1
|
Cheng K, Li X, Tong M, Jong MC, Cai Z, Zheng H, Xiao B, Zhou J. Integrated metagenomic and metaproteomic analyses reveal bacterial micro-ecological mechanisms in coral bleaching. mSystems 2023; 8:e0050523. [PMID: 37882797 PMCID: PMC10734480 DOI: 10.1128/msystems.00505-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Coral reefs worldwide are facing rapid decline due to coral bleaching. However, knowledge of the physiological characteristics and molecular mechanisms of coral symbionts respond to stress is scarce. Here, metagenomic and metaproteomic approaches were utilized to shed light on the changes in the composition and functions of coral symbiotic bacteria during coral bleaching. The results demonstrated that coral bleaching significantly affected the composition of symbionts, with bacterial communities dominating in bleached corals. Through differential analyses of gene and protein expression, it becomes evident that symbionts experience functional disturbances in response to heat stress. These disturbances result in abnormal energy metabolism, which could potentially compromise the health and resilience of the symbionts. Furthermore, our findings highlighted the highly diverse microbial communities of coral symbionts, with beneficial bacteria providing critical services to corals in stress responses and pathogenic bacteria driving coral bleaching. This study provides comprehensive insights into the complex response mechanisms of coral symbionts under heat stress from the micro-ecological perspective and offers fundamental data for future monitoring of coral health.
Collapse
Affiliation(s)
- Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Xinyang Li
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Mengmeng Tong
- Ocean College, Zhejiang University, Zhoushan, Zhejiang, China
| | - Mui-Choo Jong
- Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Huina Zheng
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China
| | - Baohua Xiao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Gao Y, Erdner DL. Dynamics of cell death across growth stages and the diel cycle in the dinoflagellate Karenia brevis. J Eukaryot Microbiol 2021; 69:e12874. [PMID: 34669235 DOI: 10.1111/jeu.12874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent evidence suggests that programmed cell death (PCD) can play a role in stress-induced decline and termination of harmful algal blooms. However, components of the PCD cascade, i.e. reactive oxygen species (ROS) and caspase-like activity, have also been observed in the absence of exogenous stress, where their activities and functions remain unclear. Here, we characterized the variability of prevalence of cell death, ROS, and caspase-like activity at different growth phases and diel cycles in cultures of dinoflagellate Karenia brevis. Results show that ROS percentages increased with culture age and fluctuated in a phasing diel pattern, while caspase-like activity was observed throughout growth. In actively growing K. brevis cells, PCD components may be involved in key metabolic processes, while in stationary phase they may relate to stress acclimation. The circadian diel pattern of ROS may be explained by the balance between the metabolic generation of ROS and circadian rhythmicity of antioxidant enzymes. Overall, this work highlights not only the involvement of PCD components in the growth of marine phytoplankton, but the importance of understanding mechanisms controlling their accumulation, which would help to better interpret their presence in the field.
Collapse
Affiliation(s)
- Yida Gao
- Marine Science Institute, University of Texas at Austin, Port Aransas, Texas, USA
| | - Deana L Erdner
- Marine Science Institute, University of Texas at Austin, Port Aransas, Texas, USA
| |
Collapse
|
3
|
Chen HK, Rosset SL, Wang LH, Chen CS. The characteristics of host lipid body biogenesis during coral-dinoflagellate endosymbiosis. PeerJ 2021; 9:e11652. [PMID: 34221732 PMCID: PMC8234918 DOI: 10.7717/peerj.11652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/31/2021] [Indexed: 11/25/2022] Open
Abstract
Intracellular lipid body (LB) biogenesis depends on the symbiosis between coral hosts and their Symbiodinaceae. Therefore, understanding the mechanism(s) behind LB biosynthesis in corals can portentially elucide the drivers of cellular regulation during endosymbiosis. This study assessed LB formation in the gastrodermal tissue layer of the hermatypic coral Euphyllia glabrescens. Diel rhythmicity in LB size and distribution was observed; solar irradiation onset at sunrise initiated an increase in LB formation, which continued throughout the day and peaked after sunset at 18:00. The LBs migrated from the area near the mesoglea to the gastrodermal cell border near the coelenteron. Micro-LB biogenesis occurred in the endoplasmic reticulum (ER) of the host gastrodermal cells. A transcriptomic analysis of genes related to lipogenesis indicated that binding immunoglobulin protein (BiP) plays a key role in metabolic signaling pathways. The diel rhythmicity of LB biogenesis was correlated with ER-localized BiP expression. BiP expression peaked during the period with the largest increase in LB formation, thereby indicating that the chaperoning reaction of abnormal protein folding inside the host ER is likely involved in LB biosynthesis. These findings suggest that the host ER, central to LB formation, potentially facilitates the regulation of endosymbiosis between coral hosts and Symbiodiniaceae.
Collapse
Affiliation(s)
- Hung-Kai Chen
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
| | - Sabrina L Rosset
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
| | - Li-Hsueh Wang
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan.,Graduate Institute of Marine Biology, National Dong-Hwa University, Pingtung, Taiwan
| | - Chii-Shiarng Chen
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan.,Graduate Institute of Marine Biology, National Dong-Hwa University, Pingtung, Taiwan.,Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
4
|
Dellisanti W, Chung JTH, Chow CFY, Wu J, Wells ML, Chan LL. Experimental Techniques to Assess Coral Physiology in situ Under Global and Local Stressors: Current Approaches and Novel Insights. Front Physiol 2021; 12:656562. [PMID: 34163371 PMCID: PMC8215126 DOI: 10.3389/fphys.2021.656562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/09/2021] [Indexed: 11/19/2022] Open
Abstract
Coral reefs are declining worldwide due to global changes in the marine environment. The increasing frequency of massive bleaching events in the tropics is highlighting the need to better understand the stages of coral physiological responses to extreme conditions. Moreover, like many other coastal regions, coral reef ecosystems are facing additional localized anthropogenic stressors such as nutrient loading, increased turbidity, and coastal development. Different strategies have been developed to measure the health status of a damaged reef, ranging from the resolution of individual polyps to the entire coral community, but techniques for measuring coral physiology in situ are not yet widely implemented. For instance, while there are many studies of the coral holobiont response in single or limited-number multiple stressor experiments, they provide only partial insights into metabolic performance under more complex and temporally and spatially variable natural conditions. Here, we discuss the current status of coral reefs and their global and local stressors in the context of experimental techniques that measure core processes in coral metabolism (respiration, photosynthesis, and biocalcification) in situ, and their role in indicating the health status of colonies and communities. We highlight the need to improve the capability of in situ studies in order to better understand the resilience and stress response of corals under multiple global and local scale stressors.
Collapse
Affiliation(s)
- Walter Dellisanti
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, China.,Department of Biomedical Sciences, City University of Hong Kong, Kowloon, China
| | - Jeffery T H Chung
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, China
| | - Cher F Y Chow
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, China.,Centre for Biological Diversity, Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Jiajun Wu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, China
| | - Mark L Wells
- School of Marine Sciences, University of Maine, Orono, ME, United States.,State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Leo L Chan
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, China.,Department of Biomedical Sciences, City University of Hong Kong, Kowloon, China.,Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
5
|
Mendrik FM, Henry TB, Burdett H, Hackney CR, Waller C, Parsons DR, Hennige SJ. Species-specific impact of microplastics on coral physiology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116238. [PMID: 33321308 DOI: 10.1016/j.envpol.2020.116238] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/18/2020] [Accepted: 12/04/2020] [Indexed: 05/23/2023]
Abstract
There is evidence that microplastic (MP) pollution can negatively influence coral health; however, mechanisms are unknown and most studies have used MP exposure concentrations that are considerably higher than current environmental conditions. Furthermore, whether MP exposure influences coral susceptibility to other stressors such as ocean warming is unknown. Our objective was to determine the physiology response of corals exposed to MP concentrations that have been observed in-situ at ambient and elevated temperature that replicates ocean warming. Here, two sets of short-term experiments were conducted at ambient and elevated temperature, exposing the corals Acroporasp. and Seriatopora hystrix to microspheres and microfibres. Throughout the experiments, gross photosynthesis and net respiration was quantified using a 4-chamber coral respirometer, and photosynthetic yields of photosystem II were measured using Pulse-Amplitude Modulated (PAM) fluorometry. Results indicate the effect of MP exposure is dependent on MP type, coral species, and temperature. MP fibres (but not spheres) reduced photosynthetic capability of Acropora sp., with a 41% decrease in photochemical efficiency at ambient temperature over 12 days. No additional stress response was observed at elevated temperature; photosynthetic performance significantly increased in Seriatopora hystrix exposed to MP spheres. These findings show that a disruption to coral photosynthetic ability can occur at MP concentrations that have been observed in the marine environment and that MP pollution impact on corals remains an important aspect for further research.
Collapse
Affiliation(s)
- F M Mendrik
- School of GeoSciences, University of Edinburgh, Edinburgh, EH93FE, UK; Energy and Environment Institute, University of Hull, Cottingham Road, Hull, East Riding, HU6 7RX, UK.
| | - T B Henry
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - H Burdett
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, EH14 4AS, UK; Lyell Centre for Earth and Marine Science and Technology, Edinburgh, EH14 4BA, UK
| | - C R Hackney
- Geography, Politics and Sociology, Newcastle University, Newcastle Upon Tyne, UK
| | - C Waller
- Department of Biology and Marine Sciences, School of Science and Engineering, University of Hull, Cottingham Road, Hull, East Riding, HU6 7RX, UK
| | - D R Parsons
- Energy and Environment Institute, University of Hull, Cottingham Road, Hull, East Riding, HU6 7RX, UK
| | - S J Hennige
- School of GeoSciences, University of Edinburgh, Edinburgh, EH93FE, UK
| |
Collapse
|
6
|
Measuring light scattering and absorption in corals with Inverse Spectroscopic Optical Coherence Tomography (ISOCT): a new tool for non-invasive monitoring. Sci Rep 2019; 9:14148. [PMID: 31578438 PMCID: PMC6775107 DOI: 10.1038/s41598-019-50658-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022] Open
Abstract
The success of reef-building corals for >200 million years has been dependent on the mutualistic interaction between the coral host and its photosynthetic endosymbiont dinoflagellates (family Symbiodiniaceae) that supply the coral host with nutrients and energy for growth and calcification. While multiple light scattering in coral tissue and skeleton significantly enhance the light microenvironment for Symbiodiniaceae, the mechanisms of light propagation in tissue and skeleton remain largely unknown due to a lack of technologies to measure the intrinsic optical properties of both compartments in live corals. Here we introduce ISOCT (inverse spectroscopic optical coherence tomography), a non-invasive approach to measure optical properties and three-dimensional morphology of living corals at micron- and nano-length scales, respectively, which are involved in the control of light propagation. ISOCT enables measurements of optical properties in the visible range and thus allows for characterization of the density of light harvesting pigments in coral. We used ISOCT to characterize the optical scattering coefficient (μs) of the coral skeleton and chlorophyll a concentration of live coral tissue. ISOCT further characterized the overall micro- and nano-morphology of live tissue by measuring differences in the sub-micron spatial mass density distribution (D) that vary throughout the tissue and skeleton and give rise to light scattering, and this enabled estimates of the spatial directionality of light scattering, i.e., the anisotropy coefficient, g. Thus, ISOCT enables imaging of coral nanoscale structures and allows for quantifying light scattering and pigment absorption in live corals. ISOCT could thus be developed into an important tool for rapid, non-invasive monitoring of coral health, growth and photophysiology with unprecedented spatial resolution.
Collapse
|
7
|
Silveira CB, Gregoracci GB, Coutinho FH, Silva GGZ, Haggerty JM, de Oliveira LS, Cabral AS, Rezende CE, Thompson CC, Francini-Filho RB, Edwards RA, Dinsdale EA, Thompson FL. Bacterial Community Associated with the Reef Coral Mussismilia braziliensis's Momentum Boundary Layer over a Diel Cycle. Front Microbiol 2017; 8:784. [PMID: 28588555 PMCID: PMC5438984 DOI: 10.3389/fmicb.2017.00784] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 04/18/2017] [Indexed: 11/13/2022] Open
Abstract
Corals display circadian physiological cycles, changing from autotrophy during the day to heterotrophy during the night. Such physiological transition offers distinct environments to the microbial community associated with corals: an oxygen-rich environment during daylight hours and an oxygen-depleted environment during the night. Most studies of coral reef microbes have been performed on samples taken during the day, representing a bias in the understanding of the composition and function of these communities. We hypothesized that coral circadian physiology alters the composition and function of microbial communities in reef boundary layers. Here, we analyzed microbial communities associated with the momentum boundary layer (MBL) of the Brazilian endemic reef coral Mussismilia braziliensis during a diurnal cycle, and compared them to the water column. We determined microbial abundance and nutrient concentration in samples taken within a few centimeters of the coral's surface every 6 h for 48 h, and sequenced microbial metagenomes from a subset of the samples. We found that dominant taxa and functions in the coral MBL community were stable over the time scale of our sampling, with no significant shifts between night and day samples. Interestingly, the two water column metagenomes sampled 1 m above the corals were also very similar to the MBL metagenomes. When all samples were analyzed together, nutrient concentration significantly explained 40% of the taxonomic dissimilarity among dominant genera in the community. Functional profiles were highly homogenous and not significantly predicted by any environmental variables measured. Our data indicated that water flow may overrule the effects of coral physiology in the MBL bacterial community, at the scale of centimeters, and suggested that sampling resolution at the scale of millimeters may be necessary to address diurnal variation in community composition.
Collapse
Affiliation(s)
- Cynthia B Silveira
- Instituto de Biologia, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil.,Department of Biology, San Diego State UniversitySan Diego, CA, USA
| | | | - Felipe H Coutinho
- Instituto de Biologia, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil.,Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical CentreNijmegen, Netherlands
| | - Genivaldo G Z Silva
- Department of Computational Science, San Diego State UniversitySan Diego, CA, USA
| | - John M Haggerty
- Department of Biology, San Diego State UniversitySan Diego, CA, USA
| | - Louisi S de Oliveira
- Instituto de Biologia, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Anderson S Cabral
- Instituto de Biologia, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Carlos E Rezende
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte FluminenseCampos dos Goytacazes, Brazil
| | - Cristiane C Thompson
- Instituto de Biologia, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | | | - Robert A Edwards
- Department of Computational Science, San Diego State UniversitySan Diego, CA, USA
| | - Elizabeth A Dinsdale
- Instituto de Biologia, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Fabiano L Thompson
- Instituto de Biologia, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil.,Laboratório de Sistemas Avançados de Gestão da Produção, COPPE, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| |
Collapse
|
8
|
Gutner-Hoch E, Schneider K, Stolarski J, Domart-Coulon I, Yam R, Meibom A, Shemesh A, Levy O. Evidence for Rhythmicity Pacemaker in the Calcification Process of Scleractinian Coral. Sci Rep 2016; 6:20191. [PMID: 26847144 PMCID: PMC4742845 DOI: 10.1038/srep20191] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 12/17/2015] [Indexed: 11/09/2022] Open
Abstract
Reef-building scleractinian (stony) corals are among the most efficient bio-mineralizing organisms in nature. The calcification rate of scleractinian corals oscillates under ambient light conditions, with a cyclic, diurnal pattern. A fundamental question is whether this cyclic pattern is controlled by exogenous signals or by an endogenous 'biological-clock' mechanism, or both. To address this problem, we have studied calcification patterns of the Red Sea scleractinian coral Acropora eurystoma with frequent measurements of total alkalinity (AT) under different light conditions. Additionally, skeletal extension and ultra-structure of newly deposited calcium carbonate were elucidated with (86)Sr isotope labeling analysis, combined with NanoSIMS ion microprobe and scanning electron microscope imaging. Our results show that the calcification process persists with its cyclic pattern under constant light conditions while dissolution takes place within one day of constant dark conditions, indicating that an intrinsic, light-entrained mechanism may be involved in controlling the calcification process in photosymbiotic corals.
Collapse
Affiliation(s)
- Eldad Gutner-Hoch
- The Mina &Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 52900 Ramat-Gan, Israel
| | - Kenneth Schneider
- The Mina &Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 52900 Ramat-Gan, Israel
| | - Jaroslaw Stolarski
- Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, PL-00-818 Warsaw, Poland
| | - Isabelle Domart-Coulon
- MCAM UMR7245, Sorbonne Universités, Muséum National d'Histoire Naturelle, (CP54) 57 rue Cuvier, 75005 Paris, France
| | - Ruth Yam
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, P.O.Box 26, 76100 Rehovot, Israel
| | - Anders Meibom
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.,Center for Advanced Surface Analysis, Institute of Earth Sciences, University of Lausanne, Lausanne, Switzerland
| | - Aldo Shemesh
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, P.O.Box 26, 76100 Rehovot, Israel
| | - Oren Levy
- The Mina &Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 52900 Ramat-Gan, Israel
| |
Collapse
|
9
|
Lutz A, Raina JB, Motti CA, Miller DJ, van Oppen MJH. Host Coenzyme Q Redox State Is an Early Biomarker of Thermal Stress in the Coral Acropora millepora. PLoS One 2015; 10:e0139290. [PMID: 26426118 PMCID: PMC4591267 DOI: 10.1371/journal.pone.0139290] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/09/2015] [Indexed: 11/19/2022] Open
Abstract
Bleaching episodes caused by increasing seawater temperatures may induce mass coral mortality and are regarded as one of the biggest threats to coral reef ecosystems worldwide. The current consensus is that this phenomenon results from enhanced production of harmful reactive oxygen species (ROS) that disrupt the symbiosis between corals and their endosymbiotic dinoflagellates, Symbiodinium. Here, the responses of two important antioxidant defence components, the host coenzyme Q (CoQ) and symbiont plastoquinone (PQ) pools, are investigated for the first time in colonies of the scleractinian coral, Acropora millepora, during experimentally-induced bleaching under ecologically relevant conditions. Liquid chromatography-mass spectrometry (LC-MS) was used to quantify the states of these two pools, together with physiological parameters assessing the general state of the symbiosis (including photosystem II photochemical efficiency, chlorophyll concentration and Symbiodinium cell densities). The results show that the responses of the two antioxidant systems occur on different timescales: (i) the redox state of the Symbiodinium PQ pool remained stable until twelve days into the experiment, after which there was an abrupt oxidative shift; (ii) by contrast, an oxidative shift of approximately 10% had occurred in the host CoQ pool after 6 days of thermal stress, prior to significant changes in any other physiological parameter measured. Host CoQ pool oxidation is thus an early biomarker of thermal stress in corals, and this antioxidant pool is likely to play a key role in quenching thermally-induced ROS in the coral-algal symbiosis. This study adds to a growing body of work that indicates host cellular responses may precede the bleaching process and symbiont dysfunction.
Collapse
Affiliation(s)
- Adrian Lutz
- AIMS@JCU, James Cook University, Townsville, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- Comparative Genomics Centre and Department of Molecular and Cell Biology, James Cook University, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- * E-mail:
| | - Jean-Baptiste Raina
- AIMS@JCU, James Cook University, Townsville, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- College of Marine and Environmental Sciences, James Cook University, Townsville, Queensland, Australia
| | - Cherie A. Motti
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - David J. Miller
- Comparative Genomics Centre and Department of Molecular and Cell Biology, James Cook University, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Madeleine J. H. van Oppen
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- School of BioSciences, The University of Melbourne, Parkville, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Ruiz-Jones LJ, Palumbi SR. Transcriptome-wide Changes in Coral Gene Expression at Noon and Midnight Under Field Conditions. THE BIOLOGICAL BULLETIN 2015; 228:227-41. [PMID: 26124449 DOI: 10.1086/bblv228n3p227] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Reef-building corals experience high daily variation in their environment, food availability, and physiological activities such as calcification and photosynthesis by endosymbionts. On Ofu Island, American Samoa, we investigated day-night differences in gene expression under field conditions of changing pH, temperature, light, and oxygen. Using RNASeq techniques, we compared two replicate transcriptomes from a single coral colony of Acropora hyacinthus over six noons and five midnights. We identified 344 contigs with significant expression differences across 16,800 contigs in the transcriptome, most with small fold-changes. However, there were 21 contigs with fold-changes ranging from 10 to 141. The largest changes were in a set of transcription factors strongly associated with day-night gene regulation in other animals, including cryptochromes, thyrotroph embryonic factor, and D site-binding protein. We also found large daytime increases in a set of genes involved in glucose transport and glycogen storage. We found small expression differences in genes associated with aerobic ATP production and hypoxia response, along with slightly higher expression of most calcification genes at noon. Although >40-fold-changes in expression occur in important transcription factors, downstream gene regulation seems very stable in corals from day to night compared to other animals studied.
Collapse
Affiliation(s)
- Lupita J Ruiz-Jones
- Department of Biology, Stanford University, Hopkins Marine Station, 120 Oceanview Blvd., Pacific Grove, California 93950
| | - Stephen R Palumbi
- Department of Biology, Stanford University, Hopkins Marine Station, 120 Oceanview Blvd., Pacific Grove, California 93950
| |
Collapse
|
11
|
Schrameyer V, Wangpraseurt D, Hill R, Kühl M, Larkum AWD, Ralph PJ. Light respiratory processes and gross photosynthesis in two scleractinian corals. PLoS One 2014; 9:e110814. [PMID: 25360746 PMCID: PMC4216011 DOI: 10.1371/journal.pone.0110814] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/25/2014] [Indexed: 11/18/2022] Open
Abstract
The light dependency of respiratory activity of two scleractinian corals was examined using O2 microsensors and CO2 exchange measurements. Light respiration increased strongly but asymptotically with elevated irradiance in both species. Light respiration in Pocillopora damicornis was higher than in Pavona decussata under low irradiance, indicating species-specific differences in light-dependent metabolic processes. Overall, the coral P. decussata exhibited higher CO2 uptake rates than P. damicornis over the experimental irradiance range. P. decussata also harboured twice as many algal symbionts and higher total protein biomass compared to P. damicornis, possibly resulting in self-shading of the symbionts and/or changes in host tissue specific light distribution. Differences in light respiration and CO2 availability could be due to host-specific characteristics that modulate the symbiont microenvironment, its photosynthesis, and hence the overall performance of the coral holobiont.
Collapse
Affiliation(s)
- Verena Schrameyer
- Plant Functional Biology and Climate Change Cluster, School of the Environment, University of Technology, Sydney, Ultimo, New South Wales, Australia
| | - Daniel Wangpraseurt
- Plant Functional Biology and Climate Change Cluster, School of the Environment, University of Technology, Sydney, Ultimo, New South Wales, Australia
| | - Ross Hill
- Plant Functional Biology and Climate Change Cluster, School of the Environment, University of Technology, Sydney, Ultimo, New South Wales, Australia
- Centre for Marine Bio-Innovation and Sydney Institute of Marine Science, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Michael Kühl
- Plant Functional Biology and Climate Change Cluster, School of the Environment, University of Technology, Sydney, Ultimo, New South Wales, Australia
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
- Singapore Centre on Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Anthony W. D. Larkum
- Plant Functional Biology and Climate Change Cluster, School of the Environment, University of Technology, Sydney, Ultimo, New South Wales, Australia
| | - Peter J. Ralph
- Plant Functional Biology and Climate Change Cluster, School of the Environment, University of Technology, Sydney, Ultimo, New South Wales, Australia
| |
Collapse
|
12
|
Roth MS. The engine of the reef: photobiology of the coral-algal symbiosis. Front Microbiol 2014; 5:422. [PMID: 25202301 PMCID: PMC4141621 DOI: 10.3389/fmicb.2014.00422] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 07/25/2014] [Indexed: 01/09/2023] Open
Abstract
Coral reef ecosystems thrive in tropical oligotrophic oceans because of the relationship between corals and endosymbiotic dinoflagellate algae called Symbiodinium. Symbiodinium convert sunlight and carbon dioxide into organic carbon and oxygen to fuel coral growth and calcification, creating habitat for these diverse and productive ecosystems. Light is thus a key regulating factor shaping the productivity, physiology, and ecology of the coral holobiont. Similar to all oxygenic photoautotrophs, Symbiodinium must safely harvest sunlight for photosynthesis and dissipate excess energy to prevent oxidative stress. Oxidative stress is caused by environmental stressors such as those associated with global climate change, and ultimately leads to breakdown of the coral-algal symbiosis known as coral bleaching. Recently, large-scale coral bleaching events have become pervasive and frequent threatening and endangering coral reefs. Because the coral-algal symbiosis is the biological engine producing the reef, the future of coral reef ecosystems depends on the ecophysiology of the symbiosis. This review examines the photobiology of the coral-algal symbiosis with particular focus on the photophysiological responses and timescales of corals and Symbiodinium. Additionally, this review summarizes the light environment and its dynamics, the vulnerability of the symbiosis to oxidative stress, the abiotic and biotic factors influencing photosynthesis, the diversity of the coral-algal symbiosis, and recent advances in the field. Studies integrating physiology with the developing "omics" fields will provide new insights into the coral-algal symbiosis. Greater physiological and ecological understanding of the coral-algal symbiosis is needed for protection and conservation of coral reefs.
Collapse
Affiliation(s)
- Melissa S. Roth
- Department of Plant and Microbial Biology, University of California BerkeleyBerkeley, CA, USA
| |
Collapse
|
13
|
Mayfield AB, Hsiao YY, Chen HK, Chen CS. Rubisco expression in the dinoflagellate Symbiodinium sp. is influenced by both photoperiod and endosymbiotic lifestyle. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:371-384. [PMID: 24449387 DOI: 10.1007/s10126-014-9558-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 10/10/2013] [Indexed: 06/03/2023]
Abstract
Although the importance of anthozoan-dinoflagellate (genus Symbiodinium) endosymbioses in the establishment of coral reef ecosystems is evident, little is known about the molecular regulation of photosynthesis in the intra-gastrodermal symbiont communities, particularly with respect to the rate-limiting Calvin cycle enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco). In this study, we analyzed rubisco mRNA (rbcL) and protein (RBCL) concentrations over the diel cycle in both cultured and endosymbiotic Symbiodinium samples. In the former, rbcL expression increased upon illumination and decreased during the dark, a pattern that was upheld under continual dark incubation. A different trend in rbcL expression was observed in endosymbiotic Symbiodinium residing within sea anemone (Aiptasia pulchella) tissues, in which illumination gradually led to decreased rbcL mRNA expression. Unexpectedly, RBCL protein expression did not vary over time within anemone tissues, and in neither cultured nor endosymbiotic samples was a correlation between gene and protein expression documented. It appears, then, that photoperiod, lifestyle, and posttranscriptional regulation are all important drivers of RBCL expression in this ecologically important dinoflagellate.
Collapse
Affiliation(s)
- Anderson B Mayfield
- Taiwan Coral Research Center (TCRC), National Museum of Marine Biology and Aquarium, 2 Houwan Rd., Checheng, Pingtung 944, Taiwan, Republic of China
| | | | | | | |
Collapse
|
14
|
Wall CB, Edmunds PJ. In situ effects of low pH and elevated HCO3- on juvenile massive Porites spp. in Moorea, French Polynesia. THE BIOLOGICAL BULLETIN 2013; 225:92-101. [PMID: 24243962 DOI: 10.1086/bblv225n2p92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Juvenile colonies of massive Porites spp. were exposed to manipulated pH and bicarbonate ([HCO3-]) in situ to test the hypothesis that ocean acidification (OA) does not affect respiration and calcification. Incubations lasted 28 h and exposed corals to ambient temperature and light with ecologically relevant water motion. Three treatments were applied: (1) ambient conditions of pH 8.04 and 1751 μmol HCO3- kg(-1) (Treatment 1), (2) pCO2-induced ocean acidification of pH 7.73 and 2011 μmol HCO3- kg(-1) (Treatment 2), and (3) pCO2 and HCO3--enriched seawater of pH 7.69 and 2730 μmol HCO3- kg(-1) (Treatment 3). The third treatment providing elevated [HCO3-] was used to test for stimulatory effects of dissolved inorganic carbon on calcification under low pH and low saturation of aragonite (Ωarag), but it does not reflect conditions expected to occur under CO2-driven OA. Calcification of juvenile massive Porites spp. was affected by treatments, with an 81% elevation in Treatment 3 versus Treatment 1, but no difference between Treatments 1 and 2; respiration and the metabolic expenditure concurrent with calcification remained unaffected. These findings indicate that juvenile massive Porites spp. are resistant to short exposures to OA in situ, and separately, that they can increase calcification at low pH and low Ωarag if [HCO3-] is elevated. Juvenile Porites spp. may therefore be limited by dissolved inorganic carbon under ambient pCO2 conditions.
Collapse
Affiliation(s)
- Christopher B Wall
- Department of Biology, California State University Northridge, 18111 Nordhoff Street, Northridge, California 91330-8303, and
| | | |
Collapse
|
15
|
Temporal variations in metabolic and autotrophic indices for Acropora digitifera and Acropora spicifera--implications for monitoring projects. PLoS One 2013; 8:e63693. [PMID: 23696848 PMCID: PMC3655939 DOI: 10.1371/journal.pone.0063693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 04/05/2013] [Indexed: 11/19/2022] Open
Abstract
Coral health indices are important components of the management assessments of coral reefs, providing insight into local variation in reef condition, as well as tools for comparisons between reefs and across various time scales. Understanding how such health indices vary in space and time is critical to their successful implementation as management tools. Here we compare autotrophic and heterotrophic coral health indices, examining specifically the temporal variation driven by the local environmental variation, at three scales (diel, daily and seasonal). We compared metabolic indices (RNA/DNA ratio, protein concentration) and autotrophic indices (Chlorophyll a (Chl a), zooxanthellae density, effective quantum yield (yield) and relative electron transport rate (rETR)) for two dominant Acropora species, A. digitifera and A. spicifera at Ningaloo Reef (north-western Australia) in August 2010 (austral winter) and February 2011 (austral summer). Clear seasonal patterns were documented for metabolic indices, zooxanthellae density and rETR, while cyclic diel patterns only occurred for yield and rETR, and RNA/DNA ratio. Significant daily variation was observed for RNA/DNA ratio, Chl a concentration, yield and rETR. Results suggest that zooxanthellae density and protein concentrations are good long-term indicators of coral health whose variance is largely seasonal, while RNA/DNA ratio and rETR can be used for both long-term (seasonal) and short-term (diel) coral monitoring. Chl a can be used to describe changes between days and yield for both diel and daily variations. Correlations between health indices and light history showed that short-term changes in irradiance had the strongest impact on all health indices except zooxanthellae density for A. digitifera; for A. spicifera no correlation was observed at all. However, cumulative irradiance over the several days before sampling showed significant correlations with most health indices suggesting that a time-lag effect has to be taken into account when interpreting diel variations in coral condition.
Collapse
|
16
|
Mayfield AB, Chen MN, Meng PJ, Lin HJ, Chen CS, Liu PJ. The physiological response of the reef coral Pocillopora damicornis to elevated temperature: results from coral reef mesocosm experiments in Southern Taiwan. MARINE ENVIRONMENTAL RESEARCH 2013; 86:1-11. [PMID: 23453047 DOI: 10.1016/j.marenvres.2013.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/17/2013] [Accepted: 01/17/2013] [Indexed: 06/01/2023]
Abstract
Given the threat of climate change towards scleractinian corals, there is an urgent need to understand their physiological mechanisms of acclimation to increasing temperatures. To gain insight into this process, two mesocosm-based experiments were conducted in Southern Taiwan with the model reef-building coral Pocillopora damicornis. In the first study, temperature was gradually elevated to 32 °C, though reduced to ambient levels at night, in order to simulate a temperature profile that can characterize intertidal reefs of Southern Taiwan. All corals acclimated to such conditions over the course of the month-long experiment, as evidenced by a variety of physiological and sub-cellular responses. In the second experiment, corals were exposed continually to 31.5 °C for two weeks, and, in contrast to results from the first study, the majority of the corals died, revealing that prolonged exposure to this temperature is lethal for this dominant reef builder of many regions of the Pacific Ocean.
Collapse
|
17
|
Characterization of circadian behavior in the starlet sea anemone, Nematostella vectensis. PLoS One 2012; 7:e46843. [PMID: 23056482 PMCID: PMC3467289 DOI: 10.1371/journal.pone.0046843] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 09/09/2012] [Indexed: 11/25/2022] Open
Abstract
Background Although much is known about how circadian systems control daily cycles in the physiology and behavior of Drosophila and several vertebrate models, marine invertebrates have often been overlooked in circadian rhythms research. This study focuses on the starlet sea anemone, Nematostella vectensis, a species that has received increasing attention within the scientific community for its potential as a model research organism. The recently sequenced genome of N. vectensis makes it an especially attractive model for exploring the molecular evolution of circadian behavior. Critical behavioral data needed to correlate gene expression patterns to specific behaviors are currently lacking in N. vectensis. Methodology/Principal Findings To detect the presence of behavioral oscillations in N. vectensis, locomotor activity was evaluated using an automated system in an environmentally controlled chamber. Animals exposed to a 24 hr photoperiod (12 hr light: 12 hr dark) exhibited locomotor behavior that was both rhythmic and predominantly nocturnal. The activity peak occurred in the early half of the night with a 2-fold increase in locomotion. Upon transfer to constant lighting conditions (constant light or constant dark), an approximately 24 hr rhythm persisted in most animals, suggesting that the rhythm is controlled by an endogenous circadian mechanism. Fourier analysis revealed the presence of multiple peaks in some animals suggesting additional rhythmic components could be present. In particular, an approximately 12 hr oscillation was often observed. The nocturnal increase in generalized locomotion corresponded to a 24 hr oscillation in animal elongation. Conclusions/Significance These data confirm the presence of a light-entrainable circadian clock in Nematostella vectensis. Additional components observed in some individuals indicate that an endogenous clock of approximately 12 hr frequency may also be present. By describing rhythmic locomotor behavior in N. vectensis, we have made important progress in developing the sea anemone as a model organism for circadian rhythm research.
Collapse
|
18
|
Laurent J, Tambutté S, Tambutté É, Allemand D, Venn A. The influence of photosynthesis on host intracellular pH in scleractinian corals. J Exp Biol 2012; 216:1398-404. [DOI: 10.1242/jeb.082081] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
The regulation of intracellular pH is a fundamental aspect of cell physiology that has received little attention in reef building corals and symbiotic cnidarians. Here, we investigated the hypothesis that dynamic changes in the pHi of coral host cells are controlled by the photosynthetic activity of the coral’s dinoflagellate symbionts. Using live cell imaging and the pH sensitive dye SNARF-1, we tracked pH in symbiont-containing and symbiont-free cells isolated from the reef coral Stylophora pistillata. We characterized the response of coral pHi in the presence of a photosynthetic inhibitor, the dynamics of coral pHi during light exposure and how pHi values vary on exposure to a range of irradiance levels lying within the coral's photosynthesis-irradiance (PI) response curve. Our results demonstrate that increases in coral pHi are dependent on photosynthetic activity of intracellular symbionts and that pHi recovers under darkness to pHi values that match symbiont-free cells. Furthermore, we show that the timing of the pHi response is governed by irradiance level and that pHi increases to irradiance-specific steady state values. Minimum steady state values of pHi 7.05±0.05 were obtained under darkness and maximum values of 7.46±0.07 under saturating irradiance. As changes in pHi affect organism homeostasis there is a need for continued research into acid/base regulation in symbiotic corals. More generally, these results represent the first characterization of photosynthesis-driven pHi changes in animal cells.
Collapse
|
19
|
Polato NR, Vera JC, Baums IB. Gene discovery in the threatened elkhorn coral: 454 sequencing of the Acropora palmata transcriptome. PLoS One 2011; 6:e28634. [PMID: 22216101 PMCID: PMC3247206 DOI: 10.1371/journal.pone.0028634] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 11/12/2011] [Indexed: 12/18/2022] Open
Abstract
Background Cnidarians, including corals and anemones, offer unique insights into metazoan evolution because they harbor genetic similarities with vertebrates beyond that found in model invertebrates and retain genes known only from non-metazoans. Cataloging genes expressed in Acropora palmata, a foundation-species of reefs in the Caribbean and western Atlantic, will advance our understanding of the genetic basis of ecologically important traits in corals and comes at a time when sequencing efforts in other cnidarians allow for multi-species comparisons. Results A cDNA library from a sample enriched for symbiont free larval tissue was sequenced on the 454 GS-FLX platform. Over 960,000 reads were obtained and assembled into 42,630 contigs. Annotation data was acquired for 57% of the assembled sequences. Analysis of the assembled sequences indicated that 83–100% of all A. palmata transcripts were tagged, and provided a rough estimate of the total number genes expressed in our samples (∼18,000–20,000). The coral annotation data contained many of the same molecular components as in the Bilateria, particularly in pathways associated with oxidative stress and DNA damage repair, and provided evidence that homologs of p53, a key player in DNA repair pathways, has experienced selection along the branch separating Cnidaria and Bilateria. Transcriptome wide screens of paralog groups and transition/transversion ratios highlighted genes including: green fluorescent proteins, carbonic anhydrase, and oxidative stress proteins; and functional groups involved in protein and nucleic acid metabolism, and the formation of structural molecules. These results provide a starting point for study of adaptive evolution in corals. Conclusions Currently available transcriptome data now make comparative studies of the mechanisms underlying coral's evolutionary success possible. Here we identified candidate genes that enable corals to maintain genomic integrity despite considerable exposure to genotoxic stress over long life spans, and showed conservation of important physiological pathways between corals and bilaterians.
Collapse
Affiliation(s)
- Nicholas R. Polato
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - J. Cristobal Vera
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Iliana B. Baums
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
20
|
Roth MS, Latz MI, Goericke R, Deheyn DD. Green fluorescent protein regulation in the coral Acropora yongei during photoacclimation. ACTA ACUST UNITED AC 2011; 213:3644-55. [PMID: 20952612 DOI: 10.1242/jeb.040881] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Reef-building corals inhabit high light environments and are dependent on photosynthetic endosymbiotic dinoflagellates for nutrition. While photoacclimation responses of the dinoflagellates to changes in illumination are well understood, host photoacclimation strategies are poorly known. This study investigated fluorescent protein expression in the shallow-water coral Acropora yongei during a 30 day laboratory photoacclimation experiment in the context of its dinoflagellate symbionts. Green fluorescent protein (GFP) concentration measured by Western blotting changed reversibly with light intensity. The first 15 days of the photoacclimation experiment led to a ∼1.6 times increase in GFP concentration for high light corals (900 μmol quanta m⁻² s⁻¹) and a ∼4 times decrease in GFP concentration for low light corals (30 μmol quanta m⁻² s⁻¹) compared with medium light corals (300 μmol quanta m⁻² s⁻¹). Green fluorescence increased ∼1.9 times in high light corals and decreased ∼1.9 times in low light corals compared with medium light corals. GFP concentration and green fluorescence intensity were significantly correlated. Typical photoacclimation responses in the dinoflagellates were observed including changes in density, photosynthetic pigment concentration and photosynthetic efficiency. Although fluorescent proteins are ubiquitous and abundant in scleractinian corals, their functions remain ambiguous. These results suggest that scleractinian corals regulate GFP to modulate the internal light environment and support the hypothesis that GFP has a photoprotective function. The success of photoprotection and photoacclimation strategies, in addition to stress responses, will be critical to the fate of scleractinian corals exposed to climate change and other stressors.
Collapse
Affiliation(s)
- Melissa S Roth
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USA
| | | | | | | |
Collapse
|
21
|
Rotchell JM, Ostrander GK. Molecular toxicology of corals: a review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2011; 14:571-592. [PMID: 22008093 DOI: 10.1080/10937404.2011.615112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Coral reefs worldwide have become increasingly affected by a phenomenon known as "coral bleaching," the loss of the symbiotic algae from the host corals. The underlying causes and mechanism(s) of coral bleaching are not well known, although several have been hypothesized. While coral bleaching has been a primary focus in recent years, corals respond differentially to numerous environmental stresses. The impacts of heat, hydrocarbons, salinity, sewage effluents, biocides, heavy metals, and ultraviolet light have been investigated in both laboratory experiments and field surveys among multiple coral species. Herein what is known regarding the biological impacts of such stresses on corals at the molecular level of organization is summarized. The objective is to focus attention at the early stages of biological effects in order to encourage and facilitate research that provide ways to understand how changes at the molecular level might elucidate processes likely occurring at the population level. This, in turn, should accelerate studies that may elucidate the cellular and physiological changes contributing to coral decline, rather than just document the continued global loss of coral diversity and abundance.
Collapse
Affiliation(s)
- Jeanette M Rotchell
- Department of Biological Sciences, University of Hull, Hull, United Kingdom.
| | | |
Collapse
|
22
|
Blackstone N. Mitochondria and the redox control of development in cnidarians. Semin Cell Dev Biol 2008; 20:330-6. [PMID: 19136068 DOI: 10.1016/j.semcdb.2008.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 11/21/2008] [Accepted: 12/09/2008] [Indexed: 10/21/2022]
Abstract
Mitochondria are the product of an ancient symbiosis between bacteria and host cells. While mitochondria function primarily in energy conversion, increasing amounts of evidence indicate that mitochondrial metabolic state can influence various emergent features of eukaryotic cells. Important intermediaries in such redox signaling include by-products of metabolism, particularly reactive oxygen species (ROS). This review uses cnidarians, a group of basally branching animals, to illustrate the many and varied effects of ROS on development. ROS from both mitochondria and algal symbionts are considered. Because some applications of ROS may lack specificity, the signaling demands of mitochondria and algae may to some extent conflict. An extensive algal symbiosis may thus be incompatible with a well-developed capacity for mitochondrial signaling.
Collapse
Affiliation(s)
- Neil Blackstone
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA.
| |
Collapse
|
23
|
Suggett DJ, Warner ME, Smith DJ, Davey P, Hennige S, Baker NR. PHOTOSYNTHESIS AND PRODUCTION OF HYDROGEN PEROXIDE BY SYMBIODINIUM (PYRRHOPHYTA) PHYLOTYPES WITH DIFFERENT THERMAL TOLERANCES(1). JOURNAL OF PHYCOLOGY 2008; 44:948-956. [PMID: 27041613 DOI: 10.1111/j.1529-8817.2008.00537.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Occurrences whereby cnidaria lose their symbiotic dinoflagellate microalgae (Symbiodinium spp.) are increasing in frequency and intensity. These so-called bleaching events are most often related to an increase in water temperature, which is thought to limit certain Symbiodinium phylotypes from effectively dissipating absorbed excitation energy that is otherwise used for photochemistry. Here, we examined photosynthetic characteristics and hydrogen peroxide (H2 O2 ) production, a possible signal involved in bleaching, from two Symbiodinium types (a thermally "tolerant" A1 and "sensitive" B1) representative of cnidaria-Symbiodinium symbioses of reef-building Caribbean corals. Under steady-state growth at 26°C, a higher efficiency of PSII photochemistry, rate of electron turnover, and rate of O2 production were observed for type A1 than for B1. The two types responded very differently to a period of elevated temperature (32°C): type A1 increased light-driven O2 consumption but not the amount of H2 O2 produced; in contrast, type B1 increased the amount of H2 O2 produced without an increase in light-driven O2 consumption. Therefore, our results are consistent with previous suggestions that the thermal tolerance of Symbiodinium is related to adaptive constraints associated with photosynthesis and that sensitive phylotypes are more prone to H2 O2 production. Understanding these adaptive differences in the genus Symbiodinium will be crucial if we are to interpret the response of symbiotic associations, including reef-building corals, to environmental change.
Collapse
Affiliation(s)
- David J Suggett
- Coral Reef Research Unit, Department of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, UKCollege of Marine and Earth Studies, University of Delaware, 700 Pilottown Rd., Lewes, Delaware 19958, USACoral Reef Research Unit, Department of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Mark E Warner
- Coral Reef Research Unit, Department of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, UKCollege of Marine and Earth Studies, University of Delaware, 700 Pilottown Rd., Lewes, Delaware 19958, USACoral Reef Research Unit, Department of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - David J Smith
- Coral Reef Research Unit, Department of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, UKCollege of Marine and Earth Studies, University of Delaware, 700 Pilottown Rd., Lewes, Delaware 19958, USACoral Reef Research Unit, Department of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Phillip Davey
- Coral Reef Research Unit, Department of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, UKCollege of Marine and Earth Studies, University of Delaware, 700 Pilottown Rd., Lewes, Delaware 19958, USACoral Reef Research Unit, Department of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Sebastian Hennige
- Coral Reef Research Unit, Department of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, UKCollege of Marine and Earth Studies, University of Delaware, 700 Pilottown Rd., Lewes, Delaware 19958, USACoral Reef Research Unit, Department of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Neil R Baker
- Coral Reef Research Unit, Department of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, UKCollege of Marine and Earth Studies, University of Delaware, 700 Pilottown Rd., Lewes, Delaware 19958, USACoral Reef Research Unit, Department of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| |
Collapse
|
24
|
Ferrier-Pagès C, Richard C, Forcioli D, Allemand D, Pichon M, Shick JM. Effects of temperature and UV radiation increases on the photosynthetic efficiency in four scleractinian coral species. THE BIOLOGICAL BULLETIN 2007; 213:76-87. [PMID: 17679722 DOI: 10.2307/25066620] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Experiments were performed on coral species containing clade A (Stylophora pistillata, Montipora aequituberculata) or clade C (Acropora sp., Pavona cactus) zooxanthellae. The photosynthetic efficiency (F(v)/F(m)) of the corals was first assessed during a short-term increase in temperature (from 27 degrees C to 29 degrees C, 32 degrees C, and 34 degrees C) and acute exposure to UV radiation (20.5 W m(-2) UVA and 1.2 W m(-2) UVB) alone or in combination. Increasing temperature to 34 degrees C significantly decreased the F(v)/F(m) in S. pistillata and M. aequituberculata. Increased UV radiation alone significantly decreased the F(v)/F(m) of all coral species, even at 27 degrees C. There was a combined effect of temperature and UV radiation, which reduced F(v)/F(m) in all corals by 25% to 40%. During a long-term exposure to UV radiation (17 days) the F(v)/F(m) was significantly reduced after 3 days' exposure in all species, which did not recover their initial values, even after 17 days. By this time, all corals had synthesized mycosporine-like amino acids (MAAs). The concentration and diversity of MAAs differed among species, being higher for corals containing clade A zooxanthellae. Prolonged exposure to UV radiation at the nonstressful temperature of 27 degrees C conferred protection against independent, thermally induced photoinhibition in all four species.
Collapse
|