the wing veins in higher modes, substantiating the fact that the veins play an important role as stiffeners of the membrane. The results are in excellent agreement with the dynamic performance of previous studies, which will potentially affect a broader community of optical measurement specialists and entomologists to enhance our understanding of time-averaged interferograms and insect flights.
Collapse
|
6
|
Velic A, Jaggessar A, Tesfamichael T, Li Z, Yarlagadda PKDV. Effects of Nanopillar Size and Spacing on Mechanical Perturbation and Bactericidal Killing Efficiency. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2472. [PMID: 34684913 PMCID: PMC8540829 DOI: 10.3390/nano11102472] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/18/2021] [Indexed: 12/30/2022]
Abstract
Nanopatterned surfaces administer antibacterial activity through contact-induced mechanical stresses and strains, which can be modulated by changing the nanopattern's radius, spacing and height. However, due to conflicting recommendations throughout the theoretical literature with poor agreement to reported experimental trends, it remains unclear whether these key dimensions-particularly radius and spacing-should be increased or decreased to maximize bactericidal efficiency. It is shown here that a potential failure of biophysical models lies in neglecting any out-of-plane effects of nanopattern contact. To highlight this, stresses induced by a nanopattern were studied via an analytical model based on minimization of strain and adhesion energy. The in-plane (areal) and out-of-plane (contact pressure) stresses at equilibrium were derived, as well as a combined stress (von Mises), which comprises both. Contour plots were produced to illustrate which nanopatterns elicited the highest stresses over all combinations of tip radius between 0 and 100 nm and center spacing between 0 and 200 nm. Considering both the in-plane and out-of-plane stresses drastically transformed the contour plots from those when only in-plane stress was evaluated, clearly favoring small tipped, tightly packed nanopatterns. In addition, the effect of changes to radius and spacing in terms of the combined stress showed the best qualitative agreement with previous reported trends in killing efficiency. Together, the results affirm that the killing efficiency of a nanopattern can be maximized by simultaneous reduction in tip radius and increase in nanopattern packing ratio (i.e., radius/spacing). These findings provide a guide for the design of highly bactericidal nanopatterned surfaces.
Collapse
Affiliation(s)
| | | | | | | | - Prasad K. D. V. Yarlagadda
- School of Mechanical, Medical and Process Engineering, Engineering Faculty, and Centre for Biomedical Technologies, Queensland University of Technology, 2 George St, Brisbane, QLD 4000, Australia; (A.V.); (A.J.); (T.T.); (Z.L.)
| |
Collapse
|
7
|
Ma Y, Ma T, Ning J, Gorb S. Structure and tensile properties of the forewing costal vein of the honeybee Apis mellifera. SOFT MATTER 2020; 16:4057-4064. [PMID: 32285868 DOI: 10.1039/c9sm02364j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, we investigated the morphological features and tensile properties of the forewing costal vein of the honeybee (Apis mellifera) under fresh, dry and in vitro-time varied conditions. The costal vein is composed of an outer sub-vein and an inner vein starting from the wing base to nearly 50% of the wing span and then they are fused into one vein extending to the wing tip. Confocal laser scanning microscopy revealed that the outer sub-vein with red autofluorescence is stiffer than the inner one with green autofluorescence, and the membrane in the gap between the sub-veins exhibited a long blue-autofluorescence resilin stripe. Considering the irregular cross-sectional shape of the costal vein, cross-sections of the tested specimens after tensile failure were analysed using scanning electron microscopy, to precisely calculate their cross-sectional areas by a customized MATLAB program. The Young's modulus and tensile strength of fresh specimens were ∼4.78 GPa and ∼119.84 MPa, which are lower than those of dry specimens (∼9.08 GPa and ∼154.45 MPa). However, the tensile strain had the opposite relationship (fresh: ∼0.031, dry: ∼0.018). Thus, specimen desiccation results in increasing stiffness and brittleness. The morphological features and material properties of the costal vein taken together represent a tradeoff between both deformability and stiffness. Our study provides guidance for material selection and bionic design of the technical wings of flapping micro aerial vehicles.
Collapse
Affiliation(s)
- Yun Ma
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China. and Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel 24118, Germany
| | - Tianbao Ma
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Jianguo Ning
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Stanislav Gorb
- Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel 24118, Germany
| |
Collapse
|
8
|
Li X, Guo C. Microstructure and material properties of hind wings of a bamboo weevil
Cyrtotrachelus buqueti
(Coleoptera: Curculionidae). Microsc Res Tech 2019; 82:1102-1113. [DOI: 10.1002/jemt.23258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/31/2019] [Accepted: 03/02/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Xin Li
- College of Mechanical and Electrical EngineeringNanjing University of Aeronautics and Astronautics Nanjing China
- Institute of Bio‐inspired Structure and Surface EngineeringNanjing University of Aeronautics and Astronautics Nanjing China
| | - Ce Guo
- Institute of Bio‐inspired Structure and Surface EngineeringNanjing University of Aeronautics and Astronautics Nanjing China
| |
Collapse
|
9
|
Li X, Guo C, Li L. Functional morphology and structural characteristics of the hind wings of the bamboo weevil Cyrtotrachelus buqueti (Coleoptera, Curculionidae). Anim Cells Syst (Seoul) 2019; 23:143-153. [PMID: 30949402 PMCID: PMC6440521 DOI: 10.1080/19768354.2019.1592020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 10/24/2018] [Accepted: 11/14/2018] [Indexed: 11/18/2022] Open
Abstract
Research data of the microstructure and surface morphology of insect wings have been used to help design micro air vehicles (MAV) and coating materials. The present study aimed to examine the microstructure and morphology of the hind wings of Cyrtotrachelus buqueti using inverted fluorescence microscopy (IFM), scanning electron microscopy (SEM), and a mechanical testing system. IFM was used to investigate the distribution of resilin in the hind wing, and SEM was performed to assess the functional characteristics and cross-sectional microstructure of the wings. Moreover, mechanical properties regarding the intersecting location of folding lines and the bending zone (BZ) were examined. Resilin, a rubber-like protein, was found in several mobile joints and in veins walls that are connected to the wing membranes. Taken together, structural data, unfolding motions, and results of tensile testing suggest two conclusions on resilin in the hind wing of C. buqueti: firstly, the resilin distribution is likely associated with specific folding mechanisms of the hind wings, and secondly, resilin occurs at positions where additional elasticity is needed, such as in the bending zone, in order to prevent structural damage during repeated folding and unfolding of the hind wings. The functional significance of resilin joints may shed light on the evolutionary relationship between morphological and structural hind wing properties.
Collapse
Affiliation(s)
- Xin Li
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China.,Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Ce Guo
- Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Longhai Li
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China.,Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| |
Collapse
|
10
|
Sun H, Haohan Z, Li M. Microstructure and nanomechanical properties of foreleg surface of the praying mantis ( Mantis religiosaLinnaeus). BIOSURFACE AND BIOTRIBOLOGY 2018. [DOI: 10.1049/bsbt.2018.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Hongliang Sun
- School of Mechanical EngineeringXi'an JiaoTong UniversityXi'an710049People's Republic of China
- State Key Laboratory for Manufacturing Systems EngineeringXi'an JiaoTong UniversityXi'an710049People's Republic of China
- School of Mechanical and Electronic EngineeringYunnan Open UniversityKunming650223People's Republic of China
| | - Zhang Haohan
- School of Mechanical and Electronic EngineeringYunnan Open UniversityKunming650223People's Republic of China
| | - Mo Li
- Key Laboratory of Bionic Engineering (Ministry of EducationChina)Jilin UniversityChangchun130022People's Republic of China
| |
Collapse
|
11
|
Differences in Nanostructure and Hydrophobicity of Cicada ( Cryptotympana atrata) Forewing Surface with the Distribution of Precipitation. Appl Bionics Biomech 2018; 2018:5305847. [PMID: 29849761 PMCID: PMC5903195 DOI: 10.1155/2018/5305847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/02/2018] [Indexed: 12/02/2022] Open
Abstract
Although the cicada wing has a variety of functions and the nanostructure and surface properties of many species have been extensively investigated, there are no reports investigating diversity of nanostructures and wetting properties within a single species collected at locations with different rainfall conditions. In this study, the hydrophobicity and nanostructure dimensions of the forewing surface of Cryptotympana atrata were measured, based on specimens collected from 12 distributions with varying precipitation averages in China and Japan. The relationships among hydrophobicity, nanostructures, and precipitation were analyzed, and the adaption of hydrophobic nanostructures under different wet environments is discussed. The precipitation of locations in the years the samples of C. atrata were collected only has an effect on the diameter and spacing of wing surface nanostructure, and the multiple years of precipitation may have an influence on the basic diameter and spacing, as well as the height of protrusions. The rougher the wing surface, the stronger the hydrophobicity which was observed from samples taken where the rainfall conditions of the collection years are high. To our knowledge, this is one special example providing evidence of hydrophobic nanostructures found on a biological surface of a single species which shows adaption for specific wet environments.
Collapse
|
12
|
Schroeder TBH, Houghtaling J, Wilts BD, Mayer M. It's Not a Bug, It's a Feature: Functional Materials in Insects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705322. [PMID: 29517829 DOI: 10.1002/adma.201705322] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/15/2017] [Indexed: 05/25/2023]
Abstract
Over the course of their wildly successful proliferation across the earth, the insects as a taxon have evolved enviable adaptations to their diverse habitats, which include adhesives, locomotor systems, hydrophobic surfaces, and sensors and actuators that transduce mechanical, acoustic, optical, thermal, and chemical signals. Insect-inspired designs currently appear in a range of contexts, including antireflective coatings, optical displays, and computing algorithms. However, as over one million distinct and highly specialized species of insects have colonized nearly all habitable regions on the planet, they still provide a largely untapped pool of unique problem-solving strategies. With the intent of providing materials scientists and engineers with a muse for the next generation of bioinspired materials, here, a selection of some of the most spectacular adaptations that insects have evolved is assembled and organized by function. The insects presented display dazzling optical properties as a result of natural photonic crystals, precise hierarchical patterns that span length scales from nanometers to millimeters, and formidable defense mechanisms that deploy an arsenal of chemical weaponry. Successful mimicry of these adaptations may facilitate technological solutions to as wide a range of problems as they solve in the insects that originated them.
Collapse
Affiliation(s)
- Thomas B H Schroeder
- Department of Chemical Engineering, University of Michigan, 2300 Hayward Street, Ann Arbor, MI, 48109, USA
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Jared Houghtaling
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, MI, 48109, USA
| | - Bodo D Wilts
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Michael Mayer
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| |
Collapse
|
13
|
Bandara CD, Singh S, Afara IO, Wolff A, Tesfamichael T, Ostrikov K, Oloyede A. Bactericidal Effects of Natural Nanotopography of Dragonfly Wing on Escherichia coli. ACS APPLIED MATERIALS & INTERFACES 2017; 9:6746-6760. [PMID: 28139904 DOI: 10.1021/acsami.6b13666] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nanotextured surfaces (NTSs) are critical to organisms as self-adaptation and survival tools. These NTSs have been actively mimicked in the process of developing bactericidal surfaces for diverse biomedical and hygiene applications. To design and fabricate bactericidal topographies effectively for various applications, understanding the bactericidal mechanism of NTS in nature is essential. The current mechanistic explanations on natural bactericidal activity of nanopillars have not utilized recent advances in microscopy to study the natural interaction. This research reveals the natural bactericidal interaction between E. coli and a dragonfly wing's (Orthetrum villosovittatum) NTS using advanced microscopy techniques and proposes a model. Contrary to the existing mechanistic models, this experimental approach demonstrated that the NTS of Orthetrum villosovittatum dragonfly wings has two prominent nanopillar populations and the resolved interface shows membrane damage occurred without direct contact of the bacterial cell membrane with the nanopillars. We propose that the bacterial membrane damage is initiated by a combination of strong adhesion between nanopillars and bacterium EPS layer as well as shear force when immobilized bacterium attempts to move on the NTS. These findings could help guide the design of novel biomimetic nanomaterials by maximizing the synergies between biochemical and mechanical bactericidal effects.
Collapse
Affiliation(s)
- Chaturanga D Bandara
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT) , Brisbane, Queensland 4001, Australia
- Institute for Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT) , Kelvin Grove, Queensland 4059, Australia
| | - Sanjleena Singh
- Institute for Future Environments, Queensland University of Technology (QUT) , Brisbane, Queensland 4001, Australia
| | - Isaac O Afara
- Research and Innovation Centre, Elizade University , 1 Wuraola Ade.Ojo Avenue, P.M.B 002, Ilara-Mokin, Ondo State, Nigeria
| | - Annalena Wolff
- Institute for Future Environments, Queensland University of Technology (QUT) , Brisbane, Queensland 4001, Australia
| | - Tuquabo Tesfamichael
- Institute for Future Environments, Queensland University of Technology (QUT) , Brisbane, Queensland 4001, Australia
| | - Kostya Ostrikov
- Institute for Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT) , Kelvin Grove, Queensland 4059, Australia
- Institute for Future Environments, Queensland University of Technology (QUT) , Brisbane, Queensland 4001, Australia
| | - Adekunle Oloyede
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT) , Brisbane, Queensland 4001, Australia
- Research and Innovation Centre, Elizade University , 1 Wuraola Ade.Ojo Avenue, P.M.B 002, Ilara-Mokin, Ondo State, Nigeria
| |
Collapse
|
14
|
Abstract
Here we review recent contributions to the study of insect flight, in particular those brought about by advances in experimental techniques. We focus particularly on the following areas: wing flexibility and deformation, the physiology and biophysics of asynchronous insect flight muscle, the aerodynamics of flight, and stability and maneuverability. This recent research reveals the importance of wing flexibility to insect flight, provides a detailed model of how asynchronous flight muscle functions and how it may have evolved, synthesizes many recent studies of insect flight aerodynamics into a broad-reaching summary of unsteady flight aerodynamics, and highlights new insights into the sources of flight stability in insects. The focus on experimental techniques and recently developed apparatus shows how these advancements have occurred and point the way towards future experiments.
Collapse
Affiliation(s)
- Tyson L. Hedrick
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stacey A. Combes
- Harvard University, Concord Field Station, 100 Old Causeway Road, Bedford, MA 01730, USA
| | - Laura A. Miller
- Departments of Mathematics and Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
15
|
Wan H, Dong H, Gai K. Computational investigation of cicada aerodynamics in forward flight. J R Soc Interface 2015; 12:20141116. [PMID: 25551136 DOI: 10.1098/rsif.2014.1116] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Free forward flight of cicadas is investigated through high-speed photogrammetry, three-dimensional surface reconstruction and computational fluid dynamics simulations. We report two new vortices generated by the cicada's wide body. One is the thorax-generated vortex, which helps the downwash flow, indicating a new phenomenon of lift enhancement. Another is the cicada posterior body vortex, which entangles with the vortex ring composed of wing tip, trailing edge and wing root vortices. Some other vortex features include: independently developed left- and right-hand side leading edge vortex (LEV), dual-core LEV structure at the mid-wing region and near-wake two-vortex-ring structure. In the cicada forward flight, approximately 79% of the total lift is generated during the downstroke. Cicada wings experience drag in the downstroke, and generate thrust during the upstroke. Energetics study shows that the cicada in free forward flight consumes much more power in the downstroke than in the upstroke, to provide enough lift to support the weight and to overcome drag to move forward.
Collapse
|
16
|
Sample CS, Xu AK, Swartz SM, Gibson LJ. Nanomechanical properties of wing membrane layers in the house cricket (Acheta domesticus Linnaeus). JOURNAL OF INSECT PHYSIOLOGY 2015; 74:10-15. [PMID: 25660065 DOI: 10.1016/j.jinsphys.2015.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/23/2015] [Accepted: 01/28/2015] [Indexed: 06/04/2023]
Abstract
Many insect wings change shape dynamically during the wingbeat cycle, and these deformations have the potential to confer energetic and aerodynamic benefits during flight. Due to the lack of musculature within the wing itself, the changing form of the wing is determined primarily by its passive response to inertial and aerodynamic forces. This response is in part controlled by the wing's mechanical properties, which vary across the membrane to produce regions of differing stiffness. Previous studies of wing mechanical properties have largely focused on surface or bulk measurements, but this ignores the layered nature of the wing. In our work, we investigated the mechanical properties of the wings of the house cricket (Acheta domesticus) with the aim of determining differences between layers within the wing. Nanoindentation was performed on both the surface and the interior layers of cross-sectioned samples of the wing to measure the Young's modulus and hardness of the outer- and innermost layers. The results demonstrate that the interior of the wing is stiffer than the surface, and both properties vary across the wing.
Collapse
Affiliation(s)
- Caitlin S Sample
- Department of Materials Science and Engineering, MIT, 77 Mass. Ave., Cambridge, MA 02139, USA.
| | - Alan K Xu
- Department of Mechanical Engineering, MIT, 77 Mass. Ave., Cambridge, MA 02139, USA.
| | - Sharon M Swartz
- Department of Ecology and Evolutionary Biology and School of Engineering, Box G-B206, Brown University, Providence, RI 02912, USA.
| | - Lorna J Gibson
- Department of Materials Science and Engineering, MIT, 77 Mass. Ave., Cambridge, MA 02139, USA.
| |
Collapse
|
17
|
Wang X, Song W, Li Z, Cong Q. Fabrication of superhydrophobic AAO-Ag multilayer mimicking dragonfly wings. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11434-012-5348-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
O'Hara RP, Palazotto AN. The morphological characterization of the forewing of the Manduca sexta species for the application of biomimetic flapping wing micro air vehicles. BIOINSPIRATION & BIOMIMETICS 2012; 7:046011. [PMID: 23093001 DOI: 10.1088/1748-3182/7/4/046011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
To properly model the structural dynamics of the forewing of the Manduca sexta species, it is critical that the material and structural properties of the biological specimen be understood. This paper presents the results of a morphological study that has been conducted to identify the material and structural properties of a sample of male and female Manduca sexta specimens. The average mass, area, shape, size and camber of the wing were evaluated using novel measurement techniques. Further emphasis is placed on studying the critical substructures of the wing: venation and membrane. The venation cross section is measured using detailed pathological techniques over the entire venation of the wing. The elastic modulus of the leading edge veins is experimentally determined using advanced non-contact structural dynamic techniques. The membrane elastic modulus is randomly sampled over the entire wing to determine global material properties for the membrane using nanoindentation. The data gathered from this morphological study form the basis for the replication of future finite element structural models and engineered biomimetic wings for use with flapping wing micro air vehicles.
Collapse
Affiliation(s)
- R P O'Hara
- Department of Aeronautics and Astronautics, Air Force Institute of Technology/ENY, 2950 Hobson Way, Wright-Patterson AFB, OH 45458, USA.
| | | |
Collapse
|
19
|
Changing resonator geometry to boost sound power decouples size and song frequency in a small insect. Proc Natl Acad Sci U S A 2012; 109:E1444-52. [PMID: 22547790 DOI: 10.1073/pnas.1200192109] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite their small size, some insects, such as crickets, can produce high amplitude mating songs by rubbing their wings together. By exploiting structural resonance for sound radiation, crickets broadcast species-specific songs at a sharply tuned frequency. Such songs enhance the range of signal transmission, contain information about the signaler's quality, and allow mate choice. The production of pure tones requires elaborate structural mechanisms that control and sustain resonance at the species-specific frequency. Tree crickets differ sharply from this scheme. Although they use a resonant system to produce sound, tree crickets can produce high amplitude songs at different frequencies, varying by as much as an octave. Based on an investigation of the driving mechanism and the resonant system, using laser Doppler vibrometry and finite element modeling, we show that it is the distinctive geometry of the crickets' forewings (the resonant system) that is responsible for their capacity to vary frequency. The long, enlarged wings enable the production of high amplitude songs; however, as a mechanical consequence of the high aspect ratio, the resonant structures have multiple resonant modes that are similar in frequency. The drive produced by the singing apparatus cannot, therefore, be locked to a single frequency, and different resonant modes can easily be engaged, allowing individual males to vary the carrier frequency of their songs. Such flexibility in sound production, decoupling body size and song frequency, has important implications for conventional views of mate choice, and offers inspiration for the design of miniature, multifrequency, resonant acoustic radiators.
Collapse
|
20
|
Sun M, Liang A, Watson GS, Watson JA, Zheng Y, Ju J, Jiang L. Influence of cuticle nanostructuring on the wetting behaviour/states on cicada wings. PLoS One 2012; 7:e35056. [PMID: 22536351 PMCID: PMC3335046 DOI: 10.1371/journal.pone.0035056] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 03/08/2012] [Indexed: 11/24/2022] Open
Abstract
The nanoscale protrusions of different morphologies on wing surfaces of four cicada species were examined under an environmental scanning electron microscope (ESEM). The water contact angles (CAs) of the wing surfaces were measured along with droplet adhesion values using a high-sensitivity microelectromechanical balance system. The water CA and adhesive force measurements obtained were found to relate to the nanostructuring differences of the four species. The adhesive forces in combination with the Cassie-Baxter and Wenzel approximations were used to predict wetting states of the insect wing cuticles. The more disordered and inhomogeneous surface of the species Leptopsalta bifuscata demonstrated a Wenzel type wetting state or an intermediate state of spreading and imbibition with a CA of 81.3° and high adhesive force of 149.5 µN. Three other species (Cryptotympana atrata, Meimuna opalifer and Aola bindusara) exhibited nanostructuring of the form of conically shaped protrusions, which were spherically capped. These surfaces presented a range of high adhesional values; however, the CAs were highly hydrophobic (C. atrata and A. bindusara) and in some cases close to superhydrophobic (M. opalifer). The wetting states of A. bindusara, C. atrata and M. opalifer (based on adhesion and CAs) are most likely represented by the transitional region between the Cassie-Baxter and Wenzel approximations to varying degrees.
Collapse
Affiliation(s)
- Mingxia Sun
- Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Aiping Liang
- Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Gregory S. Watson
- School of Pharmacy and Molecular Sciences, James Cook University, Townsville, Queensland, Australia
| | - Jolanta A. Watson
- School of Pharmacy and Molecular Sciences, James Cook University, Townsville, Queensland, Australia
| | - Yongmei Zheng
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing, China
| | - Jie Ju
- Center of Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Lei Jiang
- Center of Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Green DW, Watson GS, Watson J, Abraham SJK. New biomimetic directions in regenerative ophthalmology. Adv Healthc Mater 2012. [PMID: 23184716 DOI: 10.1002/adhm.201100039] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
One of the most complete and permanent ways of treating many causes of visual impairment and blindness is to replace the entire affected tissue with pre-cultured ocular tissues supported and maintained on biomaterial frameworks. One direction towards enhancing ocular tissue regeneration on biomaterials, in the laboratory is by applying biomimicry. Specifically to engineer biomaterials with important functional elements of the native extracellular matrices, such as topography, that support and organise cells into coherent tissues. Further problems in regenerative ophthalmology can be potentially solved through application of biomimicry. They include, more efficient ways of moving and transplanting cultivated tissues into correct therapeutic locations inside the eye and scar-less, non-destructive healing of surgical incisions and wounds, to repair structural integrity of tissues at the ocular surface. Two examples are given to show this potential for redeveloping an ocular epithelium onto a nanostructured insect wing surface and producing an origami membrane modelled on deployable structures in nature. Efforts to harness natural innovation will eventually provide unique designs and structures that cannot for now be made synthetically, for regeneration of clinically acceptable ocular tissues.
Collapse
Affiliation(s)
- David W Green
- Queensland Eye Institute, 41, Annerley Road, Brisbane 4001, QLD, Australia.
| | | | | | | |
Collapse
|
22
|
Ha NS, Jin TL, Goo NS, Park HC. Anisotropy and non-homogeneity of an Allomyrina Dichotoma beetle hind wing membrane. BIOINSPIRATION & BIOMIMETICS 2011; 6:046003. [PMID: 21992989 DOI: 10.1088/1748-3182/6/4/046003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Biomimetics is one of the most important paradigms as researchers seek to invent better engineering designs over human history. However, the observation of insect flight is a relatively recent work. Several researchers have tried to address the aerodynamic performance of flapping creatures and other natural properties of insects, although there are still many unsolved questions. In this study, we try to answer the questions related to the mechanical properties of a beetle's hind wing, which consists of a stiff vein structure and a flexible membrane. The membrane of a beetle's hind wing is small and flexible to the point that conventional methods cannot adequately quantify the material properties. The digital image correlation method, a non-contact displacement measurement method, is used along with a specially designed mini-tensile testing system. To reduce the end effects, we developed an experimental method that can deal with specimens with as high an aspect ratio as possible. Young's modulus varies over the area in the wing and ranges from 2.97 to 4.5 GPa in the chordwise direction and from 1.63 to 2.24 GPa in the spanwise direction. Furthermore, Poisson's ratio in the chordwise direction is 0.63-0.73 and approximately twice as large as that in the spanwise direction (0.33-0.39). From these results, we can conclude that the membrane of a beetle's hind wing is an anisotropic and non-homogeneous material. Our results will provide a better understanding of the flapping mechanism through the formulation of a fluid-structure interaction analysis or aero-elasticity analysis and meritorious data for biomaterial properties database as well as a creative design concept for a micro aerial flapper that mimics an insect.
Collapse
Affiliation(s)
- N S Ha
- Biomimetics and Intelligent Microsystem Laboratory, Department of Advanced Technology Fusion, Konkuk University, Seoul 143-701, Korea
| | | | | | | |
Collapse
|
23
|
Sun M, Liang A, Zheng Y, Watson GS, Watson JA. A study of the anti-reflection efficiency of natural nano-arrays of varying sizes. BIOINSPIRATION & BIOMIMETICS 2011; 6:026003. [PMID: 21464519 DOI: 10.1088/1748-3182/6/2/026003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The dependence of optical reflectivity and wettability on the surface topography of 32 species of cicada wing membranes has been investigated using UV-visible spectrophotometry, contact angle measurements and environmental scanning electron microscopy. The nanoscale hexagonally close packed protrusions have been shown to exhibit an anti-reflection and in some cases an anti-wetting function. The parameters of the structures were measured to be 77-148 nm in diameter, 44-117 nm in spacing and 159-481 nm in height. The transmittance spectrum and static contact angles were measured. At a wavelength range of 500-2500 nm, only minor differences in the anti-reflection performance were observed for each cicada species ascribed to the mechanism of impedance matching between cuticle and air. The transmittance properties of cicada wings were altered successfully through the scanning probe microscope-based manipulation by reducing the protrusion height via the contact mode. A near linear dependence was found between a decrease in protuberance height and a resulting increase in reflectance intensity. A diversity of wettability was observed with contact angles varying from 56.5° to 146.0°. Both effects of anti-reflection and wettability are dependent on the height of protrusions. The anti-reflection is insensitive when the wavelength is larger than the lateral feature size of the nanostructure. The stronger hydrophobic properties are generally associated with a larger diameter, closer spacing and greater height of protrusions when the wing membrane is intact.
Collapse
Affiliation(s)
- Mingxia Sun
- Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|
24
|
Tanaka H, Whitney JP, Wood RJ. Effect of Flexural and Torsional Wing Flexibility on Lift Generation in Hoverfly Flight. Integr Comp Biol 2011; 51:142-50. [DOI: 10.1093/icb/icr051] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
Le TQ, Byun D, Saputra, Ko JH, Park HC, Kim M. Numerical investigation of the aerodynamic characteristics of a hovering Coleopteran insect. J Theor Biol 2010; 266:485-95. [DOI: 10.1016/j.jtbi.2010.07.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 07/14/2010] [Accepted: 07/15/2010] [Indexed: 11/29/2022]
|
26
|
Sun M, Watson GS, Zheng Y, Watson JA, Liang A. Wetting properties on nanostructured surfaces of cicada wings. ACTA ACUST UNITED AC 2009; 212:3148-55. [PMID: 19749108 DOI: 10.1242/jeb.033373] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study has investigated the wettability of forewings of 15 species of cicadas, with distinctly different wetting properties related to their nanostructures. The wing surfaces exhibited hydrophilic or weak to strong hydrophobic properties with contact angles ranging from 76.8 deg. to 146.0 deg. The nanostructures (protrusions), observed using environmental scanning electron microscopy (ESEM), were classified into four types according to the patterning, diameter (82-148 nm), spacing (44-117 nm) and height (159-446 nm). Surface analysis by X-ray photoelectron spectroscopy (XPS) showed significant differences in wing membrane chemistry. Thus, wetting properties at the macroscopic scale were dependent on slight differences in nanoscale architecture and composition of the wax layer. This investigation offers insights into the diversity of nanostructuring and how subtle small-scale changes may facilitate large changes in wettability.
Collapse
Affiliation(s)
- Mingxia Sun
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | |
Collapse
|
27
|
Mengesha TE, Vallance RR, Barraja M, Mittal R. Parametric structural modeling of insect wings. BIOINSPIRATION & BIOMIMETICS 2009; 4:036004. [PMID: 19724097 DOI: 10.1088/1748-3182/4/3/036004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Insects produce thrust and lift forces via coupled fluid-structure interactions that bend and twist their compliant wings during flapping cycles. Insight into this fluid-structure interaction is achieved with numerical modeling techniques such as coupled finite element analysis and computational fluid dynamics, but these methods require accurate and validated structural models of insect wings. Structural models of insect wings depend principally on the shape, dimensions and material properties of the veins and membrane cells. This paper describes a method for parametric modeling of wing geometry using digital images and demonstrates the use of the geometric models in constructing three-dimensional finite element (FE) models and simple reduced-order models. The FE models are more complete and accurate than previously reported models since they accurately represent the topology of the vein network, as well as the shape and dimensions of the veins and membrane cells. The methods are demonstrated by developing a parametric structural model of a cicada forewing.
Collapse
Affiliation(s)
- T E Mengesha
- Department of Mechanical Engineering, Johns Hopkins University, 126 Latrobe Hall, 3400 N Charles Street, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|