1
|
Saunders SE, Santin JM. Hibernation reduces GABA signaling in the brainstem to enhance motor activity of breathing at cool temperatures. BMC Biol 2024; 22:251. [PMID: 39497096 PMCID: PMC11533357 DOI: 10.1186/s12915-024-02050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/17/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Neural circuits produce reliable activity patterns despite disturbances in the environment. For this to occur, neurons elicit synaptic plasticity during perturbations. However, recent work suggests that plasticity not only regulates circuit activity during disturbances, but these modifications may also linger to stabilize circuits during future perturbations. The implementation of such a regulation scheme for real-life environmental challenges of animals remains unclear. Amphibians provide insight into this problem in a rather extreme way, as circuits that generate breathing are inactive for several months during underwater hibernation and use compensatory plasticity to promote ventilation upon emergence. RESULTS Using ex vivo brainstem preparations and electrophysiology, we find that hibernation in American bullfrogs reduces GABAA receptor (GABAAR) inhibition in respiratory rhythm generating circuits and motor neurons, consistent with a compensatory response to chronic inactivity. Although GABAARs are normally critical for breathing, baseline network output at warm temperatures was not affected. However, when assessed across a range of temperatures, hibernators with reduced GABAAR signaling had greater activity at cooler temperatures, enhancing respiratory motor output under conditions that otherwise strongly depress breathing. CONCLUSIONS Hibernation reduces GABAAR signaling to promote robust respiratory output only at cooler temperatures. Although frogs do not ventilate lungs during underwater hibernation, we suggest this would be beneficial for stabilizing breathing when the animal passes through a large temperature range during emergence in the spring. More broadly, these results demonstrate that compensatory synaptic plasticity can increase the operating range of circuits in harsh environments, thereby promoting adaptive behavior in conditions that suppress activity.
Collapse
Affiliation(s)
- Sandy E Saunders
- Division of Biological Sciences, University of Missouri-Columbia, MO, USA
| | - Joseph M Santin
- Division of Biological Sciences, University of Missouri-Columbia, MO, USA.
| |
Collapse
|
2
|
Janes TA, Guay LM, Fournier S, Kinkead R. Persistent augmentation of fictive air breathing by hypoxia: An in vitro study of the role of GABA B signaling in pre-metamorphic tadpoles. Comp Biochem Physiol A Mol Integr Physiol 2023; 281:111437. [PMID: 37088410 DOI: 10.1016/j.cbpa.2023.111437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
Tadpole development is influenced by environmental cues and hypoxia can favor the emergence of the neural networks driving air breathing. Exposing isolated brainstems from pre-metamorphic tadpoles to acute hypoxia (~0% O2; 15 min) leads to a progressive increase in fictive air breaths (~3 fold) in the hours that follow stimulation. Here, we first determined whether this effect persists over longer periods (<18 h); we then evaluated maturity of the motor output by comparing the breathing pattern of hypoxia-exposed brainstems to that of preparations from adult bullfrogs under basal conditions. Because progressive withdrawal of GABAB-mediated inhibition contributes to the developmental increase in fictive lung ventilation, we then hypothesised that hypoxia reduces respiratory sensitivity to baclofen (selective GABAB-agonist). Experiments were performed on isolated brainstem preparations from pre-metamorphic tadpoles (TK stages IV to XIV); respiratory-related neural activity was recorded from cranial nerves V/VII and X before and 18 h after exposure to hypoxia (0% O2 + 2% CO2; 25 min). Time-control experiments (no hypoxia) were performed. Exposing pre-metamorphic tadpoles to hypoxia did not affect gill burst frequency, but augmented the frequency of fictive lung bursts and the incidence of episodic breathing levels intermediate between pre-metamorphic and adult preparations. Addition of baclofen to the aCSF (0,2 μM - 20 min) reduced lung burst frequency, but the response of hypoxia-exposed brainstems was greater than controls. We conclude that acute hypoxia facilitates development and maturation of the motor command driving air breathing. We propose that a greater number of active rhythmogenic neurons expressing GABAb receptors contributes to this effect.
Collapse
Affiliation(s)
- Tara A Janes
- Department of Pediatrics, Université Laval & Research Center of the Québec Heart & Lung Institute, Québec, QC, Canada; Department of Physiology, Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Loralie Mei Guay
- Department of Pediatrics, Université Laval & Research Center of the Québec Heart & Lung Institute, Québec, QC, Canada
| | - Stéphanie Fournier
- Department of Pediatrics, Université Laval & Research Center of the Québec Heart & Lung Institute, Québec, QC, Canada
| | - Richard Kinkead
- Department of Pediatrics, Université Laval & Research Center of the Québec Heart & Lung Institute, Québec, QC, Canada.
| |
Collapse
|
3
|
Amaral-Silva L, Santin JM. Synaptic modifications transform neural networks to function without oxygen. BMC Biol 2023; 21:54. [PMID: 36927477 PMCID: PMC10022038 DOI: 10.1186/s12915-023-01518-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/18/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Neural circuit function is highly sensitive to energetic limitations. Much like mammals, brain activity in American bullfrogs quickly fails in hypoxia. However, after emergence from overwintering, circuits transform to function for approximately 30-fold longer without oxygen using only anaerobic glycolysis for fuel, a unique trait among vertebrates considering the high cost of network activity. Here, we assessed neuronal functions that normally limit network output and identified components that undergo energetic plasticity to increase robustness in hypoxia. RESULTS In control animals, oxygen deprivation depressed excitatory synaptic drive within native circuits, which decreased postsynaptic firing to cause network failure within minutes. Assessments of evoked and spontaneous synaptic transmission showed that hypoxia impairs synaptic communication at pre- and postsynaptic loci. However, control neurons maintained membrane potentials and a capacity for firing during hypoxia, indicating that those processes do not limit network activity. After overwintering, synaptic transmission persisted in hypoxia to sustain motor function for at least 2 h. CONCLUSIONS Alterations that allow anaerobic metabolism to fuel synapses are critical for transforming a circuit to function without oxygen. Data from many vertebrate species indicate that anaerobic glycolysis cannot fuel active synapses due to the low ATP yield of this pathway. Thus, our results point to a unique strategy whereby synapses switch from oxidative to exclusively anaerobic glycolytic metabolism to preserve circuit function during prolonged energy limitations.
Collapse
Affiliation(s)
- Lara Amaral-Silva
- Division of Biological Sciences, The University of Missouri, Columbia, USA.
| | - Joseph M Santin
- Division of Biological Sciences, The University of Missouri, Columbia, USA.
| |
Collapse
|
4
|
Bueschke N, Amaral-Silva L, Hu M, Santin JM. Lactate ions induce synaptic plasticity to enhance output from the central respiratory network. J Physiol 2021; 599:5485-5504. [PMID: 34761806 DOI: 10.1113/jp282062] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/29/2021] [Indexed: 12/16/2022] Open
Abstract
Lactate ion sensing has emerged as a process that regulates ventilation during metabolic challenges. Most work has focused on peripheral sensing of lactate for the control of breathing. However, lactate also rises in the central nervous system (CNS) during disturbances to blood gas homeostasis and exercise. Using an amphibian model, we recently showed that lactate ions, independently of pH and pyruvate metabolism, act directly in the brainstem to increase respiratory-related motor outflow. This response had a long washout time and corresponded with potentiated excitatory synaptic strength of respiratory motoneurons. Thus, we tested the hypothesis that lactate ions enhance respiratory output using cellular mechanisms associated with long-term synaptic plasticity within motoneurons. In this study, we confirm that 2 mM sodium lactate, but not sodium pyruvate, increases respiratory motor output in brainstem-spinal cord preparations, persisting for 2 h upon the removal of lactate. Lactate also led to prolonged increases in the amplitude of AMPA-glutamate receptor (AMPAR) currents in individual motoneurons from brainstem slices. Both motor facilitation and AMPAR potentiation by lactate required classic effectors of synaptic plasticity, L-type Ca2+ channels and NMDA receptors, as part of the transduction process but did not correspond with increased expression of immediate-early genes often associated with activity-dependent neuronal plasticity. Altogether these results show that lactate ions enhance respiratory motor output by inducing conserved mechanisms of synaptic plasticity and suggest a new mechanism that may contribute to coupling ventilation to metabolic demands in vertebrates. KEY POINTS: Lactate ions, independently of pH and metabolism, induce long-term increases in respiratory-related motor outflow in American bullfrogs. Lactate triggers a persistent increase in strength of AMPA-glutamatergic synapses onto respiratory motor neurons. Long-term plasticity of motor output and synaptic strength by lactate involves L-type Ca2+ channels and NMDA-receptors as part of the transduction process. Enhanced AMPA receptor function in response to lactate in the intact network is causal for motor plasticity. In sum, well-conserved synaptic plasticity mechanisms couple the brainstem lactate ion concentration to respiratory motor drive in vertebrates.
Collapse
Affiliation(s)
- Nikolaus Bueschke
- Department of Biology, The University of North Carolina, Greensboro, NC, USA
| | - Lara Amaral-Silva
- Department of Biology, The University of North Carolina, Greensboro, NC, USA
| | - Min Hu
- Department of Biology, The University of North Carolina, Greensboro, NC, USA
| | - Joseph M Santin
- Department of Biology, The University of North Carolina, Greensboro, NC, USA
| |
Collapse
|
5
|
Fonseca EM, Janes TA, Fournier S, Gargaglioni LH, Kinkead R. Orexin-A inhibits fictive air breathing responses to respiratory stimuli in the bullfrog tadpole (Lithobates catesbeianus). J Exp Biol 2021; 224:239725. [PMID: 33914034 DOI: 10.1242/jeb.240804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/25/2021] [Indexed: 11/20/2022]
Abstract
In pre-metamorphic tadpoles, the neural network generating lung ventilation is present but actively inhibited; the mechanisms leading to the onset of air breathing are not well understood. Orexin (ORX) is a hypothalamic neuropeptide that regulates several homeostatic functions, including breathing. While ORX has limited effects on breathing at rest, it potentiates reflexive responses to respiratory stimuli mainly via ORX receptor 1 (OX1R). Here, we tested the hypothesis that OX1Rs facilitate the expression of the motor command associated with air breathing in pre-metamorphic bullfrog tadpoles (Lithobates catesbeianus). To do so, we used an isolated diencephalic brainstem preparation to determine the contributions of OX1Rs to respiratory motor output during baseline breathing, hypercapnia and hypoxia. A selective OX1R antagonist (SB-334867; 5-25 µmol l-1) or agonist (ORX-A; 200 nmol l-1 to 1 µmol l-1) was added to the superfusion media. Experiments were performed under basal conditions (media equilibrated with 98.2% O2 and 1.8% CO2), hypercapnia (5% CO2) or hypoxia (5-7% O2). Under resting conditions gill, but not lung, motor output was enhanced by the OX1R antagonist and ORX-A. Hypercapnia alone did not stimulate respiratory motor output, but its combination with SB-334867 increased lung burst frequency and amplitude, lung burst episodes, and the number of bursts per episode. Hypoxia alone increased lung burst frequency and its combination with SB-334867 enhanced this effect. Inactivation of OX1Rs during hypoxia also increased gill burst amplitude, but not frequency. In contrast with our initial hypothesis, we conclude that ORX neurons provide inhibitory modulation of the CO2 and O2 chemoreflexes in pre-metamorphic tadpoles.
Collapse
Affiliation(s)
- Elisa M Fonseca
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, Unesp. Jaboticabal, SP 14884-900, Brazil.,Department of Pediatrics, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada, G1V 4G5
| | - Tara A Janes
- Department of Pediatrics, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada, G1V 4G5
| | - Stéphanie Fournier
- Department of Pediatrics, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada, G1V 4G5
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, Unesp. Jaboticabal, SP 14884-900, Brazil
| | - Richard Kinkead
- Department of Pediatrics, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada, G1V 4G5
| |
Collapse
|
6
|
Adams S, Zubov T, Bueschke N, Santin JM. Neuromodulation or energy failure? Metabolic limitations silence network output in the hypoxic amphibian brainstem. Am J Physiol Regul Integr Comp Physiol 2021; 320:R105-R116. [PMID: 33175586 PMCID: PMC7948128 DOI: 10.1152/ajpregu.00209.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/10/2020] [Accepted: 11/02/2020] [Indexed: 11/22/2022]
Abstract
Hypoxia tolerance in the vertebrate brain often involves chemical modulators that arrest neuronal activity to conserve energy. However, in intact networks, it can be difficult to determine whether hypoxia triggers modulators to stop activity in a protective manner or whether activity stops because rates of ATP synthesis are insufficient to support network function. Here, we assessed the extent to which neuromodulation or metabolic limitations arrest activity in the respiratory network of bullfrogs-a circuit that survives moderate periods of oxygen deprivation, presumably, by activating an inhibitory noradrenergic pathway. We confirmed that hypoxia and norepinephrine (NE) reduce network output, consistent with the view that hypoxia may cause the release of NE to inhibit activity. However, these responses differed qualitatively; hypoxia, but not NE, elicited a large motor burst and silenced the network. The stereotyped response to hypoxia persisted in the presence of both NE and an adrenergic receptor blocker that eliminates sensitivity to NE, indicating that noradrenergic signaling does not cause the arrest. Pharmacological inhibition of glycolysis and mitochondrial respiration recapitulated all features of hypoxia on network activity, implying that reduced ATP synthesis underlies the effects of hypoxia. Finally, activating modulatory mechanisms that dampen neuronal excitability when ATP levels fall, KATP channels and AMP-dependent protein kinase, did not resemble the hypoxic response. These results suggest that energy failure-rather than inhibitory modulation-silences the respiratory network during hypoxia and emphasize the need to account for metabolic limitations before concluding that modulators arrest activity as an adaptation for energy conservation in the nervous system.
Collapse
Affiliation(s)
- Sasha Adams
- Department of Biology, The University of North Carolina at Greensboro, Greensboro, North Carolina
| | - Tanya Zubov
- Department of Biology, The University of North Carolina at Greensboro, Greensboro, North Carolina
| | - Nikolaus Bueschke
- Department of Biology, The University of North Carolina at Greensboro, Greensboro, North Carolina
| | - Joseph M Santin
- Department of Biology, The University of North Carolina at Greensboro, Greensboro, North Carolina
| |
Collapse
|
7
|
Comparative Morphology of the Lungs and Skin of two Anura, Pelophylax nigromaculatus and Bufo gargarizans. Sci Rep 2020; 10:11420. [PMID: 32651399 PMCID: PMC7351734 DOI: 10.1038/s41598-020-65746-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 04/23/2020] [Indexed: 11/08/2022] Open
Abstract
The lungs and skin are important respiratory organs in Anura, but the pulmonary structure of amphibians remains unclear due to the lack of a suitable procedure. This study improved the procedure used for fixing lungs tissues and used light microscopy, transmission electron microscopy and scanning electron microscopy to reveal the differences in the lung and skin morphologies between Pelophylax nigromaculatus (P. nigromaculatus) and Bufo gargarizans (B. gargarizans). In P. nigromaculatus and B. gargarizans, the cystic lungs comprise a continuous outer pulmonary wall on which primary, secondary, and tertiary septa attach, and a number of regular lattices form from raised capillaries and the pulmonary epithelium on the surfaces of the pulmonary wall and septa. Each lattice in P. nigromaculatus consists of several elliptical sheets and flat bottom, and the septa are distributed with denser sheets and have a larger stretching range than the pulmonary wall. The lattice in B. gargarizans consists of thick folds and an uneven bottom with several thin folds, and the septa have more developed thick and thin folds than the pulmonary wall. However, the density of the pulmonary microvilli, the area of a single capillary, the thicknesses of the blood-air barrier, pulmonary wall and septum, and the lung/body weight percentage obtained for B. gargarizans were higher than those found for P. nigromaculatus. In P. nigromaculatus, the dorsal skin has dense capillaries and a ring surface structure with mucus layer on the stratum corneum, and the ventral skin is slightly keratinized. In B. gargarizans, the stratum corneum in both the dorsal and ventral skins is completely keratinized. A fine ultrastructure analysis of P. nigromaculatus and B. gargarizans revealed that the pulmonary septa are more developed than the pulmonary walls, which means that the septa have a stronger respiratory function. The more developed lungs are helpful for the adaptation of B. gargarizans to drought environments, whereas P. nigromaculatus has to rely on more vigorous skin respiration to adapt to a humid environment.
Collapse
|
8
|
Janes TA, Rousseau JP, Fournier S, Kiernan EA, Harris MB, Taylor BE, Kinkead R. Development of central respiratory control in anurans: The role of neurochemicals in the emergence of air-breathing and the hypoxic response. Respir Physiol Neurobiol 2019; 270:103266. [PMID: 31408738 PMCID: PMC7476778 DOI: 10.1016/j.resp.2019.103266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/10/2019] [Accepted: 08/05/2019] [Indexed: 01/08/2023]
Abstract
Physiological and environmental factors impacting respiratory homeostasis vary throughout the course of an animal's lifespan from embryo to adult and can shape respiratory development. The developmental emergence of complex neural networks for aerial breathing dates back to ancestral vertebrates, and represents the most important process for respiratory development in extant taxa ranging from fish to mammals. While substantial progress has been made towards elucidating the anatomical and physiological underpinnings of functional respiratory control networks for air-breathing, much less is known about the mechanisms establishing these networks during early neurodevelopment. This is especially true of the complex neurochemical ensembles key to the development of air-breathing. One approach to this issue has been to utilize comparative models such as anuran amphibians, which offer a unique perspective into early neurodevelopment. Here, we review the developmental emergence of respiratory behaviours in anuran amphibians with emphasis on contributions of neurochemicals to this process and highlight opportunities for future research.
Collapse
Affiliation(s)
- Tara A Janes
- Department of Pediatrics, Université Laval & Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Jean-Philippe Rousseau
- Department of Pediatrics, Université Laval & Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Stéphanie Fournier
- Department of Pediatrics, Université Laval & Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Elizabeth A Kiernan
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison Wisconsin, USA
| | - Michael B Harris
- Department of Biological Sciences, California State University Long Beach, California, USA
| | - Barbara E Taylor
- Department of Biological Sciences, California State University Long Beach, California, USA
| | - Richard Kinkead
- Department of Pediatrics, Université Laval & Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada.
| |
Collapse
|
9
|
Janes TA, Fournier S, Chamberland S, Funk GD, Kinkead R. Respiratory motoneuron properties during the transition from gill to lung breathing in the American bullfrog. Am J Physiol Regul Integr Comp Physiol 2019; 316:R281-R297. [PMID: 30601705 PMCID: PMC6459380 DOI: 10.1152/ajpregu.00303.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/24/2018] [Accepted: 12/30/2018] [Indexed: 12/23/2022]
Abstract
Amphibian respiratory development involves a dramatic metamorphic transition from gill to lung breathing and coordination of distinct motor outputs. To determine whether the emergence of adult respiratory motor patterns was associated with similarly dramatic changes in motoneuron (MN) properties, we characterized the intrinsic electrical properties of American bullfrog trigeminal MNs innervating respiratory muscles comprising the buccal pump. In premetamorphic tadpoles (TK stages IX-XVIII) and adult frogs, morphometric analyses and whole cell recordings were performed in trigeminal MNs identified by fluorescent retrograde labeling. Based on the amplitude of the depolarizing sag induced by hyperpolarizing voltage steps, two MN subtypes (I and II) were identified in tadpoles and adults. Compared with type II MNs, type I MNs had larger sag amplitudes (suggesting a larger hyperpolarization-activated inward current), greater input resistance, lower rheobase, hyperpolarized action potential threshold, steeper frequency-current relationships, and fast firing rates and received fewer excitatory postsynaptic currents. Postmetamorphosis, type I MNs exhibited similar sag, enhanced postinhibitory rebound, and increased action potential amplitude with a smaller-magnitude fast afterhyperpolarization. Compared with tadpoles, type II MNs from frogs received higher-frequency, larger-amplitude excitatory postsynaptic currents. Input resistance decreased and rheobase increased postmetamorphosis in all MNs, concurrent with increased soma area and hyperpolarized action potential threshold. We suggest that type I MNs are likely recruited in response to smaller, buccal-related synaptic inputs as well as larger lung-related inputs, whereas type II MNs are likely recruited in response to stronger synaptic inputs associated with larger buccal breaths, lung breaths, or nonrespiratory behaviors involving powerful muscle contractions.
Collapse
Affiliation(s)
- Tara A Janes
- Department of Pediatrics, Université Laval and Institut Universitaire de Cardiologie et de Pneumologie de Québec , Québec City, Québec , Canada
| | - Stéphanie Fournier
- Department of Pediatrics, Université Laval and Institut Universitaire de Cardiologie et de Pneumologie de Québec , Québec City, Québec , Canada
| | - Simon Chamberland
- Department of Neuroscience and Physiology and New York University Neuroscience Institute, New York University Langone Medical Center , New York, New York
| | - Gregory D Funk
- Department of Physiology, Neuroscience and Mental Health Institute, Women and Children's Health Research Institute, University of Alberta , Edmonton, Alberta , Canada
| | - Richard Kinkead
- Department of Pediatrics, Université Laval and Institut Universitaire de Cardiologie et de Pneumologie de Québec , Québec City, Québec , Canada
| |
Collapse
|
10
|
Bartman ME, Johnson SM. Isolated adult turtle brainstems exhibit central hypoxic chemosensitivity. Comp Biochem Physiol A Mol Integr Physiol 2018; 225:65-73. [PMID: 30003967 DOI: 10.1016/j.cbpa.2018.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/27/2018] [Accepted: 07/03/2018] [Indexed: 10/28/2022]
Abstract
During hypoxia, red-eared slider turtles increase ventilation and decrease episodic breathing, but whether these responses are due to central mechanisms is not known. To test this question, isolated adult turtle brainstems were exposed to 240 min of hypoxic solution (bath PO2 = 32.6 ± 1.2 mmHg) and spontaneous respiratory-related motor bursts (respiratory event) were recorded on hypoglossal nerve roots. During hypoxia, burst frequency increased during the first 15 min, and then decreased during the remaining 35-240 min of hypoxia. Burst amplitude was maintained for 120 min, but then decreased during the last 120 min. The number of bursts/respiratory event decreased within 30 min and remained decreased. Pretreatment with either prazosin (α1-adrenergic antagonist) or MDL7222 (5-HT3 antagonist) blocked the hypoxia-induced short-term increase and the longer duration decrease in burst frequency. MDL7222, but not prazosin, blocked the hypoxia-induced decrease in bursts/respiratory event. Thus, during bath hypoxia, isolated turtle brainstems continued to produce respiratory motor output, but the frequency and pattern were altered in a manner that required endogenous α1-adrenergic and serotonin 5-HT3 receptor activation. This is the first example of isolated reptile brainstems exhibiting central hypoxic chemosensitivity similar to other vertebrate species.
Collapse
Affiliation(s)
- Michelle E Bartman
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Stephen M Johnson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
11
|
Janes TA, Kinkead R. Central Hypoxia Elicits Long-Term Expression of the Lung Motor Pattern in Pre-metamorphic Lithobates Catesbeianus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1071:75-82. [DOI: 10.1007/978-3-319-91137-3_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Santin JM. How important is the CO 2 chemoreflex for the control of breathing? Environmental and evolutionary considerations. Comp Biochem Physiol A Mol Integr Physiol 2017; 215:6-19. [PMID: 28966145 DOI: 10.1016/j.cbpa.2017.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 12/27/2022]
Abstract
Haldane and Priestley (1905) discovered that the ventilatory control system is highly sensitive to CO2. This "CO2 chemoreflex" has been interpreted to dominate control of resting arterial PCO2/pH (PaCO2/pHa) by monitoring PaCO2/pHa and altering ventilation through negative feedback. However, PaCO2/pHa varies little in mammals as ventilation tightly couples to metabolic demands, which may minimize chemoreflex control of PaCO2. The purpose of this synthesis is to (1) interpret data from experimental models with meager CO2 chemoreflexes to infer their role in ventilatory control of steady-state PaCO2, and (2) identify physiological causes of respiratory acidosis occurring normally across vertebrate classes. Interestingly, multiple rodent and amphibian models with minimal/absent CO2 chemoreflexes exhibit normal ventilation, gas exchange, and PaCO2/pHa. The chemoreflex, therefore, plays at most a minor role in ventilatory control at rest; however, the chemoreflex may be critical for recovering PaCO2 following acute respiratory acidosis induced by breath-holding and activity in many ectothermic vertebrates. An apparently small role for CO2 feedback in the genesis of normal breathing contradicts the prevailing view that central CO2/pH chemoreceptors increased in importance throughout vertebrate evolution. Since the CO2 chemoreflex contributes minimally to resting ventilation, these CO2 chemoreceptors may have instead decreased importance throughout tetrapod evolution, particularly with the onset and refinement of neural innovations that improved the matching of ventilation to tissue metabolic demands. This distinct and elusive "metabolic ventilatory drive" likely underlies steady-state PaCO2 in air-breathers. Uncovering the mechanisms and evolution of the metabolic ventilatory drive presents a challenge to clinically-oriented and comparative respiratory physiologists alike.
Collapse
|
13
|
Santin JM, Vallejo M, Hartzler LK. Synaptic up-scaling preserves motor circuit output after chronic, natural inactivity. eLife 2017; 6:30005. [PMID: 28914603 PMCID: PMC5636609 DOI: 10.7554/elife.30005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/11/2017] [Indexed: 12/25/2022] Open
Abstract
Neural systems use homeostatic plasticity to maintain normal brain functions and to prevent abnormal activity. Surprisingly, homeostatic mechanisms that regulate circuit output have mainly been demonstrated during artificial and/or pathological perturbations. Natural, physiological scenarios that activate these stabilizing mechanisms in neural networks of mature animals remain elusive. To establish the extent to which a naturally inactive circuit engages mechanisms of homeostatic plasticity, we utilized the respiratory motor circuit in bullfrogs that normally remains inactive for several months during the winter. We found that inactive respiratory motoneurons exhibit a classic form of homeostatic plasticity, up-scaling of AMPA-glutamate receptors. Up-scaling increased the synaptic strength of respiratory motoneurons and acted to boost motor amplitude from the respiratory network following months of inactivity. Our results show that synaptic scaling sustains strength of the respiratory motor output following months of inactivity, thereby supporting a major neuroscience hypothesis in a normal context for an adult animal. Neurons in the brain communicate using chemical signals that they send and receive across junctions called synapses. To maintain normal behavior over time, circuits of neurons must reliably process these signals. A variety of nervous system disorders may result if they are unable to do so, as may occur when neural activity changes as a result of disease or injury. The processes underlying the stability of a neuron’s synapses is referred to as “homeostatic” synaptic plasticity because the changes made by the neuron directly oppose the altered level of activity. In one form of homeostatic plasticity, known as synaptic scaling, neurons modify the strength of all of their synapses in response to changes in neural activity. There is substantial experimental evidence to show that in young animals, neurons that communicate using a chemical called glutamate undergo synaptic scaling in response to artificial changes in activity. It had not been directly shown that synaptic scaling protects the neural activity of adult animals in their natural environments, in part, because neural activity in most healthy animals generally only goes through small changes. However, the neurons in the brain that cause the breathing muscles of bullfrogs to contract are ideal for studying homeostatic plasticity because they are naturally inactive for several months when frogs hibernate in ponds during the winter. During this time, the bullfrogs do not need to use their lungs to breathe because enough oxygen passes through their skin to keep them alive. Santin et al. have now observed synaptic scaling of glutamate synapses in individual bullfrog neurons that had been inactive for two months. Further experiments that examined the activity of the breathing control circuit in the brainstem provided evidence that synaptic scaling leads to sufficient amounts of neural activity that would activate the breathing muscles when frogs emerge from hibernation. Therefore neural activity after prolonged, natural inactivity relies on synaptic scaling to preserve life-sustaining behavior in frogs. These results open up new questions: mainly, how do synaptic scaling and other forms of homeostatic plasticity operate in animals as they experience normal variations in neural activity? Determining how homeostatic plasticity works normally in an animal will help us to understand what happens when plasticity mechanisms go wrong, as is thought to occur in several human nervous system diseases including nervous system injury, Alzheimer’s disease, and epilepsy.
Collapse
Affiliation(s)
- Joseph M Santin
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, United States.,Department of Biological Sciences, Wright State University, Dayton, United States
| | - Mauricio Vallejo
- Department of Biological Sciences, Wright State University, Dayton, United States
| | - Lynn K Hartzler
- Department of Biological Sciences, Wright State University, Dayton, United States
| |
Collapse
|
14
|
Santin JM, Hartzler LK. Environmentally induced return to juvenile-like chemosensitivity in the respiratory control system of adult bullfrog, Lithobates catesbeianus. J Physiol 2016; 594:6349-6367. [PMID: 27444338 DOI: 10.1113/jp272777] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/19/2016] [Indexed: 12/25/2022] Open
Abstract
KEY POINTS The degree to which developmental programmes or environmental signals determine physiological phenotypes remains a major question in physiology. Vertebrates change environments during development, confounding interpretation of the degree to which development (i.e. permanent processes) or phenotypic plasticity (i.e. reversible processes) produces phenotypes. Tadpoles mainly breathe water for gas exchange and frogs may breathe water or air depending on their environment and are, therefore, exemplary models to differentiate the degree to which life-stage vs. environmental context drives developmental phenotypes associated with neural control of lung breathing. Using isolated brainstem preparations and patch clamp electrophysiology, we demonstrate that adult bullfrogs acclimatized to water-breathing conditions do not exhibit CO2 and O2 chemosensitivity of lung breathing, similar to water-breathing tadpoles. Our results establish that phenotypes associated with developmental stage may arise from plasticity per se and suggest that a developmental trajectory coinciding with environmental change obscures origins of stage-dependent physiological phenotypes by masking plasticity. ABSTRACT An unanswered question in developmental physiology is to what extent does the environment vs. a genetic programme produce phenotypes? Developing animals inhabit different environments and switch from one to another. Thus a developmental time course overlapping with environmental change confounds interpretations as to whether development (i.e. permanent processes) or phenotypic plasticity (i.e. reversible processes) generates phenotypes. Tadpoles of the American bullfrog, Lithobates catesbeianus, breathe water at early life-stages and minimally use lungs for gas exchange. As adults, bullfrogs rely on lungs for gas exchange, but spend months per year in ice-covered ponds without lung breathing. Aquatic submergence, therefore, removes environmental pressures requiring lung breathing and enables separation of adulthood from environmental factors associated with adulthood that necessitate control of lung ventilation. To test the hypothesis that postmetamorphic respiratory control phenotypes arise through permanent developmental changes vs. reversible environmental signals, we measured respiratory-related nerve discharge in isolated brainstem preparations and action potential firing from CO2 -sensitive neurons in bullfrogs acclimatized to semi-terrestrial (air-breathing) and aquatic-overwintering (no air-breathing) habitats. We found that aquatic overwintering significantly reduced neuroventilatory responses to CO2 and O2 involved in lung breathing. Strikingly, this gas sensitivity profile reflects that of water-breathing tadpoles. We further demonstrated that aquatic overwintering reduced CO2 -induced firing responses of chemosensitive neurons. In contrast, respiratory rhythm generating processes remained adult-like after submergence. Our results establish that phenotypes associated with life-stage can arise from phenotypic plasticity per se. This provides evidence that developmental time courses coinciding with environmental changes obscure interpretations regarding origins of stage-dependent physiological phenotypes by masking plasticity.
Collapse
Affiliation(s)
- Joseph M Santin
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA. .,Biomedical Sciences PhD Program, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA.
| | - Lynn K Hartzler
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA
| |
Collapse
|
15
|
Santin JM, Hartzler LK. Reassessment of chemical control of breathing in undisturbed bullfrogs, Lithobates catesbeianus, using measurements of pulmonary ventilation. Respir Physiol Neurobiol 2016; 224:80-9. [DOI: 10.1016/j.resp.2015.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/26/2015] [Accepted: 09/27/2015] [Indexed: 11/28/2022]
|
16
|
Aldosterone, corticosterone, and thyroid hormone and their influence on respiratory control development in Lithobates catesbeianus: An in vitro study. Respir Physiol Neurobiol 2016; 224:104-13. [DOI: 10.1016/j.resp.2014.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/13/2014] [Accepted: 11/20/2014] [Indexed: 11/18/2022]
|
17
|
Santin JM, Hartzler LK. Control of lung ventilation following overwintering conditions in bullfrogs, Lithobates catesbeianus. J Exp Biol 2016; 219:2003-14. [DOI: 10.1242/jeb.136259] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/14/2016] [Indexed: 12/19/2022]
Abstract
Ranid frogs in northern latitudes survive winter at cold temperatures in aquatic habitats often completely covered by ice. Cold-submerged frogs survive aerobically for several months relying exclusively on cutaneous gas exchange while maintaining temperature-specific acid-base balance. Depending on the overwintering hibernaculum, frogs in northern latitudes could spend several months without access to air, need to breathe, or chemosensory drive to use neuromuscular processes that regulate and enable pulmonary ventilation. Therefore, we performed experiments to determine whether aspects of the respiratory control system of bullfrogs, Lithobates catesbeianus, are maintained or suppressed following minimal use of air breathing in overwintering environments. Based on the necessity for control of lung ventilation in early spring, we hypothesized that critical components of the respiratory control system of bullfrogs would be functional following simulated overwintering. We found that bullfrogs recently removed from simulated overwintering environments exhibited similar resting ventilation when assessed at 24°C compared to warm-acclimated control bullfrogs. Additionally, ventilation met resting metabolic and, presumably, acid-base regulation requirements, indicating preservation of basal respiratory function despite prolonged disuse in the cold. Recently emerged bullfrogs underwent similar increases in ventilation during acute oxygen lack (aerial hypoxia) compared to warm-acclimated frogs; however, CO2-related hyperventilation was significantly blunted following overwintering. Overcoming challenges to gas exchange during overwintering have garnered attention in ectothermic vertebrates, but this study uncovers robust and labile aspects of the respiratory control system at a time point correlating with early spring following minimal/no use of lung breathing in cold-aquatic overwintering habitats.
Collapse
Affiliation(s)
- Joseph M. Santin
- Wright State University, Department of Biological Sciences, 3640 Colonel Glenn. Hwy. Dayton, OH 45435, USA
- Wright State University, Biomedical Sciences PhD Program, 3640 Colonel Glenn. Hwy. Dayton, OH 45435, USA
| | - Lynn K. Hartzler
- Wright State University, Department of Biological Sciences, 3640 Colonel Glenn. Hwy. Dayton, OH 45435, USA
| |
Collapse
|
18
|
Rousseau JP, Fournier S, Kinkead R. Sex-specific response to hypoxia in a reduced brainstem preparation from Xenopus laevis. Respir Physiol Neurobiol 2015; 224:100-3. [PMID: 26528898 DOI: 10.1016/j.resp.2015.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/21/2015] [Accepted: 10/23/2015] [Indexed: 10/22/2022]
Abstract
Respiratory reflexes and tolerance to hypoxia show significant sexual dimorphism. However, the data supporting this notion originates exclusively from mammals. To determine whether this concept is limited to this group of vertebrates, we examined the sex-specific response to acute hypoxia in an adult reduced brainstem preparation from Xenopus laevis. Within the first 5min of exposure to hypoxic aCSF (98% N2/2% CO2), recordings of respiratory-related activity show a stronger increase in fictive breathing frequency in males than females. This initial response was followed by a decrease in respiratory-related activity; this depression occurred 6min sooner in males than females. These results represent new evidences of sexual dimorphism in respiratory control in amphibians and provide potential insight in understanding the homology with other groups of vertebrates, including mammals.
Collapse
Affiliation(s)
- Jean-Philippe Rousseau
- Département de Pédiatrie, Université Laval, Centre de Recherche du CHU de Québec, Hôpital St-François d'Assise, Québec, QC G1L 3L5, Canada.
| | - Stéphanie Fournier
- Département de Pédiatrie, Université Laval, Centre de Recherche du CHU de Québec, Hôpital St-François d'Assise, Québec, QC G1L 3L5, Canada
| | - Richard Kinkead
- Département de Pédiatrie, Université Laval, Centre de Recherche du CHU de Québec, Hôpital St-François d'Assise, Québec, QC G1L 3L5, Canada
| |
Collapse
|
19
|
Côté É, Rousseau JP, Fournier S, Kinkead R. Control of Breathing in In Vitro Brain Stem Preparation from Goldfish (Carassius auratus; Linnaeus). Physiol Biochem Zool 2014; 87:464-74. [DOI: 10.1086/675939] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Katzenback BA, Holden HA, Falardeau J, Childers C, Hadj-Moussa H, Avis TJ, Storey KB. Regulation of the Rana sylvatica brevinin-1SY antimicrobial peptide during development and in dorsal and ventral skin in response to freezing, anoxia and dehydration. ACTA ACUST UNITED AC 2014; 217:1392-401. [PMID: 24436376 DOI: 10.1242/jeb.092288] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Brevinin-1SY is the only described antimicrobial peptide (AMP) of Rana sylvatica. As AMPs are important innate immune molecules that inhibit microbes, this study examined brevinin-1SY regulation during development and in adult frogs in response to environmental stress. The brevinin-1SY nucleotide sequence was identified and used for protein modeling. Brevinin-1SY was predicted to be an amphipathic, hydrophobic, alpha helical peptide that inserts into a lipid bilayer. Brevinin-1SY transcripts were detected in tadpoles and were significantly increased during the later stages of development. Effects of environmental stress (24 h anoxia, 40% dehydration or 24 h frozen) on the mRNA levels of brevinin-1SY in the dorsal and ventral skin were examined. The brevinin-1SY mRNA levels were increased in dorsal and ventral skin of dehydrated frogs, and in ventral skin of anoxic frogs, compared with controls (non-stressed). Brevinin-1SY protein levels in peptide extracts of dorsal skin showed a similar, but not significant, trend to that of brevinin-1SY mRNA levels. Antimicrobial activity of skin extracts from control and stressed animals were assessed for Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Botrytis cinerea, Rhizopus stolonifer and Pythium sulcatum using disk diffusion assays. Peptide extracts of dorsal skin from anoxic, frozen and dehydrated animals showed significantly higher inhibition of E. coli and P. sulcatum than from control animals. In ventral skin peptide extracts, significant growth inhibition was observed in frozen animals for E. coli and P. sulcatum, and in anoxic animals for B. cinerea, compared with controls. Environmental regulation of brevinin-1SY may have important implications for defense against pathogens.
Collapse
|
21
|
Dubois C, Kervern M, Naassila M, Pierrefiche O. Chronic ethanol exposure during development: Disturbances of breathing and adaptation. Respir Physiol Neurobiol 2013; 189:250-60. [DOI: 10.1016/j.resp.2013.06.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 06/20/2013] [Accepted: 06/20/2013] [Indexed: 12/11/2022]
|
22
|
Taylor BE, Brundage CM, McLane LH. Chronic nicotine and ethanol exposure both disrupt central ventilatory responses to hypoxia in bullfrog tadpoles. Respir Physiol Neurobiol 2013; 187:234-43. [PMID: 23590824 DOI: 10.1016/j.resp.2013.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 04/02/2013] [Accepted: 04/04/2013] [Indexed: 12/23/2022]
Abstract
The central hypoxic ventilatory response (HVR) comprises a reduction in ventilatory activity that follows a peripherally mediated ventilatory augmentation. Chronic early developmental exposure to nicotine or ethanol are both known to impair the peripherally mediated HVR, and nicotine impairs the central HVR, but the effect of ethanol on the central HVR has not been investigated. Additionally, chronic nicotine and ethanol exposure are known to impair ventilatory responses to hypercapnia in bullfrog tadpoles but HVRs have not been tested. Here early and late metamorphic tadpoles were exposed to either 30 μg/L nicotine or 0.15-0.05 g/dL ethanol for 10 wk. Tadpole brainstems were then isolated and the neurocorrelates of ventilation were monitored in vitro over 180 min of hypoxia (PO2=5.05±1.04 kPa). Both nicotine and ethanol exposure disrupted central HVRs. Nicotine impairments were dependent on development. Central HVRs were impaired only in early metamorphic nicotine-exposed tadpoles. Both early and late metamorphic ethanol-exposed tadpoles failed to exhibit central HVRs. Thus, central HVRs are impaired following both nicotine and ethanol exposure. Such failure to decrease ventilatory activity during hypoxia indicates that central hypoxic ventilatory depression is an active suppression of neural activity in response to hypoxia rather than a metabolic consequence of O2 limitation, and that exposure to ethanol (across development) or nicotine (during early development) disrupts mechanisms that normally induce active ventilatory depression.
Collapse
Affiliation(s)
- Barbara E Taylor
- Institute of Arctic Biology and Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775-7000, USA.
| | | | | |
Collapse
|
23
|
Fonseca EM, da Silva GS, Fernandes M, Giusti H, Noronha-de-Souza CR, Glass ML, Bícego KC, Gargaglioni LH. The breathing pattern and the ventilatory response to aquatic and aerial hypoxia and hypercarbia in the frog Pipa carvalhoi. Comp Biochem Physiol A Mol Integr Physiol 2012; 162:281-7. [DOI: 10.1016/j.cbpa.2012.03.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 03/27/2012] [Accepted: 03/27/2012] [Indexed: 11/30/2022]
|
24
|
Porteus C, Hedrick MS, Hicks JW, Wang T, Milsom WK. Time domains of the hypoxic ventilatory response in ectothermic vertebrates. J Comp Physiol B 2011; 181:311-33. [PMID: 21312038 PMCID: PMC3058336 DOI: 10.1007/s00360-011-0554-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 01/11/2011] [Accepted: 01/19/2011] [Indexed: 01/19/2023]
Abstract
Over a decade has passed since Powell et al. (Respir Physiol 112:123-134, 1998) described and defined the time domains of the hypoxic ventilatory response (HVR) in adult mammals. These time domains, however, have yet to receive much attention in other vertebrate groups. The initial, acute HVR of fish, amphibians and reptiles serves to minimize the imbalance between oxygen supply and demand. If the hypoxia is sustained, a suite of secondary adjustments occur giving rise to a more long-term balance (acclimatization) that allows the behaviors of normal life. These secondary responses can change over time as a function of the nature of the stimulus (the pattern and intensity of the hypoxic exposure). To add to the complexity of this process, hypoxia can also lead to metabolic suppression (the hypoxic metabolic response) and the magnitude of this is also time dependent. Unlike the original review of Powell et al. (Respir Physiol 112:123-134, 1998) that only considered the HVR in adult animals, we also consider relevant developmental time points where information is available. Finally, in amphibians and reptiles with incompletely divided hearts the magnitude of the ventilatory response will be modulated by hypoxia-induced changes in intra-cardiac shunting that also improve the match between O(2) supply and demand, and these too change in a time-dependent fashion. While the current literature on this topic is reviewed here, it is noted that this area has received little attention. We attempt to redefine time domains in a more 'holistic' fashion that better accommodates research on ectotherms. If we are to distinguish between the genetic, developmental and environmental influences underlying the various ventilatory responses to hypoxia, however, we must design future experiments with time domains in mind.
Collapse
Affiliation(s)
- Cosima Porteus
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | | | | | | | | |
Collapse
|
25
|
Milsom WK. Adaptive trends in respiratory control: a comparative perspective. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1-10. [DOI: 10.1152/ajpregu.00069.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In 1941, August Krogh published a monograph entitled The Comparative Physiology of Respiratory Mechanisms (Philadelphia, PA: University of Pennsylvania Press, 1941). Since that time comparative studies have continued to contribute significantly to our understanding of the fundamentals of respiratory physiology and the adaptive trends in these processes that support a broad range of metabolic performance under demanding environmental conditions. This review specifically focuses on recent advances in our understanding of adaptive trends in respiratory control. Respiratory rhythm generators most likely arose from, and must remain integrated with, rhythm generators for chewing, suckling, and swallowing. Within the central nervous system there are multiple “segmental” rhythm generators, and through evolution there is a caudal shift in the predominant respiratory rhythm-generating site. All sites, however, may still be capable of producing or modulating respiratory rhythm under appropriate conditions. Expression of the respiratory rhythm is conditional on (tonic) input. Once the rhythm is expressed, it is often episodic as the basic medullary rhythm is turned on/off subject to a hierarchy of controls. Breathing patterns reflect differences in pulmonary mechanics resulting from differences in body wall and lung architecture and are modulated in different species by various combinations of upper and lower airway mechanoreceptors and arterial chemoreceptors to protect airways, reduce dead space ventilation, enhance gas exchange efficiency, and reduce the cost of breathing.
Collapse
Affiliation(s)
- William K. Milsom
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
26
|
Fournier S, Kinkead R. Role of pontine neurons in central O(2) chemoreflex during development in bullfrogs (Lithobates catesbeiana). Neuroscience 2008; 155:983-96. [PMID: 18590803 DOI: 10.1016/j.neuroscience.2008.05.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 05/20/2008] [Accepted: 05/26/2008] [Indexed: 11/25/2022]
Abstract
The present study used an in vitro brainstem preparation from pre-metamorphic tadpoles and adult bullfrogs (Lithobates catesbeiana) to understand the neural mechanisms associated with central O(2) chemosensitivity and its maturation. In this species, brainstem hypoxia increases fictive lung ventilation in tadpoles but decreases in adults. Previous studies have shown that alpha(1)-adrenoceptor inactivation prevents these responses, suggesting that noradrenergic neurons are involved. We first tested the hypothesis that the pons (which includes noradrenergic neurons from the locus coeruleus; LC) plays a role in the lung burst frequency response to central hypoxia by comparing the effects of brainstem transection at the LC level between pre-metamorphic tadpoles and adults. Data show that brainstem transection prevents the lung burst frequency response in both stage groups. During development, the progressive decrease in the Na(+)/K(+)/Cl(-) co-transporter NKCC1 contributes to the maturation of neural networks. Because NKCC1 becomes activated during hypoxia, we then tested the hypothesis that NKCC1 contributes to maturation of the central O(2) chemoreflex. Double labeling experiments showed that the proportion of tyrosine hydroxylase positive neurons expressing NKCC1 in the LC decreases during development. Inactivation of NKCC1 with bumetanide bath application reversed the lung burst response to hypoxia in tadpoles. Bumetanide inhibited the response in adults. These data indicate that a structure within the pons (potentially the LC) is necessary to the central hypoxic chemoreflex and demonstrate that NKCC1 plays a role in central O(2) chemosensitivity and its maturation in this species.
Collapse
Affiliation(s)
- S Fournier
- Department of Pediatrics, Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec City, QC, Canada
| | | |
Collapse
|
27
|
Srivaratharajah K, Cui A, McAneney J, Reid SG. Chronic hypoxic hypercapnia modifies in vivo and in vitro ventilatory chemoreflexes in the cane toad. Respir Physiol Neurobiol 2008; 160:249-58. [DOI: 10.1016/j.resp.2007.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 09/21/2007] [Accepted: 10/17/2007] [Indexed: 10/22/2022]
|
28
|
Fournier S, Allard M, Roussin S, Kinkead R. Developmental changes in central O2 chemoreflex in Rana catesbeiana: the role of noradrenergic modulation. ACTA ACUST UNITED AC 2007; 210:3015-26. [PMID: 17704076 DOI: 10.1242/jeb.005983] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The in vitro brainstem preparation from Rana catesbeiana shows a functional central O(2) chemoreflex. Acute brainstem exposure to hypoxic superfusate elicits lung burst frequency responses that change over the course of development. Based on studies suggesting that brainstem noradrenergic neurons are involved in this reflex, we tested the following two hypotheses in vitro: (1) activation of adrenoceptors is necessary for the expression of the fictive lung ventilation response to hypoxia, and (2) changes in fast, Cl(-)-dependent neurotransmission (GABA/glycine) contribute to developmental changes in noradrenergic modulation. Experiments were performed on preparations from pre-metamorphics tadpoles (TK stages V-XIII) and adult bullfrogs. Acute exposure to hypoxic superfusate (98% N(2), 2% CO(2)) increased fictive lung ventilation frequency in the pre-metamorphic group, whereas a decrease was observed in adults. Buccal burst frequency was unchanged by hypoxia. Noradrenaline (NA; 5 micromol l(-1)) bath application mimicked both fictive breathing responses and application of the alpha(1)-antagonist prazosine (0.5 micromol l(-1)) blocked the lung burst response to hypoxia in both groups. Blocking GABA(A)/glycine receptors with a bicuculine/strychnine mixture (1.25 micromol l(-1)/1.5 micromol l(-1), respectively) or activation of GABA(B) pre-synaptic autoreceptors with baclofen (0.5 micromol l(-1)) prevented the lung burst response to hypoxia and to the alpha(1)-agonist phenylephrine (25 micromol l(-1)) in both stage groups. We conclude that NA modulation contributes to the central O(2) chemoreflex in bullfrog, which acts via GABA/glycine pathways. These data suggest that maturation of GABA/glycine neurotransmission contributes to the developmental changes in this chemoreflex.
Collapse
Affiliation(s)
- Stéphanie Fournier
- Department of Pediatrics, Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec City, QC, Canada
| | | | | | | |
Collapse
|
29
|
Vasilakos K, Kimura N, Wilson RJA, Remmers JE. Lung and Buccal Ventilation in the Frog: Uncoupling Coupled Oscillators. Physiol Biochem Zool 2006; 79:1010-8. [PMID: 17041867 DOI: 10.1086/507655] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2006] [Indexed: 11/03/2022]
Abstract
The frog, with two distinct ventilatory acts, provides a useful model to investigate the prospective interaction of two oscillators in generating the respiratory rhythm. Building on evidence supporting the existence of separate oscillators generating buccal and lung ventilation, we have attempted to uncouple the two rhythms in the isolated brain stem preparation. Opioid preferentially inhibits the lung rhythm, suggesting an uncoupling of the lung from the buccal oscillator. Reduction of the superfusate chloride concentration alters both the buccal and the lung rhythms. Joint application of opioid and reduced-chloride superfusate leads to an increase in the variability of the buccal burst-to-lung burst intervals. This increase in variability suggests that chloride-mediated mechanisms are involved in coupling the buccal oscillator to the lung oscillator. Given the results from these interventions, we propose a simple schematic model of the frog respiratory rhythm generator, outlining the coupling of the lung and buccal oscillators.
Collapse
|
30
|
Gargaglioni LH, Milsom WK. Control of breathing in anuran amphibians. Comp Biochem Physiol A Mol Integr Physiol 2006; 147:665-684. [PMID: 16949847 DOI: 10.1016/j.cbpa.2006.06.040] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 06/21/2006] [Accepted: 06/24/2006] [Indexed: 11/27/2022]
Abstract
The primary role of the respiratory system is to ensure adequate tissue oxygenation, eliminate carbon dioxide and help to regulate acid-base status. To maintain this homeostasis, amphibians possess an array of receptors located at peripheral and central chemoreceptive sites that sense respiration-related variables in both internal and external environments. As in mammals, input from these receptors is integrated at central rhythmogenic and pattern-forming elements in the medulla in a manner that meets the demands determined by the environment within the constraints of the behavior and breathing pattern of the animal. Also as in mammals, while outputs from areas in the midbrain may modulate respiration directly, they do not play a significant role in the production of the normal respiratory rhythm. However, despite these similarities, the breathing patterns of the two classes are different: mammals maintain homeostasis of arterial blood gases through rhythmic and continuous breathing, whereas amphibians display an intermittent pattern of aerial respiration. While the latter is also often rhythmic, it allows a degree of fluctuation in key respiratory variables that has led some to suggest that control is not as tight in these animals. In this review we will focus specifically on recent advances in studies of the control of ventilation in anuran amphibians. This is the group of amphibians that has attracted the most recent attention from respiratory physiologists.
Collapse
Affiliation(s)
- Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, Sao Paulo State University-FCAV at Jaboticabal, SP, Brazil.
| | - William K Milsom
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
31
|
Johnson SM, Creighton RJ. Spinal cord injury-induced changes in breathing are not due to supraspinal plasticity in turtles (Pseudemys scripta). Am J Physiol Regul Integr Comp Physiol 2005; 289:R1550-61. [PMID: 16099823 DOI: 10.1152/ajpregu.00397.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
After occurrence of spinal cord injury, it is not known whether the respiratory rhythm generator undergoes plasticity to compensate for respiratory insufficiency. To test this hypothesis, respiratory variables were measured in adult semiaquatic turtles using a pneumotachograph attached to a breathing chamber on a water-filled tank. Turtles breathed room air (2 h) before being challenged with two consecutive 2-h bouts of hypercapnia (2 and 6% CO2or 4 and 8% CO2). Turtles were spinalized at dorsal segments D8–D10so that only pectoral girdle movement was used for breathing. Measurements were repeated at 4 and 8 wk postinjury. For turtles breathing room air, breathing frequency, tidal volume, and ventilation were not altered by spinalization; single-breath (singlet) frequency increased sevenfold. Spinalized turtles breathing 6–8% CO2had lower ventilation due to decreased frequency and tidal volume, episodic breathing (breaths/episode) was reduced, and singlet breathing was increased sevenfold. Respiratory variables in sham-operated turtles were unaltered by surgery. Isolated brain stems from control, spinalized, and sham turtles produced similar respiratory motor output and responded the same to increased bath pH. Thus spinalized turtles compensated for pelvic girdle loss while breathing room air but were unable to compensate during hypercapnic challenges. Because isolated brain stems from control and spinalized turtles had similar respiratory motor output and chemosensitivity, breathing changes in spinalized turtles in vivo were probably not due to plasticity within the respiratory rhythm generator. Instead, caudal spinal cord damage probably disrupts spinobulbar pathways that are necessary for normal breathing.
Collapse
Affiliation(s)
- Stephen M Johnson
- Dept. of Comparative Biosciences, School of Veterinary Medicine, Univ. of Wisconsin, 2015 Linden Drive, Madison, WI 53706, USA.
| | | |
Collapse
|
32
|
Hedrick MS. Development of respiratory rhythm generation in ectothermic vertebrates. Respir Physiol Neurobiol 2005; 149:29-41. [PMID: 15914099 DOI: 10.1016/j.resp.2005.03.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 03/17/2005] [Accepted: 03/18/2005] [Indexed: 11/30/2022]
Abstract
Compared with birds and mammals, very little is known about the development and regulation of respiratory rhythm generation in ectothermic vertebrates. The development and regulation of respiratory rhythm generation in ectothermic vertebrates (fish, amphibians and reptiles) should provide insight into the evolution of these mechanisms. One useful model for examining the development of respiratory rhythm generation in ectothermic vertebrates has emerged from studies with the North American bullfrog (Rana catesbeiana). A major advantage of bullfrogs as a comparative model for respiratory rhythm generation is that respiratory output may be measured at all stages of development, both in vivo and in vitro. An emerging view of recent studies in developing bullfrogs is that many of the mechanisms of respiratory rhythm generation are very similar to those seen in birds and mammals. The overall conclusion from these studies is that respiratory rhythm generation during development may be highly conserved during evolution. The development of respiratory rhythm generation in mammals may, therefore, reflect the antecedent mechanisms seen in ectothermic vertebrates. The main focus of this brief review is to discuss recent data on the development of respiratory rhythm generation in ectothermic vertebrates, with particular emphasis on the North American bullfrog (R. catesbeiana) as a model.
Collapse
Affiliation(s)
- Michael S Hedrick
- Department of Biological Sciences, California State University, East Bay, Hayward, CA 94542, USA.
| |
Collapse
|
33
|
Hedrick MS, Chen AK, Jessop KL. Nitric oxide changes its role as a modulator of respiratory motor activity during development in the bullfrog (Rana catesbeiana). Comp Biochem Physiol A Mol Integr Physiol 2005; 142:231-40. [PMID: 16023875 DOI: 10.1016/j.cbpb.2005.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2005] [Revised: 06/10/2005] [Accepted: 06/12/2005] [Indexed: 10/25/2022]
Abstract
Nitric oxide (NO) is a unique chemical messenger that has been shown to play a role in the modulation of breathing in amphibians and other vertebrates. In the post-metamorphic tadpole and adult amphibian brainstem, NO, acting via the neuronal isoform of nitric oxide synthase (nNOS), is excitatory to the generation of lung burst activity. In this study, we examine the modulation of breathing by NO during development of the amphibian brainstem. Isolated brainstem preparations from pre-metamorphic and late-stage post-metamorphic tadpoles (Rana catesbeiana) were used to determine the role of NO in modulating central respiratory neural activity. Respiratory neural activity was monitored with suction electrodes recording extracellular activity of cranial nerve rootlets that innervate respiratory musculature. Brainstems were superfused with an artificial cerebrospinal fluid (aCSF) at 20-22 degrees C containing l-nitroarginine (l-NA; 1-10 mM), a non-selective NOS inhibitor. In pre-metamorphic tadpoles, l-NA increased fictive gill ventilation frequency and amplitude, and increased lung burst frequency. By contrast, l-NA applied to the post-metamorphic tadpole brainstem had little effect on fictive buccal activity, but significantly decreased lung burst frequency and the frequency of lung burst episodes. These data indicate that early in development, NO provides a tonic inhibitory input to gill and lung burst activity, but as development progresses, NO provides an excitatory input to lung ventilation. This changing role for NO coincides with the shift in importance in the different respiratory modes during development in amphibians; that is, pre-metamorphic tadpoles rely predominantly on gill ventilation whereas post-metamorphic tadpoles have lost the gills and are obligate air-breathers primarily using lungs for gas exchange. We hypothesize that NO provides a tonic input to the respiratory CPG during development and this changing role reflects the modulatory influence of NO on inhibitory or excitatory modulators or neurotransmitters involved in the generation of respiratory rhythm.
Collapse
Affiliation(s)
- Michael S Hedrick
- Department of Biological Sciences, California State University, East Bay, Hayward, CA 94542 USA.
| | | | | |
Collapse
|