1
|
Dukas R, Bailey NW. Evolutionary biology of social expertise. Biol Rev Camb Philos Soc 2024; 99:2176-2189. [PMID: 38946116 DOI: 10.1111/brv.13115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/02/2024]
Abstract
There is increasing evidence that competent handling of social interactions among conspecifics has positive effects on individual fitness. While individual variation in social competence has been appreciated, the role of long-term experience in the acquisition of superior social skills has received less attention. With the goal of promoting further research, we integrate knowledge across disciplines to assess social expertise, defined as the characteristics, skills and knowledge allowing individuals with extensive social experience to perform significantly better than novices on a given social task. We focus on three categories of social behaviour. First, animals can gain from adjusting social behaviour towards individually recognised conspecifics that they interact with on a regular basis. For example, there is evidence that some territorial animals individually recognise their neighbours and modify their social interactions based on experience with each neighbour. Similarly, individuals in group-living species learn to associate with specific group members based on their expected benefits from such social connections. Individuals have also been found to devote considerable time and effort to learning about the spatial location and timing of sexual receptivity of opposite-sex neighbours to optimise reproduction. Second, signallers can enhance their signals, and receivers can refine their response to signals with experience. In many birds and insects, individuals can produce more consistent signals with experience, and females across a wide taxonomic range can adaptively adjust mating preferences after perceiving distinct male signals. Third, in many species, individuals that succeed in reproducing encounter the novel, complex task of caring for vulnerable offspring. Evidence from a few species of mammals indicates that mothers improve in providing for and protecting their young over successive broods. Finally, for social expertise to evolve, heritable variation in social expertise has to be positively associated with fitness. Heritable variation has been shown in traits contributing to social expertise including social attention, empathy, individual recognition and maternal care. There are currently limited data associating social expertise with fitness, most likely owing to sparse research effort. Exceptions include maternal care, signal refinement, and familiarity with neighbours and group members. Overall, there is evidence that individuals in many species keep refining their social skills with experience throughout life. Hence we propose promising lines of research that can quantify more thoroughly the development of social expertise and its effects on fitness.
Collapse
Affiliation(s)
- Reuven Dukas
- Department of Psychology, Neuroscience, and Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Nathan W Bailey
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Fife, KY16 9TH, UK
| |
Collapse
|
2
|
Spremo J, Purać J, Čelić T, Đorđievski S, Pihler I, Kojić D, Vukašinović E. Assessment of oxidative status, detoxification capacity and immune responsiveness in honey bees with ageing. Comp Biochem Physiol A Mol Integr Physiol 2024; 298:111735. [PMID: 39233113 DOI: 10.1016/j.cbpa.2024.111735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
The honey bee (Apis mellifera L.), as an eusocial insect species, is an important model organism in research focusing on ageing and longevity, due to prominent seasonal lifespan plasticity within the worker caste (summer and winter worker bees). In this study, we employed a screening approach to evaluate several molecular parameters, providing comprehensive insights into the antioxidative (superoxide dismutase and catalase activity, reduced glutathione and sulfhydryl group content, total antioxidative capacity), detoxifying (glutathione S-transferase and acetylcholinesterase activity), and immune (phenol oxidase and glucose oxidase activity) status, as well as vitellogenin content, in the summer and winter generation of honey bees, across ageing stages and in two body compartments: the whole abdomen and the head. Summer worker bees were collected weekly for six weeks, while winter bees were collected monthly for five months. The results of our study clearly indicate a reduced overall antioxidative capacity of older groups of worker bees from both generations, while the parameters of immune responsiveness mostly contributed to the separation between the two generations based on season rather than age categories. Detoxification ability appeared to be more susceptible to environmental factors. An age-dependent increase in vitellogenin content was recorded in the abdomen, but without seasonal differences. These findings provide an excellent starting point for further investigations into age-related changes, particularly within the context of honey bee sociality.
Collapse
Affiliation(s)
- Jelena Spremo
- Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Republic of Serbia.
| | - Jelena Purać
- Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Republic of Serbia
| | - Tatjana Čelić
- Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Republic of Serbia
| | - Srđana Đorđievski
- Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Republic of Serbia
| | - Ivan Pihler
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Republic of Serbia
| | - Danijela Kojić
- Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Republic of Serbia
| | - Elvira Vukašinović
- Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Republic of Serbia
| |
Collapse
|
3
|
Menail HA, Cormier SB, Léger A, Robichaud S, Hebert-Chatelain E, Lamarre SG, Pichaud N. Age-related flexibility of energetic metabolism in the honey bee Apis mellifera. FASEB J 2023; 37:e23222. [PMID: 37781970 DOI: 10.1096/fj.202300654r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/17/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023]
Abstract
The mechanisms that underpin aging are still elusive. In this study, we suggest that the ability of mitochondria to oxidize different substrates, which is known as metabolic flexibility, is involved in this process. To verify our hypothesis, we used honey bees (Apis mellifera carnica) at different ages, to assess mitochondrial oxygen consumption and enzymatic activities of key enzymes of the energetic metabolism as well as ATP5A1 content (subunit of ATP synthase) and adenylic energy charge (AEC). We also measured mRNA abundance of genes involved in mitochondrial functions and the antioxidant system. Our results demonstrated that mitochondrial respiration increased with age and favored respiration through complexes I and II of the electron transport system (ETS) while glycerol-3-phosphate (G3P) oxidation was relatively decreased. In addition, glycolytic, tricarboxylic acid cycle and ETS enzymatic activities increased, which was associated with higher ATP5A1 content and AEC. Furthermore, we detected an early decrease in the mRNA abundance of subunits of NADH ubiquinone oxidoreductase subunit B2 (NDUFB2, complex I), mitochondrial cytochrome b (CYTB, complex III) of the ETS as well as superoxide dismutase 1 and a later decrease for vitellogenin, catalase and mitochondrial cytochrome c oxidase subunit 1 (COX1, complex IV). Thus, our study suggests that the energetic metabolism is optimized with aging in honey bees, mainly through quantitative and qualitative mitochondrial changes, rather than showing signs of senescence. Moreover, aging modulated metabolic flexibility, which might reflect an underpinning mechanism that explains lifespan disparities between the different castes of worker bees.
Collapse
Affiliation(s)
- Hichem A Menail
- New Brunswick Centre for Precision Medicine, Moncton, New Brunswick, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| | - Simon B Cormier
- New Brunswick Centre for Precision Medicine, Moncton, New Brunswick, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| | - Adèle Léger
- New Brunswick Centre for Precision Medicine, Moncton, New Brunswick, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| | - Samuel Robichaud
- New Brunswick Centre for Precision Medicine, Moncton, New Brunswick, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| | - Etienne Hebert-Chatelain
- New Brunswick Centre for Precision Medicine, Moncton, New Brunswick, Canada
- Department of Biology, Université de Moncton, Moncton, New Brunswick, Canada
| | - Simon G Lamarre
- Department of Biology, Université de Moncton, Moncton, New Brunswick, Canada
| | - Nicolas Pichaud
- New Brunswick Centre for Precision Medicine, Moncton, New Brunswick, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| |
Collapse
|
4
|
Wegener J, Krause S, Parafianczuk V, Chaniotakis I, Schiller J, Dannenberger D, Engel KM. Lipidomic specializations of honeybee (Apis mellifera) castes and ethotypes. JOURNAL OF INSECT PHYSIOLOGY 2022; 142:104439. [PMID: 36063873 DOI: 10.1016/j.jinsphys.2022.104439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Honeybees of the same colony combine a near-homogeneous genetic background with a high level of phenotypic plasticity, making them ideal models for functional lipidomics. The only external lipid source of the colony is pollen, a diet rich in polyunsaturated fatty acids (PUFA). It has been suggested that differences in exposure to pollen-derived PUFA could partly explain differences in longevity between honeybee castes. We here investigated whether the membrane composition of honeybees plays roles in the physiological adaptation to tasks of individuals within the colony. Membranes of cell heaters, a group of workers producing heat from their flight muscles to uphold brood nest temperature, were compared to those of different types of non-heaters. We found that the lipidomic profiles of these groups fall into clearly different "lipotypes", characterized by chain length and saturation of phospholipid-bound fatty acyl residues. The nutritional exposure to PUFA during early adult life and pupal development at the lower edge of the natural range of brood nest temperature both suppressed the expression of the cell heater-"lipotype". Because cardiolipins (CL) are the lipid class most clearly differentiating honeybee phenotypes, and CL plays central roles in mitochondrial function, dysfunction and aging, our findings could help to understand these processes in other animals and humans. Taken together, the lipidome analysis of different life stages of workers, fertile queens, and drones lead to the hypothesis that honeybee "lipotypes" might represent adaptations to different energetic profiles and the likelihood of exposure to low temperatures.
Collapse
Affiliation(s)
- Jakob Wegener
- Institute for Bee Research, Friedrich-Engels-Strasse 32, 16540 Hohen Neuendorf, Germany.
| | - Sophie Krause
- Freie Universität Berlin, Königin-Luise-Strasse 1 - 3, 14195 Berlin, Germany
| | - Victoria Parafianczuk
- University of Leipzig, Institute for Medical Physics and Biophysics, Haertelstrasse 16 - 18, 04107 Leipzig, Germany
| | - Ioannis Chaniotakis
- Institute for Bee Research, Friedrich-Engels-Strasse 32, 16540 Hohen Neuendorf, Germany
| | - Jürgen Schiller
- University of Leipzig, Institute for Medical Physics and Biophysics, Haertelstrasse 16 - 18, 04107 Leipzig, Germany.
| | - Dirk Dannenberger
- Research Institute for Farm Animal Biology, Institute of Muscle Biology and Growth, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | - Kathrin M Engel
- University of Leipzig, Institute for Medical Physics and Biophysics, Haertelstrasse 16 - 18, 04107 Leipzig, Germany.
| |
Collapse
|
5
|
Honeybees with extensive foraging experience rob nectar more frequently. Naturwissenschaften 2021; 109:11. [PMID: 34958410 DOI: 10.1007/s00114-021-01781-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 10/19/2022]
Abstract
Not all flower-visiting animals act as pollinators; some visitors engage in foraging nectar without pollen transfer. The tendency to rob nectar is related to visitors' morphological traits and rewards per foraging effort, and drivers of this variation within visitor species are largely unknown. Because foraging behavior is affected by foraging experience, we focused on the relationship between the tendency to rob nectar and the foraging experience of each forager. We investigated five consecutive visits of European honeybee, Apis mellifera L., on comfrey, Symphytum officinale L., in Japan. We estimated the foraging experience of A. mellifera using wing wear, categorized into six groups. Approximately 60% and 40% of A. mellifera foragers engaged in legitimate visits and nectar robbing, respectively. Moreover, most A. mellifera engaged in only one foraging tactic. The proportion of nectar robbing was related to wing wear and was higher in individuals with extensively damaged wings than those with less damaged wings. The present study suggests that extensively experienced honeybee foragers tend towards nectar robbing.
Collapse
|
6
|
Chen YR, Tzeng DTW, Yang EC. Chronic Effects of Imidacloprid on Honey Bee Worker Development-Molecular Pathway Perspectives. Int J Mol Sci 2021; 22:11835. [PMID: 34769266 PMCID: PMC8584158 DOI: 10.3390/ijms222111835] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 11/28/2022] Open
Abstract
Sublethal dosages of imidacloprid cause long-term destructive effects on honey bees at the individual and colony levels. In this review, the molecular effects of sublethal imidacloprid were integrated and reported. Several general effects have been observed among different reports using different approaches. Quantitative PCR approaches revealed that imidacloprid treatments during the adult stage are expressed as changes in immuneresponse, detoxification, and oxidation-reduction response in both workers and queens. In addition, transcriptomic approaches suggested that phototransduction, behavior, and somatic muscle development also were affected. Although worker larvae show a higher tolerance to imidacloprid than adults, molecular evidence reveals its potential impacts. Sublethal imidacloprid treatment during the larval stage causes gene expression changes in larvae, pupae, and adults. Transcriptome profiles suggest that the population and functions of affected differentially expressed genes, DEGs, vary among different worker ages. Furthermore, an early transcriptomic switch from nurse bees to foragers was observed, suggesting that precocious foraging activity may occur. This report comprehensively describes the molecular effects of sublethal dosages of imidacloprid on the honey bee Apis mellifera. The corresponding molecular pathways for physiological and neurological responses in imidacloprid-exposed honey bees were validated. Transcriptomic evidence suggests a global and sustained sublethal impact of imidacloprid on honey bee development.
Collapse
Affiliation(s)
- Yun-Ru Chen
- Department of Entomology, National Taiwan University, Taipei 10617, Taiwan;
| | - David T. W. Tzeng
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - En-Cheng Yang
- Department of Entomology, National Taiwan University, Taipei 10617, Taiwan;
| |
Collapse
|
7
|
Kashetsky T, Avgar T, Dukas R. The Cognitive Ecology of Animal Movement: Evidence From Birds and Mammals. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.724887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cognition, defined as the processes concerned with the acquisition, retention and use of information, underlies animals’ abilities to navigate their local surroundings, embark on long-distance seasonal migrations, and socially learn information relevant to movement. Hence, in order to fully understand and predict animal movement, researchers must know the cognitive mechanisms that generate such movement. Work on a few model systems indicates that most animals possess excellent spatial learning and memory abilities, meaning that they can acquire and later recall information about distances and directions among relevant objects. Similarly, field work on several species has revealed some of the mechanisms that enable them to navigate over distances of up to several thousand kilometers. Key behaviors related to movement such as the choice of nest location, home range location and migration route are often affected by parents and other conspecifics. In some species, such social influence leads to the formation of aggregations, which in turn may lead to further social learning about food locations or other resources. Throughout the review, we note a variety of topics at the interface of cognition and movement that invite further investigation. These include the use of social information embedded in trails, the likely important roles of soundscapes and smellscapes, the mechanisms that large mammals rely on for long-distance migration, and the effects of expertise acquired over extended periods.
Collapse
|
8
|
Peng T, Derstroff D, Maus L, Bauer T, Grüter C. Forager age and foraging state, but not cumulative foraging activity, affect biogenic amine receptor gene expression in the honeybee mushroom bodies. GENES BRAIN AND BEHAVIOR 2021; 20:e12722. [PMID: 33325617 DOI: 10.1111/gbb.12722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 01/17/2023]
Abstract
Foraging behavior is crucial for the development of a honeybee colony. Biogenic amines are key mediators of learning and the transition from in-hive tasks to foraging. Foragers vary considerably in their behavior, but whether and how this behavioral diversity depends on biogenic amines is not yet well understood. For example, forager age, cumulative foraging activity or foraging state may all be linked to biogenic amine signaling. Furthermore, expression levels may fluctuate depending on daytime. We tested if these intrinsic and extrinsic factors are linked to biogenic amine signaling by quantifying the expression of octopamine, dopamine and tyramine receptor genes in the mushroom bodies, important tissues for learning and memory. We found that older foragers had a significantly higher expression of Amdop1, Amdop2, AmoctαR1, and AmoctβR1 compared to younger foragers, whereas Amtar1 showed the opposite pattern. Surprisingly, our measures of cumulative foraging activity were not related to the expression of the same receptor genes in the mushroom bodies. Furthermore, we trained foragers to collect sucrose solution at a specific time of day and tested if the foraging state of time-trained foragers affected receptor gene expression. Bees engaged in foraging had a higher expression of Amdop1 and AmoctβR3/4 than inactive foragers. Finally, the expression of Amdop1, Amdop3, AmoctαR1, and Amtar1 also varied with daytime. Our results show that receptor gene expression in forager mushroom bodies is complex and depends on both intrinsic and extrinsic factors.
Collapse
Affiliation(s)
- Tianfei Peng
- College of Plant Science, Jilin University, Changchun, China.,Institute of Organismic and Molecular Evolutionary Biology, Johannes-Gutenberg University of Mainz, Mainz, Germany
| | - Dennis Derstroff
- Institute of Organismic and Molecular Evolutionary Biology, Johannes-Gutenberg University of Mainz, Mainz, Germany
| | - Lea Maus
- Institute of Organismic and Molecular Evolutionary Biology, Johannes-Gutenberg University of Mainz, Mainz, Germany
| | - Timo Bauer
- Institute of Organismic and Molecular Evolutionary Biology, Johannes-Gutenberg University of Mainz, Mainz, Germany
| | - Christoph Grüter
- Institute of Organismic and Molecular Evolutionary Biology, Johannes-Gutenberg University of Mainz, Mainz, Germany.,School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
9
|
Prado A, Requier F, Crauser D, Le Conte Y, Bretagnolle V, Alaux C. Honeybee lifespan: the critical role of pre-foraging stage. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200998. [PMID: 33391795 PMCID: PMC7735337 DOI: 10.1098/rsos.200998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/14/2020] [Indexed: 05/25/2023]
Abstract
Assessing the various anthropogenic pressures imposed on honeybees requires characterizing the patterns and drivers of natural mortality. Using automated lifelong individual monitoring devices, we monitored worker bees in different geographical, seasonal and colony contexts creating a broad range of hive conditions. We measured their life-history traits and notably assessed whether lifespan is influenced by pre-foraging flight experience. Our results show that the age at the first flight and onset of foraging are critical factors that determine, to a large extent, lifespan. Most importantly, our results indicate that a large proportion (40%) of the bees die during pre-foraging stage, and for those surviving, the elapsed time and flight experience between the first flight and the onset of foraging is of paramount importance to maximize the number of days spent foraging. Once in the foraging stage, individuals experience a constant mortality risk of 9% and 36% per hour of foraging and per foraging day, respectively. In conclusion, the pre-foraging stage during which bees perform orientation flights is a critical driver of bee lifespan. We believe these data on the natural mortality risks in honeybee workers will help assess the impact of anthropogenic pressures on bees.
Collapse
Affiliation(s)
- Alberto Prado
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, UNAM Querétaro, Querétaro, Mexico
| | - Fabrice Requier
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Didier Crauser
- INRAE, Abeilles and Environnement, 84914 Avignon, France
| | - Yves Le Conte
- INRAE, Abeilles and Environnement, 84914 Avignon, France
| | - Vincent Bretagnolle
- Centre d'Etudes Biologiques de Chizé, CNRS and La Rochelle University, UMR 7372, 79360 Beauvoir sur Niort, France
- LTSER Zone Atelier “Plaine & Val de Sèvre”, CNRS, F-79360 Villiers-en-Bois, France
| | - Cédric Alaux
- INRAE, Abeilles and Environnement, 84914 Avignon, France
| |
Collapse
|
10
|
Smith KE, Weis D. Evaluating Spatiotemporal Resolution of Trace Element Concentrations and Pb Isotopic Compositions of Honeybees and Hive Products as Biomonitors for Urban Metal Distribution. GEOHEALTH 2020; 4:e2020GH000264. [PMID: 32671313 PMCID: PMC7340846 DOI: 10.1029/2020gh000264] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 06/01/2023]
Abstract
Assessing metal distributions in cities is an important aspect of urban environmental quality management. Western honeybees (Apis mellifera) and their products are biomonitors that can elucidate small-scale metal distribution within a city. We compare range and variations in trace element (TE) concentrations and lead (Pb) isotopic compositions of honey, bee tissue, bee pollen, and propolis collected throughout Metro Vancouver (BC, Canada). Honey, bee, and bee pollen results have similar TE and isotopic trends; samples collected in urban and industrialized areas exhibit elevated concentrations of anthropogenically influenced TE (e.g., Pb, Zn, V, and Ti) and a less radiogenic Pb isotopic composition (i.e., lower 206Pb/207Pb and elevated 208Pb/206Pb) relative to their suburban and rural counterparts. For example, 206Pb/207Pb, 208Pb/206Pb in honey range from 1.126, 2.131 and 1.184, 2.063; extremes measured in honey from urban and suburban/rural areas, respectively. Except for propolis, measured and interpolated (kriged) results in all materials reflect the immediate zoning or land use setting near the hive, providing kilometer-scale geospatial resolution, suitable for monitoring urban systems. Statistical analysis reveals that no systematic variations or intra- or inter-annual trends exist in TE concentrations or Pb isotopic compositions, including among sampling and field methods (i.e., old vs. new hive equipment and honey from the brood nest box vs. honey super). The results of this systematic study using honeybees and hive products in Metro Vancouver provide a robust, current baseline for future comparison of local land use and environmental policy change.
Collapse
Affiliation(s)
- Kate E. Smith
- Pacific Centre for Isotopic and Geochemical Research, Department of Earth, Ocean and Atmospheric SciencesUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Dominique Weis
- Pacific Centre for Isotopic and Geochemical Research, Department of Earth, Ocean and Atmospheric SciencesUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
11
|
Coulon M, Dalmon A, Di Prisco G, Prado A, Arban F, Dubois E, Ribière-Chabert M, Alaux C, Thiéry R, Le Conte Y. Interactions Between Thiamethoxam and Deformed Wing Virus Can Drastically Impair Flight Behavior of Honey Bees. Front Microbiol 2020; 11:766. [PMID: 32425910 PMCID: PMC7203464 DOI: 10.3389/fmicb.2020.00766] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/31/2020] [Indexed: 01/06/2023] Open
Abstract
Exposure to multiple stress factors is believed to contribute to honey bee colony decline. However, little is known about how co-exposure to stress factors can alter the survival and behavior of free-living honey bees in colony conditions. We therefore studied the potential interaction between a neonicotinoid pesticide, thiamethoxam, and a highly prevalent honey bee pathogen, Deformed wing virus (DWV). For this purpose, tagged bees were exposed to DWV by feeding or injection, and/or to field-relevant doses of thiamethoxam, then left in colonies equipped with optical bee counters to monitor flight activity. DWV loads and the expression of immune genes were quantified. A reduction in vitellogenin expression level was observed in DWV-injected bees and was associated with precocious onset of foraging. Combined exposure to DWV and thiamethoxam did not result in higher DWV loads compared to bees only exposed to DWV, but induced precocious foraging, increased the risk of not returning to the hive after the first flight, and decreased survival when compared to single stress exposures. We therefore provided the first evidence for deleterious interactions between DWV and thiamethoxam in natural conditions.
Collapse
Affiliation(s)
- Marianne Coulon
- INRAE, UR 406 Abeilles et Environnement, Site Agroparc, Avignon, France.,ANSES Sophia Antipolis, Unit of Honey bee Pathology, Sophia Antipolis, France
| | - Anne Dalmon
- INRAE, UR 406 Abeilles et Environnement, Site Agroparc, Avignon, France
| | - Gennaro Di Prisco
- CREA-AA, Research Centre for Agriculture and Environment, Council for Agricultural Research and Economics, Bologna, Italy.,Department of Agriculture, University of Naples "Federico II", Portici, Italy
| | - Alberto Prado
- INRAE, UR 406 Abeilles et Environnement, Site Agroparc, Avignon, France.,Escuela Nacional de Estudios Superiores Juriquilla, UNAM, Juriquilla, Mexico
| | - Florine Arban
- INRAE, UR 406 Abeilles et Environnement, Site Agroparc, Avignon, France
| | - Eric Dubois
- ANSES Sophia Antipolis, Unit of Honey bee Pathology, Sophia Antipolis, France
| | | | - Cedric Alaux
- INRAE, UR 406 Abeilles et Environnement, Site Agroparc, Avignon, France
| | - Richard Thiéry
- ANSES Sophia Antipolis, Unit of Honey bee Pathology, Sophia Antipolis, France
| | - Yves Le Conte
- INRAE, UR 406 Abeilles et Environnement, Site Agroparc, Avignon, France
| |
Collapse
|
12
|
Wintermantel D, Odoux JF, Decourtye A, Henry M, Allier F, Bretagnolle V. Neonicotinoid-induced mortality risk for bees foraging on oilseed rape nectar persists despite EU moratorium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135400. [PMID: 31836223 DOI: 10.1016/j.scitotenv.2019.135400] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
The implication of neonicotinoids in bee declines led in 2013 to an EU moratorium on three neonicotinoids in bee-attractive crops. However, neonicotinoids are frequently detected in wild flowers or untreated crops suggesting that neonicotinoids applied to cereals can spread into the environment and harm bees. Therefore, we quantified neonicotinoid residues in nectar from winter-sown oilseed rape in western France collected within the five years under the EU moratorium. We detected all three restricted neonicotinoids. Imidacloprid was detected in all years with no clear declining trend but a strong inter- and intra-annual variation and maximum concentrations exceeding reported concentrations in treated crops. No relation to non-organic winter-sown cereals was identified even though these were the only crops treated with imidacloprid, but residue levels depended on soil type and increased with rainfall. Simulating acute and chronic mortality suggests a considerable risk for nectar foraging bees. We conclude that persistent imidacloprid soil residues diffuse on a large scale in the environment and substantially contaminate a major mass-flowering crop. Despite the limitations of case-studies and risk simulations, our findings provide additional support to the recent extension of the moratorium to a permanent ban in all outdoor crops.
Collapse
Affiliation(s)
- Dimitry Wintermantel
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS & Université de La Rochelle, Villiers-en-Bois 79360, France; INRA UE 1255 APIS, Le Magneraud, CS 40052, Surgères 17700, France.
| | - Jean-François Odoux
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS & Université de La Rochelle, Villiers-en-Bois 79360, France; INRA-UNICAEN UMR 950 EVA, Université de Caen, Caen 14032, France
| | - Axel Decourtye
- ITSAP-Institut de l'Abeille, Site Agroparc, Avignon 84914, France; UMT Protection des Abeilles dans l'Environnement, Site Agroparc, Avignon 84914, France
| | - Mickaël Henry
- UMT Protection des Abeilles dans l'Environnement, Site Agroparc, Avignon 84914, France; INRA, UR406 Abeilles et Environnement, Avignon 84914, France
| | - Fabrice Allier
- ITSAP-Institut de l'Abeille, Site Agroparc, Avignon 84914, France; UMT Protection des Abeilles dans l'Environnement, Site Agroparc, Avignon 84914, France
| | - Vincent Bretagnolle
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS & Université de La Rochelle, Villiers-en-Bois 79360, France; LTSER Zone Atelier Plaine & Val de Sèvre, CNRS, Villiers-en-Bois 79360, France
| |
Collapse
|
13
|
Honey bees increase their foraging performance and frequency of pollen trips through experience. Sci Rep 2019; 9:6778. [PMID: 31043647 PMCID: PMC6494865 DOI: 10.1038/s41598-019-42677-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 04/05/2019] [Indexed: 01/10/2023] Open
Abstract
Honey bee foragers must supply their colony with a balance of pollen and nectar to sustain optimal colony development. Inter-individual behavioural variability among foragers is observed in terms of activity levels and nectar vs. pollen collection, however the causes of such variation are still open questions. Here we explored the relationship between foraging activity and foraging performance in honey bees (Apis mellifera) by using an automated behaviour monitoring system to record mass on departing the hive, trip duration, presence of pollen on the hind legs and mass upon return to the hive, during the lifelong foraging career of individual bees. In our colonies, only a subset of foragers collected pollen, and no bee exclusively foraged for pollen. A minority of very active bees (19% of the foragers) performed 50% of the colony’s total foraging trips, contributing to both pollen and nectar collection. Foraging performance (amount and rate of food collection) depended on bees’ individual experience (amount of foraging trips completed). We argue that this reveals an important vulnerability for these social bees since environmental stressors that alter the activity and reduce the lifespan of foragers may prevent bees ever achieving maximal performance, thereby seriously compromising the effectiveness of the colony foraging force.
Collapse
|
14
|
Charbonneau D, Poff C, Nguyen H, Shin MC, Kierstead K, Dornhaus A. Who Are the "Lazy" Ants? The Function of Inactivity in Social Insects and a Possible Role of Constraint: Inactive Ants Are Corpulent and May Be Young and/or Selfish. Integr Comp Biol 2018; 57:649-667. [PMID: 28957517 DOI: 10.1093/icb/icx029] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Social insect colonies are commonly thought of as highly organized and efficient complex systems, yet high levels of worker inactivity are common. Although consistently inactive workers have been documented across many species, very little is known about the potential function or costs associated with this behavior. Here we ask what distinguishes these "lazy" individuals from their nestmates. We obtained a large set of behavioral and morphological data about individuals, and tested for consistency with the following evolutionary hypotheses: that inactivity results from constraint caused by worker (a) immaturity or (b) senescence; that (c) inactive workers are reproducing; that inactive workers perform a cryptic task such as (d) acting as communication hubs or (e) food stores; and that (f) inactive workers represent the "slow-paced" end of inter-worker variation in "pace-of-life." We show that inactive workers walk more slowly, have small spatial fidelity zones near the nest center, are more corpulent, are isolated in colony interaction networks, have the smallest behavioral repertoires, and are more likely to have oocytes than other workers. These results are consistent with the hypotheses that inactive workers are immature and/or storing food for the colony; they suggest that workers are not inactive as a consequence of senescence, and that they are not acting as communication hubs. The hypotheses listed above are not mutually exclusive, and likely form a "syndrome" of behaviors common to inactive social insect workers. Their simultaneous contribution to inactivity may explain the difficulty in finding a simple answer to this deceptively simple question.
Collapse
Affiliation(s)
- Daniel Charbonneau
- Graduate Interdisciplinary Program in Entomology and Insect Science, University of Arizona, Biological Sciences West, 1041 East Lowell, Room 235, Tucson, AZ 85721, USA
| | - Corey Poff
- Mathematics and Computer Science Department, Davidson College, 405 N. Main Street, Davidson, NC 28036, USA
| | - Hoan Nguyen
- Department of Computer Sciences, College of Computing and Informatics, University of North Carolina Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA
| | - Min C Shin
- Department of Computer Sciences, College of Computing and Informatics, University of North Carolina Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA
| | - Karen Kierstead
- Department of Ecology and Evolutionary Biology, University of Arizona, 1041 E Lowell Street, Tucson, AZ 85721, USA
| | - Anna Dornhaus
- Department of Ecology and Evolutionary Biology, University of Arizona, 1041 E Lowell Street, Tucson, AZ 85721, USA
| |
Collapse
|
15
|
Dukas R. Cognitive innovations and the evolutionary biology of expertise. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160427. [PMID: 29061899 PMCID: PMC5665814 DOI: 10.1098/rstb.2016.0427] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2017] [Indexed: 12/13/2022] Open
Abstract
Animal life can be perceived as the selective use of information for maximizing survival and reproduction. All organisms including bacteria and protists rely on genetic networks to build and modulate sophisticated structures and biochemical mechanisms for perceiving information and responding to environmental changes. Animals, however, have gone through a series of innovations that dramatically increased their capacity to acquire, retain and act upon information. Multicellularity was associated with the evolution of the nervous system, which took over many tasks of internal communication and coordination. This paved the way for the evolution of learning, initially based on individual experience and later also via social interactions. The increased importance of social learning also led to the evolution of language in a single lineage. Individuals' ability to dramatically increase performance via learning may have led to an evolutionary cycle of increased lifespan and greater investment in cognitive abilities, as well as in the time necessary for the development and refinement of expertise. We still know little, however, about the evolutionary biology, genetics and neurobiological mechanisms that underlie such expertise and its development.This article is part of the themed issue 'Process and pattern in innovations from cells to societies'.
Collapse
Affiliation(s)
- Reuven Dukas
- Animal Behaviour Group, Department of Psychology, Neuroscience and Behaviour, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| |
Collapse
|
16
|
Cervoni MS, Cardoso-Júnior CAM, Craveiro G, Souza ADO, Alberici LC, Hartfelder K. Mitochondrial capacity, oxidative damage and hypoxia gene expression are associated with age-related division of labor in honey bee ( Apis mellifera L.) workers. ACTA ACUST UNITED AC 2017; 220:4035-4046. [PMID: 28912256 DOI: 10.1242/jeb.161844] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/07/2017] [Indexed: 12/30/2022]
Abstract
During adult life, honey bee workers undergo a succession of behavioral states. Nurse bees perform tasks inside the nest, and when they are about 2-3 weeks old they initiate foraging. This switch is associated with alterations in diet, and with the levels of juvenile hormone and vitellogenin circulating in hemolymph. It is not clear whether this behavioral maturation involves major changes at the cellular level, such as mitochondrial activity and the redox environment in the head, thorax and abdomen. Using high-resolution respirometry, biochemical assays and RT-qPCR, we evaluated the association of these parameters with this behavioral change. We found that tissues from the head and abdomen of nurses have a higher oxidative phosphorylation capacity than those of foragers, while for the thorax we found the opposite situation. As higher mitochondrial activity tends to generate more H2O2, and H2O2 is known to stabilize HIF-1α, this would be expected to stimulate hypoxia signaling. The positive correlation that we observed between mitochondrial activity and hif-1α gene expression in abdomen and head tissue of nurses would be in line with this hypothesis. Higher expression of antioxidant enzyme genes was observed in foragers, which could explain their low levels of protein carbonylation. No alterations were seen in nitric oxide (NO) levels, suggesting that NO signaling is unlikely to be involved in behavioral maturation. We conclude that the behavioral change seen in honey bee workers is reflected in differential mitochondrial activities and redox parameters, and we consider that this can provide insights into the underlying aging process.
Collapse
Affiliation(s)
- Mário S Cervoni
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Carlos A M Cardoso-Júnior
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Giovana Craveiro
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Anderson de O Souza
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Luciane C Alberici
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Klaus Hartfelder
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
17
|
LaLone CA, Villeneuve DL, Wu-Smart J, Milsk RY, Sappington K, Garber KV, Housenger J, Ankley GT. Weight of evidence evaluation of a network of adverse outcome pathways linking activation of the nicotinic acetylcholine receptor in honey bees to colony death. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 584-585:751-775. [PMID: 28126277 PMCID: PMC6156782 DOI: 10.1016/j.scitotenv.2017.01.113] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 04/14/2023]
Abstract
Ongoing honey bee (Apis mellifera) colony losses are of significant international concern because of the essential role these insects play in pollinating crops. Both chemical and non-chemical stressors have been implicated as possible contributors to colony failure; however, the potential role(s) of commonly-used neonicotinoid insecticides has emerged as particularly concerning. Neonicotinoids act on the nicotinic acetylcholine receptors (nAChRs) in the central nervous system to eliminate pest insects. However, mounting evidence indicates that neonicotinoids also may adversely affect beneficial pollinators, such as the honey bee, via impairments on learning and memory, and ultimately foraging success. The specific mechanisms linking activation of the nAChR to adverse effects on learning and memory are uncertain. Additionally, clear connections between observed impacts on individual bees and colony level effects are lacking. The objective of this review was to develop adverse outcome pathways (AOPs) as a means to evaluate the biological plausibility and empirical evidence supporting (or refuting) the linkage between activation of the physiological target site, the nAChR, and colony level consequences. Potential for exposure was not a consideration in AOP development and therefore this effort should not be considered a risk assessment. Nonetheless, development of the AOPs described herein has led to the identification of research gaps which, for example, may be of high priority in understanding how perturbation of pathways involved in neurotransmission can adversely affect normal colony functions, causing colony instability and subsequent bee population failure. A putative AOP network was developed, laying the foundation for further insights as to the role of combined chemical and non-chemical stressors in impacting bee populations. Insights gained from the AOP network assembly, which more realistically represents multi-stressor impacts on honey bee colonies, are promising toward understanding common sensitive nodes in key biological pathways and identifying where mitigation strategies may be focused to reduce colony losses.
Collapse
Affiliation(s)
- Carlie A LaLone
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA.
| | - Daniel L Villeneuve
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA
| | - Judy Wu-Smart
- University of Nebraska-Lincoln, Department of Entomology, 105A Entomology Hall, Lincoln, NE 68583, USA
| | - Rebecca Y Milsk
- ORISE Research Participation Program, U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA
| | - Keith Sappington
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington D.C. 20460, USA
| | - Kristina V Garber
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington D.C. 20460, USA
| | - Justin Housenger
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington D.C. 20460, USA
| | - Gerald T Ankley
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA
| |
Collapse
|
18
|
Van Nest BN, Wagner AE, Marrs GS, Fahrbach SE. Volume and density of microglomeruli in the honey bee mushroom bodies do not predict performance on a foraging task. Dev Neurobiol 2017; 77:1057-1071. [PMID: 28245532 DOI: 10.1002/dneu.22492] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 02/17/2017] [Accepted: 02/18/2017] [Indexed: 12/17/2022]
Abstract
The mushroom bodies (MBs) are insect brain regions important for sensory integration, learning, and memory. In adult worker honey bees (Apis mellifera), the volume of neuropil associated with the MBs is larger in experienced foragers compared with hive bees and less experienced foragers. In addition, the characteristic synaptic structures of the calycal neuropils, the microglomeruli, are larger but present at lower density in 35-day-old foragers relative to 1-day-old workers. Age- and experience-based changes in plasticity of the MBs are assumed to support performance of challenging tasks, but the behavioral consequences of brain plasticity in insects are rarely examined. In this study, foragers were recruited from a field hive to a patch comprising two colors of otherwise identical artificial flowers. Flowers of one color contained a sucrose reward mimicking nectar; flowers of the second were empty. Task difficulty was adjusted by changing flower colors according to the principle of honey bee color vision space. Microglomerular volume and density in the lip (olfactory inputs) and collar (visual inputs) compartments of the MB calyces were analyzed using anti-synapsin I immunolabeling and laser scanning confocal microscopy. Foragers displayed significant variation in microglomerular volume and density, but no correlation was found between these synaptic attributes and foraging performance. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1057-1071, 2017.
Collapse
Affiliation(s)
- Byron N Van Nest
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina.,Wake Forest School of Medicine, Neuroscience Program, Winston-Salem, North Carolina.,Center for Molecular Communication and Signaling, Wake Forest University, Winston-Salem, North Carolina
| | - Ashley E Wagner
- Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee
| | - Glen S Marrs
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina.,Wake Forest School of Medicine, Neuroscience Program, Winston-Salem, North Carolina.,Center for Molecular Communication and Signaling, Wake Forest University, Winston-Salem, North Carolina
| | - Susan E Fahrbach
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina.,Wake Forest School of Medicine, Neuroscience Program, Winston-Salem, North Carolina.,Center for Molecular Communication and Signaling, Wake Forest University, Winston-Salem, North Carolina
| |
Collapse
|
19
|
Dosselli R, Grassl J, Carson A, Simmons LW, Baer B. Flight behaviour of honey bee (Apis mellifera) workers is altered by initial infections of the fungal parasite Nosema apis. Sci Rep 2016; 6:36649. [PMID: 27827404 PMCID: PMC5101476 DOI: 10.1038/srep36649] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 10/19/2016] [Indexed: 11/09/2022] Open
Abstract
Honey bees (Apis mellifera) host a wide range of parasites, some being known contributors towards dramatic colony losses as reported over recent years. To counter parasitic threats, honey bees possess effective immune systems. Because immune responses are predicted to cause substantial physiological costs for infected individuals, they are expected to trade off with other life history traits that ultimately affect the performance and fitness of the entire colony. Here, we tested whether the initial onset of an infection negatively impacts the flight behaviour of honey bee workers, which is an energetically demanding behaviour and a key component of foraging activities. To do this, we infected workers with the widespread fungal pathogen Nosema apis, which is recognised and killed by the honey bee immune system. We compared their survival and flight behaviour with non-infected individuals from the same cohort and colony using radio frequency identification tags (RFID). We found that over a time frame of four days post infection, Nosema did not increase mortality but workers quickly altered their flight behaviour and performed more flights of shorter duration. We conclude that parasitic infections influence foraging activities, which could reduce foraging ranges of colonies and impact their ability to provide pollination services.
Collapse
Affiliation(s)
- Ryan Dosselli
- Centre for Integrative Bee Research (CIBER), ARC Centre of Excellence in Plant Energy Biology, Bayliss Building (M316), The University of Western Australia, Crawley WA 6009, Australia
| | - Julia Grassl
- Centre for Integrative Bee Research (CIBER), ARC Centre of Excellence in Plant Energy Biology, Bayliss Building (M316), The University of Western Australia, Crawley WA 6009, Australia
| | - Andrew Carson
- Centre for Integrative Bee Research (CIBER), ARC Centre of Excellence in Plant Energy Biology, Bayliss Building (M316), The University of Western Australia, Crawley WA 6009, Australia
- Centre for Evolutionary Biology, School of Animal Biology (M092), The University of Western Australia, Crawley WA 6009, Australia
| | - Leigh W. Simmons
- Centre for Evolutionary Biology, School of Animal Biology (M092), The University of Western Australia, Crawley WA 6009, Australia
| | - Boris Baer
- Centre for Integrative Bee Research (CIBER), ARC Centre of Excellence in Plant Energy Biology, Bayliss Building (M316), The University of Western Australia, Crawley WA 6009, Australia
| |
Collapse
|
20
|
Micas AFD, Ferreira GA, Laure HJ, Rosa JC, Bitondi MMG. PROTEINS OF THE INTEGUMENTARY SYSTEM OF THE HONEYBEE, Apis mellifera. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2016; 93:3-24. [PMID: 27160491 DOI: 10.1002/arch.21336] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The integument of insects and other arthropods is composed of an inner basal lamina coated by the epidermis, which secretes the bulk of the outer integument layer, the cuticle. The genome sequencing of several insect species has allowed predicting classes of proteins integrating the cuticle. However, only a small proportion of them, as well as other proteins in the integumentary system, have been validated. Using two-dimensional gel electrophoresis coupled with mass spectrometry, we identified 45 different proteins in a total of 112 selected gel spots derived from thoracic integument samples of developing honeybee workers, including 14 cuticular proteins (AmelCPR 3, AmelCPR 12, AmelCPR 16, AmelCPR 27, apidermin 2, apidermin 3, endocuticle structural glycoprotein SgAbd-8-like, LOC100577363, LOC408365, LOC413679, LOC725454, LOC100576916, LOC725838, and peritrophin 3-C analogous). Gene ontology functional analysis revealed that the higher proportions of the identified proteins have molecular functions related to catalytic and structural molecule activities, are involved in metabolic biological processes, and pertain to the protein class of structural or cytoskeletal proteins and hydrolases. It is noteworthy that 26.7% of the identified proteins, including five cuticular proteins, were revealed as protein species resulting from allelic isoforms or derived from posttranslational modifications. Also, 66.7% of the identified cuticular proteins were expressed in more than one developmental phase, thus indicating that they are part of the larval, pupal, and adult cuticle. Our data provide experimental support for predicted honeybee gene products and new information on proteins expressed in the developing integument.
Collapse
Affiliation(s)
- André Fernando Ditondo Micas
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Germano Aguiar Ferreira
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Centro de Química de Proteínas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Helen Julie Laure
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Centro de Química de Proteínas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - José Cesar Rosa
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Centro de Química de Proteínas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Márcia Maria Gentile Bitondi
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
21
|
Campbell JB, Nath R, Gadau J, Fox T, DeGrandi-Hoffman G, Harrison JF. The fungicide Pristine® inhibits mitochondrial function in vitro but not flight metabolic rates in honey bees. JOURNAL OF INSECT PHYSIOLOGY 2016; 86:11-16. [PMID: 26685059 DOI: 10.1016/j.jinsphys.2015.12.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/16/2015] [Accepted: 12/09/2015] [Indexed: 06/05/2023]
Abstract
Honey bees and other pollinators are exposed to fungicides that act by inhibiting fungal mitochondria. Here we test whether a common fungicide (Pristine®) inhibits the function of mitochondria of honeybees, and whether consumption of ecologically-realistic concentrations can cause negative effects on the mitochondria of flight muscles, or the capability for flight, as judged by CO2 emission rates and thorax temperatures during flight. Direct exposure of mitochondria to Pristine® levels above 5 ppm strongly inhibited mitochondrial oxidation rates in vitro. However, bees that consumed pollen containing Pristine® at ecologically-realistic concentrations (≈ 1 ppm) had normal flight CO2 emission rates and thorax temperatures. Mitochondria isolated from the flight muscles of the Pristine®-consuming bees had higher state 3 oxygen consumption rates than control bees, suggesting that possibly Pristine®-consumption caused compensatory changes in mitochondria. It is likely that the lack of a strong functional effect of Pristine®-consumption on flight performance and the in vitro function of flight muscle mitochondria results from maintenance of Pristine® levels in the flight muscles at much lower levels than occur in the food, probably due to metabolism and detoxification. As Pristine® has been shown to negatively affect feeding rates and protein digestion of honey bees, it is plausible that Pristine® consumption negatively affects gut wall function (where mitochondria may be exposed to higher concentrations of Pristine®).
Collapse
Affiliation(s)
- Jacob B Campbell
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
| | - Rachna Nath
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
| | - Juergen Gadau
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
| | - Trevor Fox
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
| | | | - Jon F Harrison
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
22
|
Wong SC, Oksanen A, Mattila ALK, Lehtonen R, Niitepõld K, Hanski I. Effects of ambient and preceding temperatures and metabolic genes on flight metabolism in the Glanville fritillary butterfly. JOURNAL OF INSECT PHYSIOLOGY 2016; 85:23-31. [PMID: 26658138 PMCID: PMC4739062 DOI: 10.1016/j.jinsphys.2015.11.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/26/2015] [Accepted: 11/30/2015] [Indexed: 06/05/2023]
Abstract
Flight is essential for foraging, mate searching and dispersal in many insects, but flight metabolism in ectotherms is strongly constrained by temperature. Thermal conditions vary greatly in natural populations and may hence restrict fitness-related activities. Working on the Glanville fritillary butterfly (Melitaea cinxia), we studied the effects of temperature experienced during the first 2 days of adult life on flight metabolism, genetic associations between flight metabolic rate and variation in candidate metabolic genes, and genotype-temperature interactions. The maximal flight performance was reduced by 17% by 2 days of low ambient temperature (15 °C) prior to the flight trial, mimicking conditions that butterflies commonly encounter in nature. A SNP in phosphoglucose isomerase (Pgi) had a significant association on flight metabolic rate in males and a SNP in triosephosphate isomerase (Tpi) was significantly associated with flight metabolic rate in females. In the Pgi SNP, AC heterozygotes had higher flight metabolic rate than AA homozygotes following low preceding temperature, but the trend was reversed following high preceding temperature, consistent with previous results on genotype-temperature interaction for this SNP. We suggest that these results on 2-day old butterflies reflect thermal effect on the maturation of flight muscles. These results highlight the consequences of variation in thermal conditions on the time scale of days, and they contribute to a better understanding of the complex dynamics of flight metabolism and flight-related activities under conditions that are relevant for natural populations living under variable thermal conditions.
Collapse
Affiliation(s)
- Swee Chong Wong
- Department of Biosciences, P.O. Box 65, 00014 University of Helsinki, Finland.
| | - Alma Oksanen
- Department of Biosciences, P.O. Box 65, 00014 University of Helsinki, Finland; Department of Biology, P.O. Box 111, 80101 University of Eastern Finland, Joensuu, Finland
| | - Anniina L K Mattila
- Department of Biosciences, P.O. Box 65, 00014 University of Helsinki, Finland
| | - Rainer Lehtonen
- Department of Biosciences, P.O. Box 65, 00014 University of Helsinki, Finland; Institute of Biomedicine & Genome-Scale Biology Research Program Biomedicum 1, P.O. Box 63, 00014 University of Helsinki, Finland
| | - Kristjan Niitepõld
- Department of Biosciences, P.O. Box 65, 00014 University of Helsinki, Finland
| | - Ilkka Hanski
- Department of Biosciences, P.O. Box 65, 00014 University of Helsinki, Finland
| |
Collapse
|
23
|
Patterson EM, Krzyszczyk E, Mann J. Age-specific foraging performance and reproduction in tool-using wild bottlenose dolphins. Behav Ecol 2015. [DOI: 10.1093/beheco/arv164] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
24
|
Statement on the suitability of the BEEHAVE model for its potential use in a regulatory context and for the risk assessment of multiple stressors in honeybees at the landscape level. EFSA J 2015. [DOI: 10.2903/j.efsa.2015.4125] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
25
|
Chang LH, Barron AB, Cheng K. Effects of the juvenile hormone analogue methoprene on rate of behavioural development, foraging performance and navigation in honey bees (Apis mellifera). ACTA ACUST UNITED AC 2015; 218:1715-24. [PMID: 25883376 DOI: 10.1242/jeb.119198] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/08/2015] [Indexed: 12/30/2022]
Abstract
Worker honey bees change roles as they age as part of a hormonally regulated process of behavioural development that ends with a specialised foraging phase. The rate of behavioural development is highly plastic and responsive to changes in colony condition such that forager losses, disease or nutritional stresses accelerate behavioural development and cause an early onset of foraging in workers. It is not clear to what degree the behavioural development of workers can be accelerated without there being a cost in terms of reduced foraging performance. Here, we compared the foraging performance of bees induced to accelerate their behavioural development by treatment with the juvenile hormone analogue methoprene with that of controls that developed at a normal rate. Methoprene treatment accelerated the onset of both flight and foraging behaviour in workers, but it also reduced foraging span, the total time spent foraging and the number of completed foraging trips. Methoprene treatment did not alter performance in a short-range navigation task, however. These data indicate a limitation to the physiological plasticity of bees, and a trade off between forager performance and the speed at which bees begin foraging. Chronic stressors will be expected to reduce the mean age of the foraging force, and therefore also reduce the efficiency of the foraging force. This interaction may explain why honey bee colonies react to sustained stressors with non-linear population decline.
Collapse
Affiliation(s)
- Lun-Hsien Chang
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Andrew B Barron
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Ken Cheng
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
26
|
Ransberry VE, Morash AJ, Blewett TA, Wood CM, McClelland GB. Oxidative stress and metabolic responses to copper in freshwater- and seawater-acclimated killifish, Fundulus heteroclitus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 161:242-252. [PMID: 25731683 DOI: 10.1016/j.aquatox.2015.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 02/18/2015] [Accepted: 02/20/2015] [Indexed: 06/04/2023]
Abstract
In freshwater (FW), many of the main mechanisms of copper (Cu) toxicity have been characterized; however, toxicity mechanisms in seawater (SW) are less well understood. We investigated the effects of salinity on Cu-induced oxidative stress and metabolic responses in adult killifish, Fundulus heteroclitus. We exposed FW and SW-acclimated killifish to either low Cu (LC, 50 μg/L) or high Cu (HC, 200 μg/L) for 96 h and compared them to controls (CTRL) under the same salinities without added Cu. Cu exerted minimal influence on tissue ion levels in either FW or SW. Salinity generally protected against Cu bioaccumulation in the gills and liver, but not in the carcass. Hematocrit (Hct) and hemoglobin (Hb) levels were increased by LC and HC in both FW and SW, and blood lactate was reduced in FW-killifish exposed to LC and HC. Rates of oxygen consumption were similar across treatments. Salinity reduced Cu load in gill, liver and intestine at LC but only in the gills at HC. In general, Cu increased gill, liver, and intestine catalase (CAT) activity, while superoxide dismutase (SOD) either decreased or remained unchanged depending on tissue-type. These changes did not directly correlate with levels of protein carbonyls, used as an index of oxidative stress. Cu-induced changes in carbohydrate metabolic enzymes were low across tissues and the effect of salinity was variable. Thus, while salinity clearly protects against Cu bioaccumulation in some tissues, it is unclear whether salinity protects against Cu-induced oxidative stress and metabolic responses.
Collapse
Affiliation(s)
| | - Andrea J Morash
- CSIRO Marine and Atmospheric Research, GPO Box 1538, Hobart, TAS 7001, Australia
| | - Tamzin A Blewett
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Chris M Wood
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Zoology, University of British Columbia, Vancouver, B.C. V6T 1Z4, Canada
| | - Grant B McClelland
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
27
|
Rapid behavioral maturation accelerates failure of stressed honey bee colonies. Proc Natl Acad Sci U S A 2015; 112:3427-32. [PMID: 25675508 DOI: 10.1073/pnas.1422089112] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Many complex factors have been linked to the recent marked increase in honey bee colony failure, including pests and pathogens, agrochemicals, and nutritional stressors. It remains unclear, however, why colonies frequently react to stressors by losing almost their entire adult bee population in a short time, resulting in a colony population collapse. Here we examine the social dynamics underlying such dramatic colony failure. Bees respond to many stressors by foraging earlier in life. We manipulated the demography of experimental colonies to induce precocious foraging in bees and used radio tag tracking to examine the consequences of precocious foraging for their performance. Precocious foragers completed far fewer foraging trips in their life, and had a higher risk of death in their first flights. We constructed a demographic model to explore how this individual reaction of bees to stress might impact colony performance. In the model, when forager death rates were chronically elevated, an increasingly younger forager force caused a positive feedback that dramatically accelerated terminal population decline in the colony. This resulted in a breakdown in division of labor and loss of the adult population, leaving only brood, food, and few adults in the hive. This study explains the social processes that drive rapid depopulation of a colony, and we explore possible strategies to prevent colony failure. Understanding the process of colony failure helps identify the most effective strategies to improve colony resilience.
Collapse
|
28
|
Lane SJ, Frankino WA, Elekonich MM, Roberts SP. The effects of age and lifetime flight behavior on flight capacity in Drosophila melanogaster. ACTA ACUST UNITED AC 2015; 217:1437-43. [PMID: 24790098 DOI: 10.1242/jeb.095646] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The effects of flight behavior on physiology and senescence may be profound in insects because of the extremely high metabolic costs of flight. Flight capacity in insects decreases with age; in contrast, limiting flight behavior extends lifespan and slows the age-related loss of antioxidant capacity and accumulation of oxidative damage in flight muscles. In this study, we tested the effects of age and lifetime flight behavior on flight capacity by measuring wingbeat frequency, the ability to fly in a hypo-dense gas mixture, and metabolic rate in Drosophila melanogaster. Specifically, 5-day-old adult flies were separated into three life-long treatments: (1) those not allowed to fly (no flight), (2) those allowed - but not forced - to fly (voluntary flight) and (3) those mechanically stimulated to fly (induced flight). Flight capacity senesced earliest in flies from the no-flight treatment, followed by the induced-flight group and then the voluntary flight group. Wingbeat frequency senesced with age in all treatment groups, but was most apparent in the voluntary- and induced-flight groups. Metabolic rate during agitated flight senesced earliest and most rapidly in the induced flight group, and was low and uniform throughout age in the no-flight group. Early senescence in the induced-flight group was likely due to the acceleration of deleterious aging phenomena such as the rapid accumulation of damage at the cellular level, while the early loss of flight capacity and low metabolic rates in the no-flight group demonstrate that disuse effects can also significantly alter senescence patterns of whole-insect performance.
Collapse
Affiliation(s)
- Steven J Lane
- Department of Biology, Central Michigan University, Mt Pleasant, MI 48858, USA
| | | | | | | |
Collapse
|
29
|
Vance JT, Altshuler DL, Dickson WB, Dickinson MH, Roberts SP. Hovering flight in the honeybee Apis mellifera: kinematic mechanisms for varying aerodynamic forces. Physiol Biochem Zool 2014; 87:870-81. [PMID: 25461650 DOI: 10.1086/678955] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
During hovering flight, animals can increase the wing velocity and therefore the net aerodynamic force per stroke by increasing wingbeat frequency, wing stroke amplitude, or both. The magnitude and orientation of aerodynamic forces are also influenced by the geometric angle of attack, timing of wing rotation, wing contact, and pattern of deviation from the primary stroke plane. Most of the kinematic data available for flying animals are average values for wing stroke amplitude and wingbeat frequency because these features are relatively easy to measure, but it is frequently suggested that the more subtle and difficult-to-measure features of wing kinematics can explain variation in force production for different flight behaviors. Here, we test this hypothesis with multicamera high-speed recording and digitization of wing kinematics of honeybees (Apis mellifera) hovering and ascending in air and hovering in a hypodense gas (heliox: 21% O2, 79% He). Bees employed low stroke amplitudes (86.7° ± 7.9°) and high wingbeat frequencies (226.8 ± 12.8 Hz) when hovering in air. When ascending in air or hovering in heliox, bees increased stroke amplitude by 30%-45%, which yielded a much higher wing tip velocity relative to that during simple hovering in air. Across the three flight conditions, there were no statistical differences in the amplitude of wing stroke deviation, minimum and stroke-averaged geometric angle of attack, maximum wing rotation velocity, or even wingbeat frequency. We employed a quasi-steady aerodynamic model to estimate the effects of wing tip velocity and geometric angle of attack on lift and drag. Lift forces were sensitive to variation in wing tip velocity, whereas drag was sensitive to both variation in wing tip velocity and angle of attack. Bees utilized kinematic patterns that did not maximize lift production but rather maintained lift-to-drag ratio. Thus, our data indicate that, at least for honeybees, the overall time course of wing angles is generally preserved and modulation of wing tip velocity is sufficient to perform a diverse set of vertical flight behaviors.
Collapse
Affiliation(s)
- Jason T Vance
- Department of Biology, College of Charleston, Charleston, South Carolina 29424; 2Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; 3IO Rodeo, Pasadena, California 91101; 4Department of Biology, University of Washington, Seattle, Washington 98195; 5Department of Biology, Central Michigan University, Mount Pleasant, Michigan 48859
| | | | | | | | | |
Collapse
|
30
|
Monceau K, Bonnard O, Moreau J, Thiéry D. Spatial distribution of Vespa velutina individuals hunting at domestic honeybee hives: heterogeneity at a local scale. INSECT SCIENCE 2014; 21:765-774. [PMID: 24519841 DOI: 10.1111/1744-7917.12090] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/27/2013] [Indexed: 06/03/2023]
Abstract
Since its recent introduction into Europe, the yellow-legged hornet, Vespa velutina, has become a major predator of the domestic honeybee, Apis mellifera, but little is known about its hunting behavior. We studied V. velutina hunting behavior by a capture-mark-recapture procedure in an experimental apiary. A total of 360 hornets were captured and tagged, and we determined: (i) the number of hornets visiting the apiary and the changes in time, (ii) the average number of individual visits per half-day and the time elapsed between consecutive recaptures, and (iii) the individual and global distribution of the hornets in the apiary. More than 50% of the marked hornets were recaptured at least once, this increased to 74% in considering the first marked individuals. We estimated 350 hornets visiting the patch daily with at least 1 visit per half-day. The number of marked hornets decreased over time while the number of unmarked ones increased, suggesting a turnover of individuals. The reduction of the delay between consecutive visits indicates that hornets became more efficient over time. Most of the hornets (88%) were recaptured in front of different hives but, overall, the global distribution was aggregative. Hornets were mainly recaptured in front of 1 hive which was neither the smallest nor the biggest colony, suggesting that the major cue used by hornets is not the amount of food. We hypothesize that the defensive behavior of the honeybee colony could explain our results which may be promising to further studies.
Collapse
Affiliation(s)
- Karine Monceau
- INRA, UMR1065 Santé et Agroécologie du Vignoble, F-33883, Villenave d'Ornon; ISVV, UMR1065 Santé et Agroécologie du Vignoble, Bordeaux Sciences Agro, Université de Bordeaux, F-33883, Villenave d'Ornon; Equipe Ecologie Evolutive, UMR 6282 Biogéosciences, 6 Bd Gabriel, Université de Bourgogne, F-21000, Dijon, France
| | | | | | | |
Collapse
|
31
|
Automated monitoring reveals extreme interindividual variation and plasticity in honeybee foraging activity levels. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2014.06.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
32
|
|
33
|
Guidance on the risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees). EFSA J 2013. [DOI: 10.2903/j.efsa.2013.3295] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
34
|
Hsu CY, Chan YP. The use of honeybees reared in a thermostatic chamber for aging studies. AGE (DORDRECHT, NETHERLANDS) 2013; 35:149-158. [PMID: 22124884 PMCID: PMC3543731 DOI: 10.1007/s11357-011-9344-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 11/07/2011] [Indexed: 05/31/2023]
Abstract
Honeybees (Apis mellifera) are an attractive model system for studying aging. However, the aging level of worker honeybees from the field hive is in dispute. To eliminate the influence of task performance and confirm the relationship between chronological age and aging, we reared newly emerged workers in a thermostat at 34°C throughout their lives. A survivorship curve was obtained, indicating that workers can be reared away from the field hive, and the only difference between these workers is age. To confirm that these workers can be used for aging studies, we assayed age-related molecules in the trophocytes and fat cells of young and old workers. Old workers expressed more senescence-associated β-galactosidase, lipofuscin granules, lipid peroxidation, and protein oxidation than young workers. Furthermore, cellular energy metabolism molecules were also assayed. Old workers exhibited less ATP concentration, β-oxidation, and microtubule-associated protein light chain 3 (LC3) than young workers. These results demonstrate that honeybees reared in a thermostatic chamber can be used for aging studies and cellular energy metabolism in the trophocytes and fat cells of workers changes with advancing age.
Collapse
Affiliation(s)
- Chin-Yuan Hsu
- Department of Biomedical Sciences, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, Taiwan.
| | | |
Collapse
|
35
|
Skandalis DA, Darveau CA. Morphological and Physiological Idiosyncrasies Lead to Interindividual Variation in Flight Metabolic Rate in Worker Bumblebees (Bombus impatiens). Physiol Biochem Zool 2012; 85:657-70. [DOI: 10.1086/665568] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
36
|
Constant N, Santorelli LA, Lopes JFS, Hughes WOH. The effects of genotype, caste, and age on foraging performance in leaf-cutting ants. Behav Ecol 2012. [DOI: 10.1093/beheco/ars116] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
37
|
Dobrin SE, Fahrbach SE. Visual associative learning in restrained honey bees with intact antennae. PLoS One 2012; 7:e37666. [PMID: 22701575 PMCID: PMC3368934 DOI: 10.1371/journal.pone.0037666] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 04/27/2012] [Indexed: 11/19/2022] Open
Abstract
A restrained honey bee can be trained to extend its proboscis in response to the pairing of an odor with a sucrose reward, a form of olfactory associative learning referred to as the proboscis extension response (PER). Although the ability of flying honey bees to respond to visual cues is well-established, associative visual learning in restrained honey bees has been challenging to demonstrate. Those few groups that have documented vision-based PER have reported that removing the antennae prior to training is a prerequisite for learning. Here we report, for a simple visual learning task, the first successful performance by restrained honey bees with intact antennae. Honey bee foragers were trained on a differential visual association task by pairing the presentation of a blue light with a sucrose reward and leaving the presentation of a green light unrewarded. A negative correlation was found between age of foragers and their performance in the visual PER task. Using the adaptations to the traditional PER task outlined here, future studies can exploit pharmacological and physiological techniques to explore the neural circuit basis of visual learning in the honey bee.
Collapse
Affiliation(s)
- Scott E Dobrin
- Neuroscience Program, Wake Forest University Graduate School of Arts and Sciences, Winston-Salem, North Carolina, United States of America.
| | | |
Collapse
|
38
|
Hernández LG, Lu B, da Cruz GCN, Calábria LK, Martins NF, Togawa R, Espindola FS, Yates JR, Cunha RB, de Sousa MV. Worker honeybee brain proteome. J Proteome Res 2012; 11:1485-93. [PMID: 22181811 DOI: 10.1021/pr2007818] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A large-scale mapping of the worker honeybee brain proteome was achieved by MudPIT. We identified 2742 proteins from forager and nurse honeybee brain samples; 17% of the total proteins were found to be differentially expressed by spectral count sampling statistics and a G-test. Sequences were compared with the EuKaryotic Orthologous Groups (KOG) catalog set using BLASTX and then categorized into the major KOG categories of most similar sequences. According to this categorization, nurse brain showed increased expression of proteins implicated in translation, ribosomal structure, and biogenesis (14.5%) compared with forager (1.8%). Experienced foragers overexpressed proteins involved in energy production and conversion, showing an extensive difference in this set of proteins (17%) in relation to the nurse subcaste (0.6%). Examples of proteins selectively expressed in each subcaste were analyzed. A comparison between these MudPIT experiments and previous 2-DE experiments revealed nine coincident proteins differentially expressed in both methodologies.
Collapse
|
39
|
Dobrin SE, Herlihy JD, Robinson GE, Fahrbach SE. Muscarinic regulation of Kenyon cell dendritic arborizations in adult worker honey bees. ARTHROPOD STRUCTURE & DEVELOPMENT 2011; 40:409-419. [PMID: 21262388 PMCID: PMC3101279 DOI: 10.1016/j.asd.2011.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 01/10/2011] [Accepted: 01/15/2011] [Indexed: 05/30/2023]
Abstract
The experience of foraging under natural conditions increases the volume of mushroom body neuropil in worker honey bees. A comparable increase in neuropil volume results from treatment of worker honey bees with pilocarpine, an agonist for muscarinic-type cholinergic receptors. A component of the neuropil growth induced by foraging experience is growth of dendrites in the collar region of the calyces. We show here, via analysis of Golgi-impregnated collar Kenyon cells with wedge arborizations, that significant increases in standard measures of dendritic complexity were also found in worker honey bees treated with pilocarpine. This result suggests that signaling via muscarinic-type receptors promotes the increase in Kenyon cell dendritic complexity associated with foraging. Treatment of worker honey bees with scopolamine, a muscarinic inhibitor, inhibited some aspects of dendritic growth. Spine density on the Kenyon cell dendrites varied with sampling location, with the distal portion of the dendritic field having greater total spine density than either the proximal or medial section. This observation may be functionally significant because of the stratified organization of projections from visual centers to the dendritic arborizations of the collar Kenyon cells. Pilocarpine treatment had no effect on the distribution of spines on dendrites of the collar Kenyon cells.
Collapse
Affiliation(s)
- Scott E Dobrin
- Neuroscience Program, Wake Forest University, Graduate School of Arts and Sciences, Winston-Salem, NC 27157, USA.
| | | | | | | |
Collapse
|
40
|
Riffell JA. The Neuroecology of a Pollinator's Buffet: Olfactory Preferences and Learning in Insect Pollinators. Integr Comp Biol 2011; 51:781-93. [DOI: 10.1093/icb/icr094] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
41
|
Skandalis DA, Roy C, Darveau CA. Behavioural, morphological, and metabolic maturation of newly emerged adult workers of the bumblebee, Bombus impatiens. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:704-711. [PMID: 21335010 DOI: 10.1016/j.jinsphys.2011.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 02/02/2011] [Accepted: 02/02/2011] [Indexed: 05/30/2023]
Abstract
Newly emerged adult holometabolous insects must still complete considerable morphological, metabolic, and neural maturation. Despite this, adults have frequently been documented to fly prior to finishing maturation and attaining peak physiological capacity. In some species, flight is limited by the unfurling of the wing, while in other species it may be limited by biochemical capacity. We charted maturation trajectories of adult bumblebee workers (Bombus impatiens) for both morphological and flight muscle metabolic capacities, and compared these to the first age at flight. Workers began regular flights as soon as two days after emergence. The unfurling of the wings was completed well before first flights and before any other studied factor, suggesting this did not initially limit flight. Wing beat frequencies, measured as a struggling response to grasping the hindlegs, were about 90% mature by two days old, and did not significantly change after three days. Conversely, by the initiation of flight, the mean enzyme maturation was only 63% completed relative to adult enzyme capacity, though specific enzyme profiles ranged from 42% to 73%. Maximum ADP-stimulated mitochondrial respiratory activity on pyruvate and proline matured along a similar time frame to glycolytic capacity, reaching its maximum three days after emergence. Bumblebees, as other adult insects, thus begin flights prior to fully maturing.
Collapse
Affiliation(s)
- Dimitri A Skandalis
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N6N5, Canada
| | | | | |
Collapse
|
42
|
|
43
|
Proteomic changes in the gills of wild-type and transgenic radiosensitive medaka following exposure to direct irradiation and to X-ray induced bystander signals. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:290-8. [DOI: 10.1016/j.bbapap.2010.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 11/03/2010] [Accepted: 11/09/2010] [Indexed: 02/05/2023]
|
44
|
Durisko Z, Shipp L, Dukas R. Effects of Experience on Short- and Long-term Foraging Performance in Bumblebees. Ethology 2010. [DOI: 10.1111/j.1439-0310.2010.01842.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Sensory allometry, foraging task specialization and resource exploitation in honeybees. Behav Ecol Sociobiol 2010. [DOI: 10.1007/s00265-010-0911-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
46
|
Vance JT, Williams JB, Elekonich MM, Roberts SP. The effects of age and behavioral development on honey bee (Apis mellifera) flight performance. ACTA ACUST UNITED AC 2009; 212:2604-11. [PMID: 19648405 DOI: 10.1242/jeb.028100] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A critical but seldom-studied component of life history theory is how behavior and age affect whole-organism performance. To address this issue we compared the flight performance of honey bees (whose behavioral development and age can be assessed independently via simple manipulations of colony demographics) between distinct behavioral castes (in-hive nurse bees vs out-of-hive foragers) and across lifespan. Variable-density gases and high-speed video were used to determine the maximum hovering flight capacity and wing kinematics of age-matched nurse bees and foragers sampled from a single-cohort colony over a period of 34 days. The transition from hive work to foraging was accompanied by a 42% decrease in body mass and a proportional increase in flight capacity (defined as the minimum gas density allowing hovering flight). The lower flight capacity of hive bees was primarily due to the fact that in air they were functioning at a near-maximal wing angular velocity due to their high body masses. Foragers were lighter and when hovering in air required a much lower wing angular velocity, which they were able to increase by 32% during maximal flight performance. Flight performance of hive bees was independent of age, but in foragers the maximal wingbeat frequency and maximal average angular velocity were lowest in precocious (7-14 day old) foragers, highest in normal-aged (15-28 day old) foragers and intermediate in foragers older than 29 days. This pattern coincides with previously described age-dependent biochemical and metabolic properties of honey bee flight muscle.
Collapse
Affiliation(s)
- Jason T Vance
- School of Life Sciences, University of Nevada, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA
| | | | | | | |
Collapse
|
47
|
Lifetime- and caste-specific changes in flight metabolic rate and muscle biochemistry of honeybees, Apis mellifera. J Comp Physiol B 2009; 180:45-55. [DOI: 10.1007/s00360-009-0386-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 06/15/2009] [Accepted: 06/17/2009] [Indexed: 12/15/2022]
|
48
|
Scheiner R, Amdam GV. Impaired tactile learning is related to social role in honeybees. ACTA ACUST UNITED AC 2009; 212:994-1002. [PMID: 19282496 DOI: 10.1242/jeb.021188] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aging is commonly accompanied by a decline in cognitive functions such as learning and memory. In social insects, aging is tightly linked to social role. The honeybee (Apis mellifera L.) offers the unique opportunity to separate chronological age from social role. In the present paper, we tested whether chronological age, social role and the duration of performing this role affect tactile learning in honeybees. We compared acquisition, retention and discrimination between foragers with short and long foraging durations and age-matched nurse bees. Our data show that chronological age is of minor importance for tactile learning, retention and discrimination whereas social role has a decisive impact. Tactile acquisition is severely impaired in bees that have foraged for more than two weeks but not in nurse bees of the same chronological age. Interestingly, neither discrimination nor retention appear to be impaired by long foraging duration. The complex associations between acquisition, discrimination and retention in bees of different social roles open up rich possibilities for future studies on the neuronal correlates of behavioural performance and underline that the honeybee has great potential as a model system in the biology of aging.
Collapse
Affiliation(s)
- Ricarda Scheiner
- Technische Universität Berlin, Institut für Okologie, FR 1-1, Franklinstr. 28/29, Berlin D-10587, Germany.
| | | |
Collapse
|
49
|
Garcia L, Saraiva Garcia CH, Calábria LK, Costa Nunes da Cruz G, Sánchez Puentes A, Báo SN, Fontes W, Ricart CAO, Salmen Espindola F, Valle de Sousa M. Proteomic Analysis of Honey Bee Brain upon Ontogenetic and Behavioral Development. J Proteome Res 2009; 8:1464-73. [DOI: 10.1021/pr800823r] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Liudy Garcia
- Mass Spectrometry Group, Physics Department, CEADEN, Havana, Cuba, Brazilian Center for Protein Research, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil, Genetic and Biochemistry Institute, Federal University of Uberlândia, Uberlândia, MG, Brazil, Department for Proteome Analysis, CIGB, Havana, Cuba, and Laboratory of Electron Microscopy, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| | - Carlos H. Saraiva Garcia
- Mass Spectrometry Group, Physics Department, CEADEN, Havana, Cuba, Brazilian Center for Protein Research, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil, Genetic and Biochemistry Institute, Federal University of Uberlândia, Uberlândia, MG, Brazil, Department for Proteome Analysis, CIGB, Havana, Cuba, and Laboratory of Electron Microscopy, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| | - Luciana Karen Calábria
- Mass Spectrometry Group, Physics Department, CEADEN, Havana, Cuba, Brazilian Center for Protein Research, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil, Genetic and Biochemistry Institute, Federal University of Uberlândia, Uberlândia, MG, Brazil, Department for Proteome Analysis, CIGB, Havana, Cuba, and Laboratory of Electron Microscopy, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| | - Gabriel Costa Nunes da Cruz
- Mass Spectrometry Group, Physics Department, CEADEN, Havana, Cuba, Brazilian Center for Protein Research, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil, Genetic and Biochemistry Institute, Federal University of Uberlândia, Uberlândia, MG, Brazil, Department for Proteome Analysis, CIGB, Havana, Cuba, and Laboratory of Electron Microscopy, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| | - Aniel Sánchez Puentes
- Mass Spectrometry Group, Physics Department, CEADEN, Havana, Cuba, Brazilian Center for Protein Research, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil, Genetic and Biochemistry Institute, Federal University of Uberlândia, Uberlândia, MG, Brazil, Department for Proteome Analysis, CIGB, Havana, Cuba, and Laboratory of Electron Microscopy, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| | - Sonia N. Báo
- Mass Spectrometry Group, Physics Department, CEADEN, Havana, Cuba, Brazilian Center for Protein Research, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil, Genetic and Biochemistry Institute, Federal University of Uberlândia, Uberlândia, MG, Brazil, Department for Proteome Analysis, CIGB, Havana, Cuba, and Laboratory of Electron Microscopy, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| | - Wagner Fontes
- Mass Spectrometry Group, Physics Department, CEADEN, Havana, Cuba, Brazilian Center for Protein Research, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil, Genetic and Biochemistry Institute, Federal University of Uberlândia, Uberlândia, MG, Brazil, Department for Proteome Analysis, CIGB, Havana, Cuba, and Laboratory of Electron Microscopy, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| | - Carlos A. O. Ricart
- Mass Spectrometry Group, Physics Department, CEADEN, Havana, Cuba, Brazilian Center for Protein Research, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil, Genetic and Biochemistry Institute, Federal University of Uberlândia, Uberlândia, MG, Brazil, Department for Proteome Analysis, CIGB, Havana, Cuba, and Laboratory of Electron Microscopy, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| | - Foued Salmen Espindola
- Mass Spectrometry Group, Physics Department, CEADEN, Havana, Cuba, Brazilian Center for Protein Research, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil, Genetic and Biochemistry Institute, Federal University of Uberlândia, Uberlândia, MG, Brazil, Department for Proteome Analysis, CIGB, Havana, Cuba, and Laboratory of Electron Microscopy, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| | - Marcelo Valle de Sousa
- Mass Spectrometry Group, Physics Department, CEADEN, Havana, Cuba, Brazilian Center for Protein Research, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil, Genetic and Biochemistry Institute, Federal University of Uberlândia, Uberlândia, MG, Brazil, Department for Proteome Analysis, CIGB, Havana, Cuba, and Laboratory of Electron Microscopy, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| |
Collapse
|
50
|
|