1
|
The Radiolabeling of a Gly-Sar Dipeptide Derivative with Flourine-18 and Its Use as a Potential Peptide Transporter PET Imaging Agent. Molecules 2020; 25:molecules25030643. [PMID: 32024310 PMCID: PMC7037988 DOI: 10.3390/molecules25030643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 11/23/2022] Open
Abstract
We have developed a novel fluorine-18 radiotracer, dipeptide 1, radiolabeled in two steps from mesylate 3. The initial radiolabeling is achieved in a short reaction time (10 min) and purified through solid-phase extraction (SPE) with modest radiochemical yields (rcy = 10 ± 2%, n = 5) in excellent radiochemical purity (rcp > 99%, n = 5). The de-protection of the tert-butyloxycarbonyl (Boc) and trityl group was achieved with mild heating under acidic conditions to provide 18F-tagged dipeptide 1. Preliminary analysis of 18F-dipeptide 1 was performed to confirm uptake by peptide transporters (PepTs) in human pancreatic carcinoma cell lines Panc1, BxPC3, and ASpc1, which are reported to express the peptide transporter 1 (PepT1). Furthermore, we confirmed in vivo uptake of 18F-dipeptide tracer 1 using microPET/CT in mice harboring subcutaneous flank Panc1, BxPC3, and Aspc1 tumors. In conclusion, we have established the radiolabeling of dipeptide 1 with fluoride-18, and demonstrated its potential as an imaging agent which may have clinical applications for the diagnosis of pancreatic carcinomas.
Collapse
|
2
|
Functional characterization of a putative disaccharide membrane transporter in crustacean intestine. J Comp Physiol B 2014; 185:173-83. [DOI: 10.1007/s00360-014-0876-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 11/07/2014] [Accepted: 11/11/2014] [Indexed: 10/24/2022]
|
3
|
Analysis of glycylsarcosine transport by lobster intestine using gas chromatography. J Comp Physiol B 2014; 185:37-45. [DOI: 10.1007/s00360-014-0863-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/05/2014] [Accepted: 09/11/2014] [Indexed: 01/29/2023]
|
4
|
Duka A, Ahearn GA. Comparative cation dependency of sugar transport by crustacean hepatopancreas and intestine. Biol Open 2014; 3:635-43. [PMID: 24950971 PMCID: PMC4154300 DOI: 10.1242/bio.20148904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glucose is transported in crustacean hepatopancreas and intestine by Na(+)-dependent co-transport, while Na(+)-dependent D-fructose influx has only been described for the hepatopancreas. It is still unclear if the two sugars are independently transported by two distinct cation-dependent co-transporter carrier systems. In this study, lobster (Homarus americanus) hepatopancreas brush border membrane vesicles (BBMV) were used to characterize, in detail, the cation-dependency of both D-[(3)H]-glucose and D-[(3)H]-fructose influxes, while in vitro perfused intestines were employed to determine the nature of cation-dependent sugar transport across this organ. Over the sodium concentration range of 0-100 mM, both [(3)H]-glucose and [(3)H]-fructose influxes (0.1 mM; 1 min uptakes) by hepatopancreatic BBMV were hyperbolic functions of [Na(+)]. [(3)H]-glucose and [(3)H]-fructose influxes by hepatopancreatic BBMV over a potassium concentration range of 15-100 mM were hyperbolic functions of [K(+)]. Both sugars displayed significant (p<0.01) Na(+)/K(+)-dependent and cation-independent uptake processes. Transepithelial 25 µM [(3)H]-glucose and [(3)H]-fructose fluxes across lobster intestine over luminal sodium and potassium concentration ranges of 0-50 mM and 5-100 mM, respectively, were hyperbolic functions of luminal [Na(+)] and [K(+)]. As with hepatopancreatic sugar transport, transepithelial intestinal sugar transport exhibited both significant (p<0.01) Na(+)/K(+)-dependent and cation-independent processes. Results suggest that both D-glucose and D-fructose are transported by a single SGLT-type carrier in each organ with sodium being the "preferred", high affinity, cation for both sugars in the hepatopancreas, and potassium being the "preferred", high affinity, cation for both sugars in the intestine.
Collapse
Affiliation(s)
- Ada Duka
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Gregory A Ahearn
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| |
Collapse
|
5
|
Abdel-Malak R, Ahearn GA. Regulation of transmural transport of amino acid/metal conjugates by dietary calcium in crustacean digestive tract. ACTA ACUST UNITED AC 2013; 321:135-43. [DOI: 10.1002/jez.1843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/03/2013] [Accepted: 10/15/2013] [Indexed: 02/02/2023]
Affiliation(s)
- Rania Abdel-Malak
- Department of Biology, University of North Florida, Jacksonville, Florida
| | | |
Collapse
|
6
|
Obi IE, Sterling KM, Ahearn GA. Transepithelial D-glucose and D-fructose transport across the American lobster, Homarus americanus, intestine. ACTA ACUST UNITED AC 2011; 214:2337-44. [PMID: 21697425 DOI: 10.1242/jeb.055095] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Transepithelial transport of dietary D-glucose and d-fructose was examined in the lobster Homarus americanus intestine using D-[(3)H]glucose and D-[(3)H]fructose. Lobster intestines were mounted in a perfusion chamber to determine transepithelial mucosal to serosal (MS) and serosal to mucosal (SM) transport mechanisms of glucose and fructose. Both MS glucose and fructose transport, as functions of luminal sugar concentration, increased in a hyperbolic manner, suggesting the presence of mucosal transport proteins. Phloridizin inhibited the MS flux of glucose, but not that of fructose, suggesting the presence of a sodium-dependent (SGLT1)-like glucose co-transporter. Immunohistochemical analysis, using a goat anti-rabbit GLUT5 polyclonal antibody, revealed the localization of a brush border GLUT5-like fructose transport protein. MS fructose transport was decreased in the presence of mucosal phloretin in warm spring/summer animals, but the same effect was not observed in cold autumn/winter animals, suggesting a seasonal regulation of sugar transporters. Mucosal phloretin had no effect on MS glucose transport. Both SM glucose and SM fructose transport were decreased in the presence of increasing concentrations of serosal phloretin, providing evidence for the presence of a shared serosal GLUT2 transport protein for the two sugars. The transport of d-glucose and d-fructose across lobster intestine is similar to sugar uptake in mammalian intestine, suggesting evolutionarily conserved absorption processes for these solutes.
Collapse
Affiliation(s)
- Ijeoma E Obi
- Department of Biology, University of North Florida, 1 UNF Drive, Jacksonville, FL 32224, USA
| | | | | |
Collapse
|
7
|
Cation-dependent nutrient transport in shrimp digestive tract. J Comp Physiol B 2011; 182:209-16. [DOI: 10.1007/s00360-011-0621-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 09/04/2011] [Accepted: 09/18/2011] [Indexed: 10/17/2022]
|
8
|
Sakurai E, Sakurai E, Ueda Y, Yagi Y. Enhancing effect of zinc on L-histidine transport in rat lung microvascular endothelial cells. Biol Trace Elem Res 2011; 142:713-22. [PMID: 20721638 DOI: 10.1007/s12011-010-8797-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 07/29/2010] [Indexed: 11/29/2022]
Abstract
The aim of this study was to examine enhancing effect of L: -histidine into cultured rat lung microvascular endothelial cells (LMECs), which constitute the gas-blood barrier. Uptake of L: -histidine into LMECs markedly increased with the addition of ZnSO(4) (0.1 mmol/L), and this enhanced uptake of L: -histidine was drastically reduced in the presence of the Na(+)-independent system L substrate, 2-amino-2-norbornanecarboxylic acid (BCH). However, the uptake of L: -histidine together with ZnSO(4) was not reduced by the addition of metabolic inhibitor, 2,4-dinitrophenol, or sodium ion replacement. Moreover, the addition of the system N-substrate, L: -glutamic acid γ-monohydroxamate did not significantly decrease the uptake of L: -histidine with 143 mmol/L Na (+) + 1 mmol/L BCH. These results indicated that system-N transporter does not play a role in the uptake of L: -histidine in the presence of ZnSO(4), suggesting that only system-L transporter is involved in the uptake of L: -histidine, although L: -histidine in the absence of ZnSO(4) was taken up by at least two pathways of Na(+)-dependent system-N and Na(+)-independent system-L processes into rat LMECs. The uptake of L: -histidine into rat LMECs in the presence of ZnSO(4) was also found to be unaffected by pH (5.0-7.4), indicating that uptake of L: -histidine into LMECs by the addition of zinc may not be involved in the H(+)-coupled transporters.
Collapse
Affiliation(s)
- Eiichi Sakurai
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
| | | | | | | |
Collapse
|
9
|
Obi I, Wells A, Ortega P, Patel D, Farah L, Zanotto F, Ahearn G. 3H-L-leucine transport by the promiscuous crustacean dipeptide-like cotransporter. ACTA ACUST UNITED AC 2011; 315:465-75. [DOI: 10.1002/jez.694] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/18/2011] [Accepted: 05/31/2011] [Indexed: 11/08/2022]
|
10
|
Costello LC, Fenselau CC, Franklin RB. Evidence for operation of the direct zinc ligand exchange mechanism for trafficking, transport, and reactivity of zinc in mammalian cells. J Inorg Biochem 2011; 105:589-99. [PMID: 21440525 PMCID: PMC3081963 DOI: 10.1016/j.jinorgbio.2011.02.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 02/02/2011] [Accepted: 02/03/2011] [Indexed: 11/28/2022]
Abstract
In addition to its critical role in normal cell function, growth, and metabolism, zinc is implicated as a major factor in the development and progression of many pathological conditions and diseases. Despite this importance of zinc, many important factors, processes, and mechanisms of the physiology, biochemistry, and molecular biology of zinc remain unknown. Especially important is the unresolved issue regarding the mechanism and process of the trafficking, transport, and reactivity of zinc in cells; especially in mammalian cells. This presentation focuses on the concept that, due to the existence of a negligible pool of free Zn(2+) ions in the mammalian cell environment, the trafficking, transport and reactivity of zinc occurs via a direct exchange of zinc from donor Zn-ligands to acceptor ligands. This Zn exchange process occurs without the requirement for production of free Zn(2+) ions. The direct evidence from mammalian cell studies is presented in support of the operation of the direct Zn-ligand exchange mechanism. The paper also provides important information and conditions that should be considered and employed in the conduct of studies regarding the role and effects of zinc in biological/biomedical research; and in its clinical interpretation and application.
Collapse
Affiliation(s)
- Leslie C. Costello
- Department of Oncology and Diagnostic Sciences, Dental School; and The Greenebaum Cancer Center; University of Maryland; Baltimore, Maryland, USA 21201
| | - Catherine C. Fenselau
- Department of Chemistry and Biochemistry; University of Maryland; College Park, Maryland, USA 20742; and The Greenebaum Cancer Center; University of Maryland; Baltimore, Maryland, USA 21201
| | - Renty B. Franklin
- Department of Oncology and Diagnostic Sciences, Dental School; and The Greenebaum Cancer Center; University of Maryland; Baltimore, Maryland, USA 21201
| |
Collapse
|
11
|
Histidine protects against zinc and nickel toxicity in Caenorhabditis elegans. PLoS Genet 2011; 7:e1002013. [PMID: 21455490 PMCID: PMC3063764 DOI: 10.1371/journal.pgen.1002013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 01/10/2011] [Indexed: 01/16/2023] Open
Abstract
Zinc is an essential trace element involved in a wide range of biological
processes and human diseases. Zinc excess is deleterious, and animals require
mechanisms to protect against zinc toxicity. To identify genes that modulate
zinc tolerance, we performed a forward genetic screen for Caenorhabditis
elegans mutants that were resistant to zinc toxicity. Here we
demonstrate that mutations of the C. elegans histidine ammonia
lyase (haly-1) gene promote zinc tolerance. C. elegans
haly-1 encodes a protein that is homologous to vertebrate HAL, an
enzyme that converts histidine to urocanic acid. haly-1 mutant
animals displayed elevated levels of histidine, indicating that C.
elegans HALY-1 protein is an enzyme involved in histidine
catabolism. These results suggest the model that elevated histidine chelates
zinc and thereby reduces zinc toxicity. Supporting this hypothesis, we
demonstrated that dietary histidine promotes zinc tolerance. Nickel is another
metal that binds histidine with high affinity. We demonstrated that
haly-1 mutant animals are resistant to nickel toxicity and
dietary histidine promotes nickel tolerance in wild-type animals. These studies
identify a novel role for haly-1 and histidine in zinc
metabolism and may be relevant for other animals. Zinc is an essential nutrient that is critical for human health. However, excess
zinc can cause toxicity, indicating that regulatory mechanisms are necessary to
maintain homeostasis. The analysis of mechanisms that promote zinc homeostasis
can elucidate fundamental regulatory processes and suggest new approaches for
treating disorders of zinc metabolism. To discover genes that modulate zinc
tolerance, we screened for C. elegans mutants that were
resistant to zinc toxicity. Here we demonstrate that mutations of the histidine
ammonia lyase (haly-1) gene promote zinc tolerance.
haly-1 encodes a protein that is similar to vertebrate HAL,
an enzyme that converts histidine to urocanic acid. Mutations in the human HAL
gene cause elevated levels of serum histidine and abnormal zinc metabolism.
Mutations in C. elegans haly-1 cause elevated levels of
histidine, suggesting that histidine causes resistance to excess zinc.
Consistent with this hypothesis, we demonstrated that dietary histidine promoted
tolerance to excess zinc in wild-type worms. Mutations in
haly-1 and supplemental dietary histidine also caused
resistance to nickel, another metal that can bind histidine. A likely mechanism
of protection is chelation of zinc and nickel by histidine. These studies
suggest that histidine plays a physiological role in zinc metabolism.
Collapse
|
12
|
Rumschik SM, Nydegger I, Zhao J, Kay AR. The interplay between inorganic phosphate and amino acids determines zinc solubility in brain slices. J Neurochem 2009; 108:1300-8. [PMID: 19183267 DOI: 10.1111/j.1471-4159.2009.05880.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Inorganic phosphate (Pi) is an important polyanion needed for ATP synthesis and bone formation. As it is found at millimolar levels in plasma, it is usually incorporated as a constituent of artificial CSF formulations for maintaining brain slices. In this paper, we show that Pi limits the extracellular zinc concentration by inducing metal precipitation. We present data suggesting that amino acids like histidine may counteract the Pi-induced zinc precipitation by the formation of soluble zinc complexes. We propose that the interplay between Pi and amino acids in the extracellular space may influence the availability of metals for cellular uptake.
Collapse
Affiliation(s)
- Sean M Rumschik
- Department of Biology, University of Iowa, Iowa City, 52242, USA
| | | | | | | |
Collapse
|
13
|
Glover CN, Wood CM. Histidine absorption across apical surfaces of freshwater rainbow trout intestine: mechanistic characterization and the influence of copper. J Membr Biol 2008; 221:87-95. [PMID: 18217179 DOI: 10.1007/s00232-007-9088-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 11/26/2007] [Indexed: 11/30/2022]
Abstract
The essential amino acid histidine performs critical roles in health and disease. These functions are generally attributed to the amino acid itself, but could also be mediated by a positive effect on trace element bioavailability. Mechanistic information regarding the absorption of histidine across the gastrointestinal tract is essential for understanding the interplay between amino acid and mineral nutrients and the implications of these interactions for nutrition and toxicology. Using intestinal brush-border membrane vesicles obtained from freshwater rainbow trout, absorption of histidine over the range 0.78-780 microM: was found to be saturable, with a maximal transport rate (J (max)) of 9.1 +/- 0.8 nmol mg protein(-1) min(-1) and a K (m) (histidine concentration required to reach 50% of this level) of 339 +/- 68 microM: . Histidine uptake was highly specific as 10-fold elevated levels of a variety of amino acids with putative shared transporters failed to significantly inhibit uptake. Elevated levels of D: -histidine, however, impaired uptake of the natural L: -isomer. The presence of "luminal" copper (8.3 microM: ) significantly increased both the J (max) and K (m) of histidine transport. This suggests that chelated copper-histidine species cross the brush-border epithelium through transport pathways distinct from those used by histidine alone.
Collapse
Affiliation(s)
- Chris N Glover
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway.
| | | |
Collapse
|
14
|
Glover CN, Wood CM. Absorption of copper and copper–histidine complexes across the apical surface of freshwater rainbow trout intestine. J Comp Physiol B 2007; 178:101-9. [PMID: 17724600 DOI: 10.1007/s00360-007-0203-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2007] [Revised: 08/06/2007] [Accepted: 08/08/2007] [Indexed: 10/22/2022]
Abstract
Bioavailability is integral in mediating the delicate balance between nutritive and potentially toxic levels of copper in fish diets. Brush-border membrane vesicles isolated from freshwater rainbow trout intestine were used to characterise apical copper absorption, and to examine the influence of the amino acid histidine on this process. In the absence of histidine, a low affinity, high capacity copper uptake mechanism was described. However, when expressed as a function of ionic copper (Cu(2+)), absorption was linear, rather than saturable, suggesting that the saturable curve was an artifact of copper speciation. Conversely, in the presence of L: -histidine (780 microM) saturable uptake was characterised. The uptake capacity discerned (J (max) of 354 +/- 81 nmol mg protein(-1) min(-1)) in the presence of histidine indicated a significantly reduced capacity for copper transport than that in the absence of histidine. To determine if copper uptake was achievable through putative histidine uptake pathways, copper and histidine were incubated in the presence of tenfold greater concentrations of amino acids proposed to block histidine transporters. Accounting for changes in copper speciation, significant inhibition of uptake by glycine and lysine were noted at copper levels of 699 and 1,028 microM. These results suggest that copper-histidine complexes may be transportable via specific amino acid-transporters in the brush-border membrane.
Collapse
Affiliation(s)
- Chris N Glover
- National Institute of Nutrition and Seafood Research, Bergen, Norway.
| | | |
Collapse
|
15
|
Ojo AA, Wood CM. In vitro analysis of the bioavailability of six metals via the gastro-intestinal tract of the rainbow trout (Oncorhynchus mykiss). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2007; 83:10-23. [PMID: 17448547 DOI: 10.1016/j.aquatox.2007.03.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 03/09/2007] [Accepted: 03/12/2007] [Indexed: 05/15/2023]
Abstract
An in vitro gut sac technique was used to compare the uptake rates of essential (copper, zinc and nickel) and non-essential metals (silver, cadmium and lead) at 50 micromol L(-1) each (a typical nutritive level in solution in chyme) in the luminal saline in four sections of the gastro-intestinal tract (stomach, anterior, mid and posterior intestines) of the freshwater rainbow trout. Cu, Zn, Cd and Ag exhibited similar regional patterns: on an area-specific basis, uptake rates for these metals were highest in the anterior intestine, lowest in the stomach, and approximately equal in the mid and posterior intestinal segments. When these rates were converted to a whole animal basis, the predominance of the anterior intestine increased because of its greater area, while the contribution of the stomach rose slightly to approach those of the mid and posterior intestines. However, for Pb and Ni, area-specific and whole organism transport rates were greatest in the mid (Pb) and posterior (Ni) intestines. Surprisingly, total transport rates did not differ appreciably among the essential and non-essential metals, varying only from 0.025 (Ag) to 0.050 nmol g(-1)h(-1) (Ni), suggesting that a single rate constant can be applied for risk assessment purposes. These rates were generally comparable to previously reported uptake rates from waterborne exposures conducted at concentrations 1-4 orders of magnitude lower, indicating that both routes are likely important, and that gut transporters operate with much lower affinity than gill transporters. Except for Ni, more metal was bound to mucus and/or trapped in the mucosal epithelium than was transported into the blood space in every compartment except the anterior intestine, where net transport predominated. Overall, mucus binding was a significant predictor of net transport rate for every metal except Cd, and the strongest relationship was seen for Pb.
Collapse
Affiliation(s)
- Adeola A Ojo
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1.
| | | |
Collapse
|
16
|
Piersol MC, Sterling KM, Ahearn GA. Absorption of tetraethylammonium (TEA+) by perfused lobster intestine. ACTA ACUST UNITED AC 2007; 307:176-86. [PMID: 17397071 DOI: 10.1002/jez.a.360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The organic cation, tetraethylammonium (TEA(+)), is actively secreted by mammalian nephrons and crustacean urinary bladders by similar processes in both animal groups. These mechanisms consist of a basolateral Organic Cation Transporter (OCT family) that employs the transmembrane electrical potential as a driving force for organic cation uptake from the blood and a brush border secondary active transport process that exchanges luminal protons for TEA(+). The present study examined the nature of (14)C-TEA(+) transport across the perfused intestinal epithelium of the American lobster, Homarus americanus, to ascertain whether the gut complemented the kidneys in the clearance of these organic metabolites from the blood. Unidirectional mucosa to serosa (M to S) (14)C-TEA(+) fluxes in anterior and posterior intestine were hyperbolic functions of luminal [TEA(+)] and significantly (P<0.01) exceeded the respective serosa to mucosa (S to M) fluxes. Luminal quinine (1 mM) significantly (P<0.05) inhibited M to S flux of the organic cation, while serosal addition of the drug had no effect on S to M transfer of TEA(+). Reducing serosal pH from 7.20 to 6.02 significantly (P<0.01) stimulated M to S transfer of 0.1 mM (14)C-TEA(+), but significantly (P<0.05) lowered S to M transfer of the metabolite. Addition of 2.0 mM unlabelled serosal TEA(+) trans-stimulated the M to S flux of 0.1 mM (14)C-TEA and doubled the transfer rate of the organic cation from lumen to blood compared to its transport in the absence of TEA(+) in the bath. Results suggest that this organic cation is absorbed across lobster intestine by the combination of a brush border OCT-1-like transporter coupled with a basolateral H(+)/TEA(+) exchanger. A working model is presented for intestinal organic cation absorption in crustaceans and compared to the secretory transport model for this class of metabolites previously reported for crustacean and mammalian kidneys.
Collapse
Affiliation(s)
- Megan C Piersol
- Department of Biology, University of North Florida, Jacksonville, Florida 32224, USA
| | | | | |
Collapse
|
17
|
Conrad EM, Ahearn GA. Transepithelial transport of zinc and L-histidine across perfused intestine of American lobster, Homarus americanus. J Comp Physiol B 2006; 177:297-307. [PMID: 17106740 DOI: 10.1007/s00360-006-0129-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 09/14/2006] [Accepted: 10/20/2006] [Indexed: 10/23/2022]
Abstract
The intestine of the American lobster, Homarus americanus, was isolated and perfused in vitro with a physiological saline, based on the ion composition of the blood, to characterize the mechanisms responsible for transmural transport of zinc and how the amino acid, L-histidine, affects the net movement of the metal across the tissue. Previous studies with this preparation, focusing on the characteristics of unidirectional mucosa to serosa (M to S) fluxes of (65)Zn(2+) and (3)H-L-histidine, indicated the presence of a brush border co-transport process responsible for simultaneously transferring the metal and amino acid across this tissue as an apparent bis-complex (Zn-[His](2)) using a PEPT-1-like dipeptide carrier mechanism. In addition, both zinc and L-histidine were also transferred toward the blood by separate transporters that were independent of the other substrate. The focus of the present study was to characterize the serosa to mucosa (S to M) flux of (65)Zn(2+) under a variety of conditions, and use these values in conjunction with those from the previous study, to assess the direction and magnitude of net metal movement across the tissue. Transmural S to M transport of (65)Zn(2+) was markedly reduced with the addition of the serosal inhibitors ouabain (32%), excess K(+) (25%), excess Ca(2+) (30%), Cu(2+) (38%), nifedipine (21%), and vanadate (53%). In contrast, this flux was markedly stimulated with the serosal addition of ATP (24%) and excess Na(+) (28%). These results suggest that S to M fluxes of zinc occurred by the combination of the basolateral Na/Ca exchanger (NCX), where zinc replaced calcium, and a basolateral nifedipine-sensitive calcium channel. Transmural M to S (65)Zn(2+) fluxes (5-100 microM) were threefold greater than S to M metal transport, and the addition of luminal L-histidine doubled the net M to S zinc flux over its rate in the absence of the amino acid. The results of this paper and those in its predecessor indicate that zinc transport by the lobster intestine is absorptive and significantly enhanced by luminal amino acids.
Collapse
Affiliation(s)
- E M Conrad
- Department of Biology, University of North Florida, 4567 St. Johns Bluff Road, South, Jacksonville, FL 32224, USA
| | | |
Collapse
|