1
|
Jiang M, Zhang X, Fezzaa K, Reiter KE, Kramer-Lehnert VR, Davis BT, Wei QH, Lehnert MS. Adaptations for gas exchange enabled the elongation of lepidopteran proboscises. Curr Biol 2023:S0960-9822(23)00765-0. [PMID: 37385258 DOI: 10.1016/j.cub.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/01/2023] [Accepted: 06/05/2023] [Indexed: 07/01/2023]
Abstract
The extensive biodiversification of butterflies and moths (Lepidoptera) is partly attributed to their unique mouthparts (proboscis [Pr]) that can span in length from less than 1 mm to over 280 mm in Darwin's sphinx moths. Lepidoptera, similar to other insects, are believed to inhale and exhale respiratory gases only through valve-like spiracles on their thorax and abdomen, making gas exchange through the narrow tracheae (Tr) challenging for the elongated Pr. How Lepidoptera overcome distance effects for gas transport to the Pr is an open question that is important to understanding how the Pr elongated over evolutionary time. Here, we show with scanning electron microscopy and X-ray imaging that distance effects on gas exchange are overcome by previously unreported micropores on the Pr surface and by superhydrophobic Tr that prevent water loss and entry. We find that the density of micropores decreases monotonically along the Pr length with the maxima proportional to the Pr length and that micropore diameters produce a Knudsen number at the boundary between the slip and transition flow regimes. By numerical estimation, we further show that the respiratory gas exchange for the Pr predominantly occurs via diffusion through the micropores. These adaptations are key innovations vital to Pr elongation, which likely facilitated lepidopteran biodiversification and the radiation of angiosperms by coevolutionary processes.
Collapse
Affiliation(s)
- Miao Jiang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guandong Province, China; Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA
| | - Xinfang Zhang
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA
| | - Kamel Fezzaa
- Experimental Facilities Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Kristen E Reiter
- Department of Biological Sciences, Kent State University at Stark, North Canton, OH 44720, USA
| | | | - Brandon T Davis
- Department of Biological Sciences, Kent State University at Stark, North Canton, OH 44720, USA
| | - Qi-Huo Wei
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guandong Province, China; Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
| | - Matthew S Lehnert
- Department of Biological Sciences, Kent State University at Stark, North Canton, OH 44720, USA.
| |
Collapse
|
2
|
Bossen J, Prange R, Kühle JP, Künzel S, Niu X, Hammel JU, Krieger L, Knop M, Ehrhardt B, Uliczka K, Krauss-Etschmann S, Roeder T. Adult and Larval Tracheal Systems Exhibit Different Molecular Architectures in Drosophila. Int J Mol Sci 2023; 24:ijms24065628. [PMID: 36982710 PMCID: PMC10052349 DOI: 10.3390/ijms24065628] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
Knowing the molecular makeup of an organ system is required for its in-depth understanding. We analyzed the molecular repertoire of the adult tracheal system of the fruit fly Drosophila melanogaster using transcriptome studies to advance our knowledge of the adult insect tracheal system. Comparing this to the larval tracheal system revealed several major differences that likely influence organ function. During the transition from larval to adult tracheal system, a shift in the expression of genes responsible for the formation of cuticular structure occurs. This change in transcript composition manifests in the physical properties of cuticular structures of the adult trachea. Enhanced tonic activation of the immune system is observed in the adult trachea, which encompasses the increased expression of antimicrobial peptides. In addition, modulatory processes are conspicuous, in this case mainly by the increased expression of G protein-coupled receptors in the adult trachea. Finally, all components of a peripheral circadian clock are present in the adult tracheal system, which is not the case in the larval tracheal system. Comparative analysis of driver lines targeting the adult tracheal system revealed that even the canonical tracheal driver line breathless (btl)-Gal4 is not able to target all parts of the adult tracheal system. Here, we have uncovered a specific transcriptome pattern of the adult tracheal system and provide this dataset as a basis for further analyses of the adult insect tracheal system.
Collapse
Affiliation(s)
- Judith Bossen
- Department Zoology, Molecular Physiology, Kiel University, 24118 Kiel, Germany
- German Lung Center (DZL), Airway Research Center North (ARCN), 24118 Kiel, Germany
| | - Ruben Prange
- Department Zoology, Molecular Physiology, Kiel University, 24118 Kiel, Germany
| | - Jan-Philip Kühle
- Department Zoology, Molecular Physiology, Kiel University, 24118 Kiel, Germany
| | - Sven Künzel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Xiao Niu
- Department Zoology, Molecular Physiology, Kiel University, 24118 Kiel, Germany
| | - Jörg U. Hammel
- Helmholtz-Zentrum Hereon, Institute of Materials Physics, 21502 Geesthacht, Germany
| | - Laura Krieger
- Department Zoology, Molecular Physiology, Kiel University, 24118 Kiel, Germany
| | - Mirjam Knop
- Department Zoology, Molecular Physiology, Kiel University, 24118 Kiel, Germany
| | - Birte Ehrhardt
- Research Center Borstel, Priority Research Area Chronic Lung Diseases, Early Life Origins of CLD, 23485 Borstel, Germany
| | - Karin Uliczka
- Research Center Borstel, Priority Research Area Chronic Lung Diseases, Early Life Origins of CLD, 23485 Borstel, Germany
| | - Susanne Krauss-Etschmann
- German Lung Center (DZL), Airway Research Center North (ARCN), 24118 Kiel, Germany
- Research Center Borstel, Priority Research Area Chronic Lung Diseases, Early Life Origins of CLD, 23485 Borstel, Germany
- Institute for Experimental Medicine, Kiel University, 24118 Kiel, Germany
| | - Thomas Roeder
- Department Zoology, Molecular Physiology, Kiel University, 24118 Kiel, Germany
- German Lung Center (DZL), Airway Research Center North (ARCN), 24118 Kiel, Germany
- Correspondence: ; Tel.: +49-431-880-81
| |
Collapse
|
3
|
Herhold HW, Davis SR, DeGrey SP, Grimaldi DA. Comparative Anatomy of the Insect Tracheal System Part 1: Introduction, Apterygotes, Paleoptera, Polyneoptera. BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY 2023. [DOI: 10.1206/0003-0090.459.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Hollister W. Herhold
- Richard Gilder Graduate School and Division of Invertebrate Zoology, American Museum of Natural History, New York
| | - Steven R. Davis
- Division of Invertebrate Zoology, American Museum of Natural History; Laboratory of Developmental Neurobiology, Kanazawa University, Kanazawa, Japan
| | - Samuel P. DeGrey
- Kimberly Research and Extension Center, University of Idaho, Kimberly
| | - David A. Grimaldi
- Division of Invertebrate Zoology, American Museum of Natural History, New York
| |
Collapse
|
4
|
Wagner JM, Klok CJ, Duell ME, Socha JJ, Cao G, Gong H, Harrison JF. Isometric spiracular scaling in scarab beetles: implications for diffusive and advective oxygen transport. eLife 2022; 11:82129. [PMID: 36098509 PMCID: PMC9522208 DOI: 10.7554/elife.82129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
The scaling of respiratory structures has been hypothesized to be a major driving factor in the evolution of many aspects of animal physiology. Here, we provide the first assessment of the scaling of the spiracles in insects using 10 scarab beetle species differing 180× in mass, including some of the most massive extant insect species. Using X-ray microtomography, we measured the cross-sectional area and depth of all eight spiracles, enabling the calculation of their diffusive and advective capacities. Each of these metrics scaled with geometric isometry. Because diffusive capacities scale with lower slopes than metabolic rates, the largest beetles measured require 10-fold higher PO2 gradients across the spiracles to sustain metabolism by diffusion compared to the smallest species. Large beetles can exchange sufficient oxygen for resting metabolism by diffusion across the spiracles, but not during flight. In contrast, spiracular advective capacities scale similarly or more steeply than metabolic rates, so spiracular advective capacities should match or exceed respiratory demands in the largest beetles. These data illustrate a general principle of gas exchange: scaling of respiratory transport structures with geometric isometry diminishes the potential for diffusive gas exchange but enhances advective capacities; combining such structural scaling with muscle-driven ventilation allows larger animals to achieve high metabolic rates when active.
Collapse
Affiliation(s)
- Julian M Wagner
- School of Life Sciences, Arizona State University, Tempe, United States
| | - C Jaco Klok
- School of Life Sciences, Arizona State University, Henderson, United States
| | - Meghan E Duell
- School of Life Sciences, Arizona State University, Tempe, United States
| | | | - Guohua Cao
- School of Biomedical Engineering, ShanghaiTech University, Shanghei, China
| | - Hao Gong
- Department of Radiology, Mayo Clinic, Rochester, United States
| | | |
Collapse
|
5
|
Raś M, Wipfler B, Dannenfeld T, Iwan D. Postembryonic development of the tracheal system of beetles in the context of aptery and adaptations towards an arid environment. PeerJ 2022; 10:e13378. [PMID: 35855904 PMCID: PMC9288169 DOI: 10.7717/peerj.13378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/13/2022] [Indexed: 01/13/2023] Open
Abstract
The tracheal system comprises one of the major adaptations of insects towards a terrestrial lifestyle. Many aspects such as the modifications towards wing reduction or a life in an arid climate are still poorly understood. To address these issues, we performed the first three-dimensional morphometric analyses of the tracheal system of a wingless insect, the desert beetle Gonopus tibialis and compared it with a flying beetle (Tenebrio molitor). Our results clearly show that the reduction of the flight apparatus has severe consequences for the tracheal system. This includes the reduction of the tracheal density, the relative volume of the trachea, the volume of the respective spiracles and the complete loss of individual tracheae. At the same time, the reduction of wings in the desert beetle allows modifications of the tracheal system that would be impossible in an animal with a functional flight apparatus such as the formation of a subelytral cavity as a part of the tracheal system, the strong elongation of the digestive tract including its tracheal system or the respiration through a single spiracle. Finally, we addressed when these modifications of the tracheal system take place during the development of the studied beetles. We can clearly show that they develop during pupation while the larvae of both species are almost identical in their tracheal system and body shape.
Collapse
Affiliation(s)
- Marcin Raś
- Zoological Museum, Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| | - Benjamin Wipfler
- Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut zur Analyse des Biodiversitätswandels, Bonn, Germany
| | - Tim Dannenfeld
- Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut zur Analyse des Biodiversitätswandels, Bonn, Germany
| | - Dariusz Iwan
- Zoological Museum, Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
6
|
Walter RM, Rinehart JP, Dillon ME, Greenlee KJ. Size constrains oxygen delivery capacity within but not between bumble bee castes. JOURNAL OF INSECT PHYSIOLOGY 2021; 134:104297. [PMID: 34403656 DOI: 10.1016/j.jinsphys.2021.104297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Bumble bees are eusocial, with distinct worker and queen castes that vary strikingly in size and life-history. The smaller workers rely on energetically-demanding foraging flights to collect resources for rearing brood. Queens can be 3 to 4 times larger than workers, flying only for short periods in fall and again in spring after overwintering underground. These differences between castes in size and life history may be reflected in hypoxia tolerance. When oxygen demand exceeds supply, oxygen delivery to the tissues can be compromised. Previous work revealed hypermetric scaling of tracheal system volume of worker bumble bees (Bombus impatiens); larger workers had much larger tracheal volumes, likely to facilitate oxygen delivery over longer distances. Despite their much larger size, queens had relatively small tracheal volumes, potentially limiting their ability to deliver oxygen and reducing their ability to respond to hypoxia. However, these morphological measurements only indirectly point to differences in respiratory capacity. To directly assess size- and caste-related differences in tolerance to low oxygen, we measured critical PO2 (Pcrit; the ambient oxygen level below which metabolism cannot be maintained) during both rest and flight of worker and queen bumble bees. Queens and workers had similar Pcrit values during both rest and flight. However, during flight in oxygen levels near the Pcrit, mass-specific metabolic rates declined precipitously with mass both across and within castes, suggesting strong size limitations on oxygen delivery, but only during extreme conditions, when demand is high and supply is low. Together, these data suggest that the comparatively small tracheal systems of queen bumble bees do not limit their ability to deliver oxygen except in extreme conditions; they pay little cost for filling body space with eggs rather than tracheal structures.
Collapse
Affiliation(s)
- Rikki M Walter
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Joseph P Rinehart
- Agricultural Research Service, Insect Genetics and Biochemistry, United States Department of Agriculture, Fargo, ND 58102-2765, USA
| | - Michael E Dillon
- Department of Zoology and Physiology and Program in Ecology, University of Wyoming, Laramie, WY 82071, USA
| | - Kendra J Greenlee
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108-6050, USA.
| |
Collapse
|
7
|
Urca T, Gefen E, Ribak G. Critical P2 and insect flight: The role of tracheal volume in the Oogenesis-Flight Syndrome. Comp Biochem Physiol A Mol Integr Physiol 2021; 254:110873. [DOI: 10.1016/j.cbpa.2020.110873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 10/22/2022]
|
8
|
Chatterjee K, Graybill PM, Socha JJ, Davalos RV, Staples AE. Frequency-specific, valveless flow control in insect-mimetic microfluidic devices. BIOINSPIRATION & BIOMIMETICS 2021; 16:036004. [PMID: 33561847 DOI: 10.1088/1748-3190/abe4bc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Inexpensive, portable lab-on-a-chip devices would revolutionize fields like environmental monitoring and global health, but current microfluidic chips are tethered to extensive off-chip hardware. Insects, however, are self-contained and expertly manipulate fluids at the microscale using largely unexplored methods. We fabricated a series of microfluidic devices that mimic key features of insect respiratory kinematics observed by synchrotron-radiation imaging, including the collapse of portions of multiple respiratory tracts in response to a single fluctuating pressure signal. In one single-channel device, the flow rate and direction could be controlled by the actuation frequency alone, without the use of internal valves. Additionally, we fabricated multichannel chips whose individual channels responded selectively (on with a variable, frequency-dependent flow rate, or off) to a single, global actuation frequency. Our results demonstrate that insect-mimetic designs have the potential to drastically reduce the actuation overhead for microfluidic chips, and that insect respiratory systems may share features with impedance-mismatch pumps.
Collapse
Affiliation(s)
- Krishnashis Chatterjee
- Laboratory for Fluid Dynamics in Nature, Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States of America
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States of America
| | - Philip M Graybill
- Bioelectromechanical Systems Laboratory, Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States of America
- Mechanical Engineering, Virginia Tech, Blacksburg, VA, United States of America
| | - John J Socha
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States of America
| | - Rafael V Davalos
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States of America
- Bioelectromechanical Systems Laboratory, Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States of America
| | - Anne E Staples
- Laboratory for Fluid Dynamics in Nature, Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States of America
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States of America
| |
Collapse
|
9
|
Tracheal branching in ants is area-decreasing, violating a central assumption of network transport models. PLoS Comput Biol 2020; 16:e1007853. [PMID: 32352964 PMCID: PMC7241831 DOI: 10.1371/journal.pcbi.1007853] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 05/21/2020] [Accepted: 04/06/2020] [Indexed: 11/20/2022] Open
Abstract
The structure of tubular transport networks is thought to underlie much of biological regularity, from individuals to ecosystems. A core assumption of transport network models is either area-preserving or area-increasing branching, such that the summed cross-sectional area of all child branches is equal to or greater than the cross-sectional area of their respective parent branch. For insects, the most diverse group of animals, the assumption of area-preserving branching of tracheae is, however, based on measurements of a single individual and an assumption of gas exchange by diffusion. Here we show that ants exhibit neither area-preserving nor area-increasing branching in their abdominal tracheal systems. We find for 20 species of ants that the sum of child tracheal cross-sectional areas is typically less than that of the parent branch (area-decreasing). The radius, rather than the area, of the parent branch is conserved across the sum of child branches. Interpretation of the tracheal system as one optimized for the release of carbon dioxide, while readily catering to oxygen demand, explains the branching pattern. Our results, together with widespread demonstration that gas exchange in insects includes, and is often dominated by, convection, indicate that for generality, network transport models must include consideration of systems with different architectures. A fundamental assumption of models of the transport of substances through networks of tubes, such as circulatory systems in animals and vascular systems in plants, is that the total cross-sectional area of the tubes remains constant irrespective of the branching level, or that it increases slightly in the direction from the largest to the smallest tubes. One large tube should have the same or a slightly smaller area than the sum of the next two tubes after a branching. The assumption of such a pattern underpins one of biology’s most influential ideas–the metabolic theory of ecology. Surprisingly, the assumption has never been systematically examined for insects–the planet’s most diverse group of animals which deliver oxygen to and remove carbon dioxide from their bodies using a network of tubes known as tracheae. Until recently, it has been technologically very challenging to do so. Here, we use x-ray synchrotron tomography to overcome this challenge. We show that tracheal branching in 20 species of ants does not follow this pattern. Rather, cross-sectional area reduces in an inwards direction. We then use modelling to show that such a pattern facilitates outward CO2 release, a process more challenging for insects than moving oxygen inwards. Our work suggests that much still needs to be done to understand the fundamental assumptions underlying network transport models and how they apply more generally across life–especially in the context of why metabolic rate scales with body size.
Collapse
|
10
|
Hillyer JF, Pass G. The Insect Circulatory System: Structure, Function, and Evolution. ANNUAL REVIEW OF ENTOMOLOGY 2020; 65:121-143. [PMID: 31585504 DOI: 10.1146/annurev-ento-011019-025003] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Although the insect circulatory system is involved in a multitude of vital physiological processes, it has gone grossly understudied. This review highlights this critical physiological system by detailing the structure and function of the circulatory organs, including the dorsal heart and the accessory pulsatile organs that supply hemolymph to the appendages. It also emphasizes how the circulatory system develops and ages and how, by means of reflex bleeding and functional integration with the immune system, it supports mechanisms for defense against predators and microbial invaders, respectively. Beyond that, this review details evolutionary trends and novelties associated with this system, as well as the ways in which this system also plays critical roles in thermoregulation and tracheal ventilation in high-performance fliers. Finally, this review highlights how novel discoveries could be harnessed for the control of vector-borne diseases and for translational medicine, and it details principal knowledge gaps that necessitate further investigation.
Collapse
Affiliation(s)
- Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA;
| | - Günther Pass
- Department of Integrative Zoology, University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
11
|
Abstract
The insect circulatory system contains an open hemocoel, in which the mechanism of hemolymph flow control is ambiguous. As a continuous fluidic structure, this cavity should exhibit pressure changes that propagate quickly. Narrow-waisted insects create sustained pressure differences across segments, but their constricted waist provides an evident mechanism for compartmentalization. Insects with no obvious constrictions between segments may be capable of functionally compartmentalizing the body, which could explain complex hemolymph flows. Here, we test the hypothesis of functional compartmentalization by measuring pressures in a beetle and recording abdominal movements. We found that the pressure is indeed uniform within the abdomen and thorax, congruent with the predicted behavior of an open system. However, during some abdominal movements, pressures were on average 62% higher in the abdomen than in the thorax, suggesting that functional compartmentalization creates a gradient within the hemocoel. Synchrotron tomography and dissection show that the arthrodial membrane and thoracic muscles may contribute to this dynamic pressurization. Analysis of volume change suggests that the gut may play an important role in regulating pressure by translating between body segments. Overall, this study suggests that functional compartmentalization may provide an explanation for how fluid flows are managed in an open circulatory system.
Collapse
|
12
|
Terblanche JS, Woods HA. Why do models of insect respiratory patterns fail? J Exp Biol 2018; 221:221/13/jeb130039. [DOI: 10.1242/jeb.130039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
ABSTRACT
Insects exchange respiratory gases using an astonishing diversity of patterns. Of these, discontinuous gas exchange cycles (DGCs) have received the most study, but there are many other patterns exhibited intraspecifically and interspecifically. Moreover, some individual insects transition between patterns based on poorly understood combinations of internal and external factors. Why have biologists failed, so far, to develop a framework capable of explaining this diversity? Here, we propose two answers. The first is that the framework will have to be simultaneously general and highly detailed. It should describe, in a universal way, the physical and chemical processes that any insect uses to exchange gases through the respiratory system (i.e. tracheal tubes and spiracles) while simultaneously containing enough morphological, physiological and neural detail that it captures the specifics of patterns exhibited by any species or individual. The second difficulty is that the framework will have to provide ultimate, evolutionary explanations for why patterns vary within and among insects as well as proximate physiological explanations for how different parts of the respiratory system are modified to produce that diversity. Although biologists have made significant progress on all of these problems individually, there has been little integration among approaches. We propose that renewed efforts be undertaken to integrate across levels and approaches with the goal of developing a new class of general, flexible models capable of explaining a greater fraction of the observed diversity of respiratory patterns.
Collapse
Affiliation(s)
- John S. Terblanche
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch, South Africa
| | - H. Arthur Woods
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
13
|
Raś M, Iwan D, Kamiński MJ. The tracheal system in post-embryonic development of holometabolous insects: a case study using the mealworm beetle. J Anat 2018; 232:997-1015. [PMID: 29574917 PMCID: PMC5980188 DOI: 10.1111/joa.12808] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2018] [Indexed: 12/11/2022] Open
Abstract
The tracheal (respiratory) system is regarded as one of the key elements which enabled insects to conquer terrestrial habitats and, as a result, achieve extreme species diversity. Despite this fact, anatomical data concerning this biological system is relatively scarce, especially in an ontogenetic context. The purpose of this study is to provide novel and reliable information on the post-embryonic development of the tracheal system of holometabolous insects using micro-computed tomography methods. Data concerning the structure of the respiratory system acquired from different developmental stages (larvae, pupae and adults) of a single insect species (Tenebrio molitor) are co-analysed in detail. Anatomy of the tracheal system is presented. Sample sizes used (29 individuals) enabled statistical analysis of the results obtained. The following aspects have been investigated (among others): the spiracle arrangement, the number of tracheal ramifications originating from particular spiracles, the diameter of longitudinal trunks, tracheal system volumes, tracheae diameter distribution and fractal dimension analysis. Based on the data acquired, the modularity of the tracheal system is postulated. Using anatomical and functional factors, the following respiratory module types have been distinguished: cephalo-prothoracic, metathoracic and abdominal. These modules can be unambiguously identified in all of the studied developmental stages. A cephalo-prothoracic module aerates organs located in the head capsule, prothorax and additionally prolegs. It is characterised by relatively thick longitudinal trunks and originates in the first thoracic spiracle pair. Thoracic modules support the flight muscles, wings, elytra, meso- and metalegs. The unique feature of this module is the presence of additional longitudinal connections between the neighbouring spiracles. These modules are concentrated around the second prothoracic and the first abdominal spiracle pairs. An abdominal module is characterised by relatively thin ventral longitudinal trunks. Its main role is to support systems located in the abdomen; however, its long visceral tracheae aerate organs situated medially from the flight muscles. Analysis of changes of the tracheal system volume enabled the calculation of growth scaling among body tissues and the volume of the tracheal system. The data presented show that the development of the body volume and tracheal system is not linear in holometabola due to the occurrence of the pupal stage causing a decrease in body volume in the imago and at the same time influencing high growth rates of the tracheal system during metamorphosis, exceeding that ones observed for hemimetabola.
Collapse
Affiliation(s)
- Marcin Raś
- Zoological Museum, Museum and Institute of ZoologyPolish Academy of SciencesWarsawPoland
| | - Dariusz Iwan
- Zoological Museum, Museum and Institute of ZoologyPolish Academy of SciencesWarsawPoland
| | - Marcin Jan Kamiński
- Zoological Museum, Museum and Institute of ZoologyPolish Academy of SciencesWarsawPoland
| |
Collapse
|
14
|
Ruan Y, Li Y, Zhang M, Chen X, Liu Z, Wang S, Jiang S. Visualisation of insect tracheal systems by lactic acid immersion. J Microsc 2018; 271:230-236. [PMID: 29762877 DOI: 10.1111/jmi.12711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 02/17/2018] [Accepted: 04/24/2018] [Indexed: 01/05/2023]
Abstract
The endeavours to reveal the tracheal system of insects and some arachnids has a long history. The traditional way to observe a tracheal system in an insect body is by utilising the glycerin immersion method. In this study, we developed the lactic acid immersion method, which reveals a more complete tracheal system. By mounting various types of live specimens or body parts directly into lactic acid, multiple intact and complex tracheal systems were clearly visualised. The lactic acid immersion contributed to revealing tracheal systems by penetrating body tissue while reserving enough time for observation before the penetration of the tracheae. Preliminary comparisons were conducted between lactic acid and other mediae, including glycerin. It turned out that lactic acid immersion provides better details and more distinct structures. In our test, the optimal time for observing the tracheal system was 10-25 min after the organism was immersed in lactic acid.
Collapse
Affiliation(s)
- Y Ruan
- School of Applied Chemistry and Biological Technology, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, Guangdong, China
| | - Y Li
- School of Forest Resources and Conservation, University of Florida, Gainesville, Florida, U.S.A
| | - M Zhang
- School of Applied Chemistry and Biological Technology, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, Guangdong, China
| | - X Chen
- School of Applied Chemistry and Biological Technology, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, Guangdong, China
| | - Z Liu
- School of Applied Chemistry and Biological Technology, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, Guangdong, China
| | - S Wang
- Shanghai Entry-Exit Inspection and Quarantine Bureau, Shanghai, China
| | - S Jiang
- School of Applied Chemistry and Biological Technology, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, Guangdong, China
| |
Collapse
|
15
|
Wasserthal LT, Cloetens P, Fink RH, Wasserthal LK. X-ray computed tomography study of the flight-adapted tracheal system in the blowfly Calliphora vicina analysing the ventilation mechanism and flow-directing valves. J Exp Biol 2018; 221:jeb.176024. [DOI: 10.1242/jeb.176024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/23/2018] [Indexed: 11/20/2022]
Abstract
After the discovery of the flight-motor driven unidirectional gas exchange with rising PO2 in the blowfly, X-ray computer tomography (CT) was used to visualize the organization of the tracheal system in the anterior body with emphasis on the arrangement of the pathways for the airflows. The fly's head is preferentially supplied by cephalic tracheae originating from the ventral orifice of the mesothoracic spiracle (Sp1). The respiratory airflow during flight is a by-product of cyclic deformations of the thoracic box by the flight muscles. The air sacs below the tergal integument (scutum and scutellum) facilitate the respiratory airflow: The shortening of the thorax turns the scutellum and the wings downward and the scutum upward with a volume increase in the scutal air sacs. The resulting negative pressure sucks air from Sp1 through special tracheae towards the scutal air sacs. The airflow is directed by two valves that open alternately: (1) The hinged filter flaps of the metathoracic spiracles (Sp2) are passively pushed open during the upstroke by the increased tracheal pressure, thereby enabling expiration. (2) A newly described tracheal valve-like septum behind the regular spiracular valve lids of Sp1 opens passively and air is sucked in through Sp1 during the downstroke and prevents expiration by closing during the upstroke. This stabilizes the unidirectional airflow. The tracheal volume of the head, thorax and abdomen and their mass were determined. Despite the different anatomy in birds and flies the unidirectional airflow reveals a comparable efficiency of the temporal throughput in flies and hummingbirds.
Collapse
Affiliation(s)
- Lutz Thilo Wasserthal
- Department of Biology, University of Erlangen-Nuremberg, Staudtstr. 5, D-91058 Erlangen, Germany
| | - Peter Cloetens
- European Synchrotron Radiation Facility, 71, Avenue des Martyrs, F-38043 Grenoble, France
| | - Rainer H. Fink
- Department Chemistry and Pharmacy, University of Erlangen-Nuremberg, Egerlandstr. 3, D-91058 Erlangen, Germany
| | | |
Collapse
|
16
|
Simelane SM, Abelman S, Duncan FD. Microscale Gaseous Slip Flow in the Insect Trachea and Tracheoles. Acta Biotheor 2017; 65:211-231. [PMID: 28695410 DOI: 10.1007/s10441-017-9312-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 06/30/2017] [Indexed: 10/19/2022]
Abstract
An analytical investigation into compressible gas flow with slight rarefactions through the insect trachea and tracheoles during the closed spiracle phase is undertaken, and a complete set of asymptotic analytical solutions is presented. We first obtain estimates of the Reynolds and Mach numbers at the channel terminal ends where the tracheoles directly deliver respiratory gases to the cells, by comparing the magnitude of the different forces in the compressible gas flow. The 2D Navier-Stokes equations with a slip boundary condition are used to investigate compressibility and rarefied effects in the trachea and tracheoles. Expressions for the velocity components, pressure gradients and net flow inside the trachea are then presented. Numerical simulations of the tracheal compressible flow are performed to validate the analytical results from this study. This work extends previous work of Arkilic et al. (J Microelectromech Syst 6(2):167-178, 1997) on compressible flows through a microchannel. Novel devices for microfluidic compressible flow transport may be invented from results obtained in this study.
Collapse
|
17
|
The mechanisms underlying the production of discontinuous gas exchange cycles in insects. J Comp Physiol B 2017; 188:195-210. [DOI: 10.1007/s00360-017-1121-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/27/2017] [Accepted: 08/06/2017] [Indexed: 10/19/2022]
|
18
|
Klok CJ, Kaiser A, Socha JJ, Lee WK, Harrison JF. Multigenerational Effects of Rearing Atmospheric Oxygen Level on the Tracheal Dimensions and Diffusing Capacities of Pupal and Adult Drosophila melanogaster. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 903:285-300. [PMID: 27343104 DOI: 10.1007/978-1-4899-7678-9_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Insects are small relative to vertebrates, and were larger in the Paleozoic when atmospheric oxygen levels were higher. The safety margin for oxygen delivery does not increase in larger insects, due to an increased mass-specific investment in the tracheal system and a greater use of convection in larger insects. Prior studies have shown that the dimensions and number of tracheal system branches varies inversely with rearing oxygen in embryonic and larval insects. Here we tested whether rearing in 10, 21, or 40 kPa atmospheric oxygen atmospheres for 5-7 generations affected the tracheal dimensions and diffusing capacities of pupal and adult Drosophila. Abdominal tracheae and pupal snorkel tracheae showed weak responses to oxygen, while leg tracheae showed strong, but imperfect compensatory changes. The diffusing capacity of leg tracheae appears closely matched to predicted oxygen transport needs by diffusion, perhaps explaining the consistent and significant responses of these tracheae to rearing oxygen. The reduced investment in tracheal structure in insects reared in higher oxygen levels may be important for conserving tissue PO2 and may provide an important mechanism for insects to invest only the space and materials necessary into respiratory structure.
Collapse
Affiliation(s)
- C Jaco Klok
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Alexander Kaiser
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.,Department of Basic Sciences, Midwestern University, Glendale, AZ, USA
| | - John J Socha
- Engineering Science and Mechanics, Virginia Tech, Blacksburg, VI, USA.,X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA
| | - Wah-Keat Lee
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA
| | - Jon F Harrison
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
19
|
Laha B, Bowman DA, Socha JJ. Bare-Hand Volume Cracker for Raw Volume Data Analysis. Front Robot AI 2016. [DOI: 10.3389/frobt.2016.00056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
20
|
Xu L, Chen R, Du G, Yang Y, Wang F, Deng B, Xie H, Xiao T. Anisotropic shrinkage of insect air sacs revealed in vivo by X-ray microtomography. Sci Rep 2016; 6:32380. [PMID: 27580585 PMCID: PMC5007674 DOI: 10.1038/srep32380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/26/2016] [Indexed: 11/09/2022] Open
Abstract
Air sacs are thought to be the bellows for insect respiration. However, their exact mechanism of action as a bellows remains unclear. A direct way to investigate this problem is in vivo observation of the changes in their three-dimensional structures. Therefore, four-dimensional X-ray phase contrast microtomography is employed to solve this puzzle. Quantitative analysis of three-dimensional image series reveals that the compression of the air sac during respiration in bell crickets exhibits obvious anisotropic characteristics both longitudinally and transversely. Volumetric changes of the tracheal trunks in the prothorax further strengthen the evidence of this finding. As a result, we conclude that the shrinkage and expansion of the insect air sac is anisotropic, contrary to the hypothesis of isotropy, thereby providing new knowledge for further research on the insect respiratory system.
Collapse
Affiliation(s)
- Liang Xu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongchang Chen
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Guohao Du
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Yiming Yang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feixiang Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Biao Deng
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Honglan Xie
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Tiqiao Xiao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Pendar H, Socha JJ, Chung J. Recovering signals in physiological systems with large datasets. Biol Open 2016; 5:1163-74. [PMID: 27444788 PMCID: PMC5004612 DOI: 10.1242/bio.019133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 06/20/2016] [Indexed: 11/20/2022] Open
Abstract
In many physiological studies, variables of interest are not directly accessible, requiring that they be estimated indirectly from noisy measured signals. Here, we introduce two empirical methods to estimate the true physiological signals from indirectly measured, noisy data. The first method is an extension of Tikhonov regularization to large-scale problems, using a sequential update approach. In the second method, we improve the conditioning of the problem by assuming that the input is uniform over a known time interval, and then use a least-squares method to estimate the input. These methods were validated computationally and experimentally by applying them to flow-through respirometry data. Specifically, we infused CO2 in a flow-through respirometry chamber in a known pattern, and used the methods to recover the known input from the recorded data. The results from these experiments indicate that these methods are capable of sub-second accuracy. We also applied the methods on respiratory data from a grasshopper to investigate the exact timing of abdominal pumping, spiracular opening, and CO2 emission. The methods can be used more generally for input estimation of any linear system.
Collapse
Affiliation(s)
- Hodjat Pendar
- Department of Biomedical Engineering and Mechanics, Virginia Tech Blacksburg, Blacksburg, VA 24061, USA Department of Mathematics, Virginia Tech Blacksburg, Blacksburg, VA 24061, USA
| | - John J Socha
- Department of Biomedical Engineering and Mechanics, Virginia Tech Blacksburg, Blacksburg, VA 24061, USA
| | - Julianne Chung
- Department of Mathematics, Virginia Tech Blacksburg, Blacksburg, VA 24061, USA
| |
Collapse
|
22
|
Gas Exchange Models for a Flexible Insect Tracheal System. Acta Biotheor 2016; 64:161-96. [PMID: 27209375 DOI: 10.1007/s10441-016-9278-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 05/10/2016] [Indexed: 01/09/2023]
Abstract
In this paper two models for movement of respiratory gases in the insect trachea are presented. One model considers the tracheal system as a single flexible compartment while the other model considers the trachea as a single flexible compartment with gas exchange. This work represents an extension of Ben-Tal's work on compartmental gas exchange in human lungs and is applied to the insect tracheal system. The purpose of the work is to study nonlinear phenomena seen in the insect respiratory system. It is assumed that the flow inside the trachea is laminar, and that the air inside the chamber behaves as an ideal gas. Further, with the isothermal assumption, the expressions for the tracheal partial pressures of oxygen and carbon dioxide, rate of volume change, and the rates of change of oxygen concentration and carbon dioxide concentration are derived. The effects of some flow parameters such as diffusion capacities, reaction rates and air concentrations on net flow are studied. Numerical simulations of the tracheal flow characteristics are performed. The models developed provide a mathematical framework to further investigate gas exchange in insects.
Collapse
|
23
|
Webster MR, Socha JJ, Teresi L, Nardinocchi P, De Vita R. Structure of tracheae and the functional implications for collapse in the American cockroach. BIOINSPIRATION & BIOMIMETICS 2015; 10:066011. [PMID: 26584154 DOI: 10.1088/1748-3190/10/6/066011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The tracheal tubes of insects are complex and heterogeneous composites with a microstructural organization that affects their function as pumps, valves, or static conduits within the respiratory system. In this study, we examined the microstructure of the primary thoracic tracheae of the American cockroach (Periplaneta americana) using a combination of scanning electron microscopy and light microscopy. The organization of the taenidia, which represents the primary source of structural reinforcement of the tracheae, was analyzed. We found that the taenidia were more disorganized in the regions of highest curvature of the tracheal tube. We also used a simple finite element model to explore the effect of cross-sectional shape and distribution of taenidia on the collapsibility of the tracheae. The eccentricity of the tracheal cross-section had a stronger effect on the collapse properties than did the distribution of taenidia. The combination of the macro-scale geometry, meso-scale heterogeneity, and microscale organization likely enables rhythmic tracheal compression during respiration, ultimately driving oxygen-rich air to cells and tissues throughout the insect body. The material design principles of these natural composites could potentially aid in the development of new bio-inspired microfluidic systems based on the differential collapse of tracheae-like networks.
Collapse
Affiliation(s)
- Matthew R Webster
- Mechanics of Soft Biological Systems Laboratory, Department of Biomedical Engineering and Mechanics, Virginia Tech, USA
| | | | | | | | | |
Collapse
|
24
|
Estimation of Instantaneous Gas Exchange in Flow-Through Respirometry Systems: A Modern Revision of Bartholomew's Z-Transform Method. PLoS One 2015; 10:e0139508. [PMID: 26466361 PMCID: PMC4605654 DOI: 10.1371/journal.pone.0139508] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/13/2015] [Indexed: 11/30/2022] Open
Abstract
Flow-through respirometry systems provide accurate measurement of gas exchange over long periods of time. However, these systems have limitations in tracking rapid changes. When an animal infuses a metabolic gas into the respirometry chamber in a short burst, diffusion and airflow in the chamber gradually alter the original signal before it arrives at the gas analyzer. For single or multiple bursts, the recorded signal is smeared or mixed, which may result in dramatically altered recordings compared to the emitted signal. Recovering the original metabolic signal is a difficult task because of the inherent ill conditioning problem. Here, we present two new methods to recover the fast dynamics of metabolic patterns from recorded data. We first re-derive the equations of the well-known Z-transform method (ZT method) to show the source of imprecision in this method. Then, we develop a new model of analysis for respirometry systems based on the experimentally determined impulse response, which is the response of the system to a very short unit input. As a result, we present a major modification of the ZT method (dubbed the ‘EZT method’) by using a new model for the impulse response, enhancing its precision to recover the true metabolic signals. The second method, the generalized Z-transform (GZT) method, was then developed by generalizing the EZT method; it can be applied to any flow-through respirometry system with any arbitrary impulse response. Experiments verified that the accuracy of recovering the true metabolic signals is significantly improved by the new methods. These new methods can be used more broadly for input estimation in variety of physiological systems.
Collapse
|
25
|
Arndt EM, Moore W, Lee WK, Ortiz C. Biomechanics. Mechanistic origins of bombardier beetle (Brachinini) explosion-induced defensive spray pulsation. Science 2015; 348:563-7. [PMID: 25931557 DOI: 10.1126/science.1261166] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 03/16/2015] [Indexed: 11/02/2022]
Abstract
Bombardier beetles (Brachinini) use a rapid series of discrete explosions inside their pygidial gland reaction chambers to produce a hot, pulsed, quinone-based defensive spray. The mechanism of brachinines' spray pulsation was explored using anatomical studies and direct observation of explosions inside living beetles using synchrotron x-ray imaging. Quantification of the dynamics of vapor inside the reaction chamber indicates that spray pulsation is controlled by specialized, contiguous cuticular structures located at the junction between the reservoir (reactant) and reaction chambers. Kinematics models suggest passive mediation of spray pulsation by mechanical feedback from the explosion, causing displacement of these structures.
Collapse
Affiliation(s)
- Eric M Arndt
- Department of Materials Science and Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139-4307, USA
| | - Wendy Moore
- Department of Entomology, The University of Arizona, Tucson, AZ 85721-0036, USA
| | - Wah-Keat Lee
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Christine Ortiz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139-4307, USA.
| |
Collapse
|
26
|
Greenlee KJ, Montooth KL, Helm BR. Predicting performance and plasticity in the development of respiratory structures and metabolic systems. Integr Comp Biol 2014; 54:307-22. [PMID: 24812329 PMCID: PMC4097113 DOI: 10.1093/icb/icu018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The scaling laws governing metabolism suggest that we can predict metabolic rates across taxonomic scales that span large differences in mass. Yet, scaling relationships can vary with development, body region, and environment. Within species, there is variation in metabolic rate that is independent of mass and which may be explained by genetic variation, the environment or their interaction (i.e., metabolic plasticity). Additionally, some structures, such as the insect tracheal respiratory system, change throughout development and in response to the environment to match the changing functional requirements of the organism. We discuss how study of the development of respiratory function meets multiple challenges set forth by the NSF Grand Challenges Workshop. Development of the structure and function of respiratory and metabolic systems (1) is inherently stable and yet can respond dynamically to change, (2) is plastic and exhibits sensitivity to environments, and (3) can be examined across multiple scales in time and space. Predicting respiratory performance and plasticity requires quantitative models that integrate information across scales of function from the expression of metabolic genes and mitochondrial biogenesis to the building of respiratory structures. We present insect models where data are available on the development of the tracheal respiratory system and of metabolic physiology and suggest what is needed to develop predictive models. Incorporating quantitative genetic data will enable mapping of genetic and genetic-by-environment variation onto phenotypes, which is necessary to understand the evolution of respiratory and metabolic systems and their ability to enable respiratory homeostasis as organisms walk the tightrope between stability and change.
Collapse
Affiliation(s)
- Kendra J Greenlee
- *Department of Biological Sciences, North Dakota State University, Fargo, ND 58102, USA; Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Kristi L Montooth
- *Department of Biological Sciences, North Dakota State University, Fargo, ND 58102, USA; Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Bryan R Helm
- *Department of Biological Sciences, North Dakota State University, Fargo, ND 58102, USA; Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
27
|
Laha B, Bowman DA, Socha JJ. Effects of VR system fidelity on analyzing isosurface visualization of volume datasets. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2014; 20:513-522. [PMID: 24650978 DOI: 10.1109/tvcg.2014.20] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Volume visualization is an important technique for analyzing datasets from a variety of different scientific domains. Volume data analysis is inherently difficult because volumes are three-dimensional, dense, and unfamiliar, requiring scientists to precisely control the viewpoint and to make precise spatial judgments. Researchers have proposed that more immersive (higher fidelity) VR systems might improve task performance with volume datasets, and significant results tied to different components of display fidelity have been reported. However, more information is needed to generalize these results to different task types, domains, and rendering styles. We visualized isosurfaces extracted from synchrotron microscopic computed tomography (SR-μCT) scans of beetles, in a CAVE-like display. We ran a controlled experiment evaluating the effects of three components of system fidelity (field of regard, stereoscopy, and head tracking) on a variety of abstract task categories that are applicable to various scientific domains, and also compared our results with those from our prior experiment using 3D texture-based rendering. We report many significant findings. For example, for search and spatial judgment tasks with isosurface visualization, a stereoscopic display provides better performance, but for tasks with 3D texture-based rendering, displays with higher field of regard were more effective, independent of the levels of the other display components. We also found that systems with high field of regard and head tracking improve performance in spatial judgment tasks. Our results extend existing knowledge and produce new guidelines for designing VR systems to improve the effectiveness of volume data analysis.
Collapse
|
28
|
Abstract
The invertebrates have adopted a myriad of breathing strategies to facilitate the extraction of adequate quantities of oxygen from their surrounding environments. Their respiratory structures can take a wide variety of forms, including integumentary surfaces, lungs, gills, tracheal systems, and even parallel combinations of these same gas exchange structures. Like their vertebrate counterparts, the invertebrates have evolved elaborate control strategies to regulate their breathing activity. Our goal in this article is to present the reader with a description of what is known regarding the control of breathing in some of the specific invertebrate species that have been used as model systems to study different mechanistic aspects of the control of breathing. We will examine how several species have been used to study fundamental principles of respiratory rhythm generation, central and peripheral chemosensory modulation of breathing, and plasticity in the control of breathing. We will also present the reader with an overview of some of the behavioral and neuronal adaptability that has been extensively documented in these animals. By presenting explicit invertebrate species as model organisms, we will illustrate mechanistic principles that form the neuronal foundation of respiratory control, and moreover appear likely to be conserved across not only invertebrates, but vertebrate species as well.
Collapse
Affiliation(s)
- Harold J Bell
- Division of Pulmonary and Critical Care, Department of Medicine, Penn State University, Hershey, Pennsylvania, USA.
| | | |
Collapse
|
29
|
Heinrich EC, McHenry MJ, Bradley TJ. Coordinated ventilation and spiracle activity produce unidirectional airflow in the hissing cockroach, Gromphadorhina portentosa. ACTA ACUST UNITED AC 2013; 216:4473-82. [PMID: 24031063 DOI: 10.1242/jeb.088450] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Insects exchange respiratory gases via an extensive network of tracheal vessels that open to the surface of the body through spiracular valves. Although gas exchange is known to increase with the opening of these spiracles, it is not clear how this event relates to gas flow through the tracheal system. We examined the relationship between respiratory airflow and spiracle activity in a ventilating insect, the hissing cockroach, Gromphadorhina portentosa, to better understand the complexity of insect respiratory function. Using simultaneous video recordings of multiple spiracular valves, we found that abdominal spiracles open and close in unison during periods of ventilation. Additionally, independent recordings of CO2 release from the abdominal and thoracic regions and observations of hyperoxic tracer gas movement indicate that air is drawn into the thoracic spiracles and expelled from the abdominal spiracles. Our video recordings suggest that this unidirectional flow is driven by abdominal contractions that occur when the abdominal spiracles open. The spiracles then close as the abdomen relaxes and fills with air from the thorax. Therefore, the respiratory system of the hissing cockroach functions as a unidirectional pump through the coordinated action of the spiracles and abdominal musculature. This mechanism may be employed by a broad diversity of large insects that respire by active ventilation.
Collapse
Affiliation(s)
- Erica C Heinrich
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
| | | | | |
Collapse
|
30
|
Aboelkassem Y, Staples AE. Selective pumping in a network: insect-style microscale flow transport. BIOINSPIRATION & BIOMIMETICS 2013; 8:026004. [PMID: 23538838 DOI: 10.1088/1748-3182/8/2/026004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A new paradigm for selective pumping of fluids in a complex network of channels in the microscale flow regime is presented. The model is inspired by internal flow distributions produced by the rhythmic wall contractions observed in many insect tracheal networks. The approach presented here is a natural extension of previous two-dimensional modeling of insect-inspired microscale flow transport in a single channel, and aims to manipulate fluids efficiently in microscale networks without the use of any mechanical valves. This selective pumping approach enables fluids to be transported, controlled and precisely directed into a specific branch in a network while avoiding other possible routes. In order to present a quantitative analysis of the selective pumping approach presented here, the velocity and pressure fields and the time-averaged net flow that are induced by prescribed wall contractions are calculated numerically using the method of fundamental solutions. More specifically, the Stokeslets-meshfree method is used in this study to solve the Stokes equations that govern the flow motions in a network with moving wall contractions. The results presented here might help in understanding some features of the insect respiratory system function and guide efforts to fabricate novel microfluidic devices for flow transport and mixing, and targeted drug delivery applications.
Collapse
Affiliation(s)
- Yasser Aboelkassem
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA.
| | | |
Collapse
|
31
|
Verberk WCEP, Sommer U, Davidson RL, Viant MR. Anaerobic metabolism at thermal extremes: a metabolomic test of the oxygen limitation hypothesis in an aquatic insect. Integr Comp Biol 2013; 53:609-19. [PMID: 23604617 PMCID: PMC3776598 DOI: 10.1093/icb/ict015] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Thermal limits in ectotherms may arise through a mismatch between supply and demand of oxygen. At higher temperatures, the ability of their cardiac and ventilatory activities to supply oxygen becomes insufficient to meet their elevated oxygen demand. Consequently, higher levels of oxygen in the environment are predicted to enhance tolerance of heat, whereas reductions in oxygen are expected to reduce thermal limits. Here, we extend previous research on thermal limits and oxygen limitation in aquatic insect larvae and directly test the hypothesis of increased anaerobic metabolism and lower energy status at thermal extremes. We quantified metabolite profiles in stonefly nymphs under varying temperatures and oxygen levels. Under normoxia, the concept of oxygen limitation applies to the insects studied. Shifts in the metabolome of heat-stressed stonefly nymphs clearly indicate the onset of anaerobic metabolism (e.g., accumulation of lactate, acetate, and alanine), a perturbation of the tricarboxylic acid cycle (e.g., accumulation of succinate and malate), and a decrease in energy status (e.g., ATP), with corresponding decreases in their ability to survive heat stress. These shifts were more pronounced under hypoxic conditions, and negated by hyperoxia, which also improved heat tolerance. Perturbations of metabolic pathways in response to either heat stress or hypoxia were found to be somewhat similar but not identical. Under hypoxia, energy status was greatly compromised at thermal extremes, but energy shortage and anaerobic metabolism could not be conclusively identified as the sole cause underlying thermal limits under hyperoxia. Metabolomics proved useful for suggesting a range of possible mechanisms to explore in future investigations, such as the involvement of leaking membranes or free radicals. In doing so, metabolomics provided a more complete picture of changes in metabolism under hypoxia and heat stress.
Collapse
Affiliation(s)
- W C E P Verberk
- *Department of Animal Ecology and Ecophysiology, Institute of Water and Wetland Research, Radboud University Nijmegen, PO Box 9010, 6500 GL Nijmegen, The Netherlands; Marine Biology and Ecology Research Centre, University of Plymouth, Davy Building, Drake Circus, Plymouth PL4 8AA, UK; NERC Biomolecular Analysis Facility-Metabolomics Node (NBAF-B), School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | |
Collapse
|
32
|
Waters JS, Lee WK, Westneat MW, Socha JJ. Dynamics of tracheal compression in the horned passalus beetle. Am J Physiol Regul Integr Comp Physiol 2013; 304:R621-7. [DOI: 10.1152/ajpregu.00500.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rhythmic patterns of compression and reinflation of the thin-walled hollow tubes of the insect tracheal system have been observed in a number of insects. These movements may be important for facilitating the transport and exchange of respiratory gases, but observing and characterizing the dynamics of internal physiological systems within live insects can be challenging due to their size and exoskeleton. Using synchrotron X-ray phase-contrast imaging, we observed dynamical behavior in the tracheal system of the beetle, Odontotaenius disjunctus. Similar to observations of tracheal compression in other insects, specific regions of tracheae in the thorax of O. disjunctus exhibit rhythmic collapse and reinflation. During tracheal compression, the opposing sides of a tracheal tube converge, causing the effective diameter of the tube to decrease. However, a unique characteristic of tracheal compression in this species is that certain tracheae collapse and reinflate with a wavelike motion. In the dorsal cephalic tracheae, compression begins anteriorly and continues until the tube is uniformly flattened; reinflation takes place in the reverse direction, starting with the posterior end of the tube and continuing until the tube is fully reinflated. We report the detailed kinematics of this pattern as well as additional observations that show tracheal compression coordinated with spiracle opening and closing. These findings suggest that tracheal compression may function to drive flow within the body, facilitating internal mixing of respiratory gases and ventilation of distal regions of the tracheal system.
Collapse
Affiliation(s)
- James S. Waters
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey
| | - Wah-Keat Lee
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois
| | - Mark W. Westneat
- Department of Zoology, Field Museum of Natural History, Chicago, Illinois; and
| | - John J. Socha
- Department of Engineering Science and Mechanics, Virginia Tech, Blacksburg, Virginia
| |
Collapse
|
33
|
Phase contrast imaging reveals low lung volumes and surface areas in the developing marsupial. PLoS One 2013; 8:e53805. [PMID: 23349744 PMCID: PMC3548826 DOI: 10.1371/journal.pone.0053805] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 12/06/2012] [Indexed: 12/20/2022] Open
Abstract
Marsupials are born with immature lungs when compared to eutherian mammals and rely, to various extents, on cutaneous gas exchange in order to meet metabolic requirements. Indeed, the fat-tailed dunnart is born with lungs in the canalicular stage of development and relies almost entirely on the skin for gas exchange at birth; consequently undergoing the majority of lung development in air. Plane radiographs and computed tomography data sets were acquired using phase contrast imaging with a synchrotron radiation source for two marsupial species, the fat-tailed dunnart and the larger tammar wallaby, during the first weeks of postnatal life. Phase contrast imaging revealed that only two lung sacs contain air after the first hour of life in the fat-tailed dunnart. While the lung of the tammar wallaby was comparatively more developed, both species demonstrated massive increases in air sac number and architectural complexity during the postnatal period. In addition, both the tammar wallaby and fat-tailed dunnart had lower lung volumes and parenchymal surface areas than were expected from morphometrically determined allometric equations relating these variables to body mass during the neonatal period. However, lung volume is predicted to scale with mass as expected after the neonatal marsupial reaches a body mass of ∼1 g and no longer relies on the skin for gas exchange. Decreased lung volume in the marsupial neonate further supports the maxim that cutaneous gas exchange occurs in the marsupial neonate because the respiratory apparatus is not yet capable of meeting the gas exchange requirements of the newborn.
Collapse
|
34
|
Harrison JF, Waters JS, Cease AJ, VandenBrooks JM, Callier V, Klok CJ, Shaffer K, Socha JJ. How Locusts Breathe. Physiology (Bethesda) 2013; 28:18-27. [DOI: 10.1152/physiol.00043.2012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Insect tracheal-respiratory systems achieve high fluxes and great dynamic range with low energy requirements and could be important models for bioengineers interested in developing microfluidic systems. Recent advances suggest that insect cardiorespiratory systems have functional valves that permit compartmentalization with segment-specific pressures and flows and that system anatomy allows regional flows. Convection dominates over diffusion as a transport mechanism in the major tracheae, but Reynolds numbers suggest viscous effects remain important.
Collapse
Affiliation(s)
- Jon F. Harrison
- Arizona State University, School of Life Sciences Tempe, Arizona; and
| | - James S. Waters
- Arizona State University, School of Life Sciences Tempe, Arizona; and
| | - Arianne J. Cease
- Arizona State University, School of Life Sciences Tempe, Arizona; and
| | | | - Viviane Callier
- Arizona State University, School of Life Sciences Tempe, Arizona; and
| | - C. Jaco Klok
- Arizona State University, School of Life Sciences Tempe, Arizona; and
| | - Kimberly Shaffer
- Arizona State University, School of Life Sciences Tempe, Arizona; and
| | - John J. Socha
- Virginia Tech, Engineering Science and Mechanics, Blacksburg, Virginia
| |
Collapse
|
35
|
Subsurface behaviours facilitate respiration by a physical gill in an adult giant water bug, Abedus herberti. Anim Behav 2012. [DOI: 10.1016/j.anbehav.2011.12.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Verberk WCEP, Bilton DT. Can oxygen set thermal limits in an insect and drive gigantism? PLoS One 2011; 6:e22610. [PMID: 21818347 PMCID: PMC3144910 DOI: 10.1371/journal.pone.0022610] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 07/01/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Thermal limits may arise through a mismatch between oxygen supply and demand in a range of animal taxa. Whilst this oxygen limitation hypothesis is supported by data from a range of marine fish and invertebrates, its generality remains contentious. In particular, it is unclear whether oxygen limitation determines thermal extremes in tracheated arthropods, where oxygen limitation may be unlikely due to the efficiency and plasticity of tracheal systems in supplying oxygen directly to metabolically active tissues. Although terrestrial taxa with open tracheal systems may not be prone to oxygen limitation, species may be affected during other life-history stages, particularly if these rely on diffusion into closed tracheal systems. Furthermore, a central role for oxygen limitation in insects is envisaged within a parallel line of research focussing on insect gigantism in the late Palaeozoic. METHODOLOGY/PRINCIPAL FINDINGS Here we examine thermal maxima in the aquatic life stages of an insect at normoxia, hypoxia (14 kPa) and hyperoxia (36 kPa). We demonstrate that upper thermal limits do indeed respond to external oxygen supply in the aquatic life stages of the stonefly Dinocras cephalotes, suggesting that the critical thermal limits of such aquatic larvae are set by oxygen limitation. This could result from impeded oxygen delivery, or limited oxygen regulatory capacity, both of which have implications for our understanding of the limits to insect body size and how these are influenced by atmospheric oxygen levels. CONCLUSIONS/SIGNIFICANCE These findings extend the generality of the hypothesis of oxygen limitation of thermal tolerance, suggest that oxygen constraints on body size may be stronger in aquatic environments, and that oxygen toxicity may have actively selected for gigantism in the aquatic stages of Carboniferous arthropods.
Collapse
Affiliation(s)
- Wilco C E P Verberk
- Marine Biology and Ecology Research Centre, University of Plymouth, Plymouth, Devon, United Kingdom.
| | | |
Collapse
|
37
|
Payne JL, McClain CR, Boyer AG, Brown JH, Finnegan S, Kowalewski M, Krause RA, Lyons SK, McShea DW, Novack-Gottshall PM, Smith FA, Spaeth P, Stempien JA, Wang SC. The evolutionary consequences of oxygenic photosynthesis: a body size perspective. PHOTOSYNTHESIS RESEARCH 2011; 107:37-57. [PMID: 20821265 DOI: 10.1007/s11120-010-9593-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 08/18/2010] [Indexed: 05/29/2023]
Abstract
The high concentration of molecular oxygen in Earth's atmosphere is arguably the most conspicuous and geologically important signature of life. Earth's early atmosphere lacked oxygen; accumulation began after the evolution of oxygenic photosynthesis in cyanobacteria around 3.0-2.5 billion years ago (Gya). Concentrations of oxygen have since varied, first reaching near-modern values ~600 million years ago (Mya). These fluctuations have been hypothesized to constrain many biological patterns, among them the evolution of body size. Here, we review the state of knowledge relating oxygen availability to body size. Laboratory studies increasingly illuminate the mechanisms by which organisms can adapt physiologically to the variation in oxygen availability, but the extent to which these findings can be extrapolated to evolutionary timescales remains poorly understood. Experiments confirm that animal size is limited by experimental hypoxia, but show that plant vegetative growth is enhanced due to reduced photorespiration at lower O(2):CO(2). Field studies of size distributions across extant higher taxa and individual species in the modern provide qualitative support for a correlation between animal and protist size and oxygen availability, but few allow prediction of maximum or mean size from oxygen concentrations in unstudied regions. There is qualitative support for a link between oxygen availability and body size from the fossil record of protists and animals, but there have been few quantitative analyses confirming or refuting this impression. As oxygen transport limits the thickness or volume-to-surface area ratio-rather than mass or volume-predictions of maximum possible size cannot be constructed simply from metabolic rate and oxygen availability. Thus, it remains difficult to confirm that the largest representatives of fossil or living taxa are limited by oxygen transport rather than other factors. Despite the challenges of integrating findings from experiments on model organisms, comparative observations across living species, and fossil specimens spanning millions to billions of years, numerous tractable avenues of research could greatly improve quantitative constraints on the role of oxygen in the macroevolutionary history of organismal size.
Collapse
Affiliation(s)
- Jonathan L Payne
- Department of Geological and Environmental Sciences, Stanford University, 450 Serra Mall, Bldg. 320, Stanford, CA 94305, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Moerbitz C, Hetz SK. Tradeoffs between metabolic rate and spiracular conductance in discontinuous gas exchange of Samia cynthia (Lepidoptera, Saturniidae). JOURNAL OF INSECT PHYSIOLOGY 2010; 56:536-542. [PMID: 19682454 DOI: 10.1016/j.jinsphys.2009.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 08/01/2009] [Accepted: 08/03/2009] [Indexed: 05/28/2023]
Abstract
The insect tracheal system is a unique respiratory system, designed for maximum oxygen delivery at high metabolic demands, e.g. during activity and at high ambient temperatures. Therefore, large safety margins are required for tracheal and spiracular conductance. Spiracles are the entry to the tracheal system and play an important role in controlling discontinuous gas exchange (DGC) between tracheal system and atmosphere in moth pupae. We investigated the effect of modulated metabolic rate (by changing ambient temperature) and modulated spiracular conductance (by blocking all except one spiracles) on gas exchange patterns in Samia pupae. Both, spiracle blocking and metabolic rates, affected respiratory behavior in Samia cynthia pupae. While animals showed discontinuous gas exchange cycles at lower temperatures with unblocked spiracles, the respiratory patterns were cyclic at higher temperatures, with partly blocked spiracles or a combination of these two factors. The threshold for the transition from a discontinuous (DGC) to a cyclic gas exchange ((cyc)GE) was significantly higher in animals with unblocked spiracles (18.7 nmol g(-1) min(-1) vs. 7.9 nmol g(-1) min(-1)). These findings indicate an important influence of spiracle conductance on the DGC, which may occur mostly in insects showing high spiracular conductances and low metabolic rates.
Collapse
Affiliation(s)
- Christian Moerbitz
- Humboldt-Universität zu Berlin, Department of Animal Physiology, Systems Neurobiology and Neural Computation, Philippstrasse 13, 10115 Berlin, Germany
| | | |
Collapse
|
39
|
Duncan FD, Förster TD, Hetz SK. Pump out the volume--The effect of tracheal and subelytral pressure pulses on convective gas exchange in a dung beetle, Circellium bacchus (Fabricus). JOURNAL OF INSECT PHYSIOLOGY 2010; 56:551-558. [PMID: 19481765 DOI: 10.1016/j.jinsphys.2009.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 03/11/2009] [Accepted: 03/12/2009] [Indexed: 05/27/2023]
Abstract
Many flightless beetles like the large apterous dung beetle Circellium bacchus, possess a subelytral cavity (SEC) providing an extra air space below the elytra which connects to the tracheal system (TS) via metathoracic and abdominal spiracles. By measuring subelytral and intratracheal pressure as well as body movements and gas exchange simultaneously in a flow-through setup, we investigated the contribution of convection on Circellium respiratory gas exchange. No constriction phase was observed. TS and SEC pressures were always around atmospheric values. During interburst phase open abdominal spiracles and a leaky SEC led to small CO(2)-peaks on a continuous CO(2) baseline, driven by intermittent positive tracheal pressure peaks in anti-phase with small negative subelytral pressure peaks caused by dorso-ventral tergite action. Spiracle opening was accompanied by two types of body movements. Higher frequency telescoping body movements at the beginning of opening resulted in high amplitude SEC and TS pressure peaks. High frequency tergite movements caused subelytral pressure peaks and led to a saw tooth like CO(2) release pattern in a burst. We propose that during the burst open mesothoracic spiracles increase the compliance of the subelytral cavity allowing big volumes of tracheal air being pulled out by convection.
Collapse
Affiliation(s)
- Frances D Duncan
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Private Bag 3, Johannesburg, Wits 2050, South Africa.
| | | | | |
Collapse
|
40
|
Terblanche JS, Chown SL. Effects of flow rate and temperature on cyclic gas exchange in tsetse flies (Diptera, Glossinidae). JOURNAL OF INSECT PHYSIOLOGY 2010; 56:513-521. [PMID: 20399350 DOI: 10.1016/j.jinsphys.2009.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 02/19/2009] [Accepted: 02/23/2009] [Indexed: 05/29/2023]
Abstract
Air flow rates may confound the investigation and classification of insect gas exchange patterns. Here we report the effects of flow rates (50, 100, 200, 400 ml min(-1)) on gas exchange patterns in wild-caught Glossina morsitans morsitans from Zambia. At rest, G. m. morsitans generally showed continuous or cyclic gas exchange (CGE) but no evidence of discontinuous gas exchange (DGE). Flow rates had little influence on the ability to detect CGE in tsetse, at least in the present experimental setup and under these laboratory conditions. Importantly, faster flow rates resulted in similar gas exchange patterns to those identified at lower flower rates suggesting that G. m. morsitans did not show DGE which had been incorrectly identified as CGE at lower flow rates. While CGE cycle frequency was significantly different among the four flow rates (p<0.05), the direction of effects was inconsistent. Indeed, inter-individual variation in CGE cycle frequency exceeded flow rate treatment variation. Using a laboratory colony of closely related, similar-sized G. morsitans centralis we subsequently investigated the effects of temperature, gender and feeding status on CGE pattern variation since these factors can influence insect metabolic rates. At 100 ml min(-1) CGE was typical of G. m. centralis at rest, although it was significantly more common in females than in males (57% vs. 43% of 14 individuals tested per gender). In either sex, temperature (20, 24, 28 and 32 degrees C) had little influence on the number of individuals showing CGE. However, increases in metabolic rate with temperature were modulated largely by increases in burst volume and cycle frequency. This is unusual among insects showing CGE or DGE patterns because increases in metabolic rate are usually modulated by increases in frequency, but either no change or a decline in burst volume.
Collapse
Affiliation(s)
- John S Terblanche
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | | |
Collapse
|
41
|
Socha JJ, Förster TD, Greenlee KJ. Issues of convection in insect respiration: insights from synchrotron X-ray imaging and beyond. Respir Physiol Neurobiol 2010; 173 Suppl:S65-73. [PMID: 20347054 DOI: 10.1016/j.resp.2010.03.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 03/10/2010] [Accepted: 03/11/2010] [Indexed: 11/28/2022]
Abstract
While it has long been known that in small animals, such as insects, sufficient gas transport could be provided by diffusion, it is now recognized that animals generate and control convective flows to improve oxygen delivery across a range of body sizes and taxa. However, size-based methodological limitations have constrained our understanding of the mechanisms that underlie the production of these convective flows. Recently, new techniques have enabled the elucidation of the anatomical structures and physiological processes that contribute to creating and maintaining bulk flow in small animals. In particular, synchrotron X-ray imaging provides unprecedented spatial and temporal resolution of internal functional morphology and is changing the way we understand gas exchange in insects. This symposium highlights recent efforts towards understanding the relationship between form, function, and control in the insect respiratory system.
Collapse
Affiliation(s)
- John J Socha
- Engineering Science and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA.
| | | | | |
Collapse
|