1
|
Bielecki J, Dam Nielsen SK, Nachman G, Garm A. Associative learning in the box jellyfish Tripedalia cystophora. Curr Biol 2023; 33:4150-4159.e5. [PMID: 37741280 DOI: 10.1016/j.cub.2023.08.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/17/2023] [Accepted: 08/18/2023] [Indexed: 09/25/2023]
Abstract
Associative learning, such as classical or operant conditioning, has never been unequivocally associated with animals outside bilatarians, e.g., vertebrates, arthropods, or mollusks. Learning modulates behavior and is imperative for survival in the vast majority of animals. Obstacle avoidance is one of several visually guided behaviors in the box jellyfish, Tripedalia cystophora Conant, 1897 (Cnidaria: Cubozoa), and it is intimately associated with foraging between prop roots in their mangrove habitat. The obstacle avoidance behavior (OAB) is a species-specific defense reaction (SSDR) for T. cystophora, so identifying such SSDR is essential for testing the learning capacity of a given animal. Using the OAB, we show that box jellyfish performed associative learning (operant conditioning). We found that the rhopalial nervous system is the learning center and that T. cystophora combines visual and mechanical stimuli during operant conditioning. Since T. cystophora has a dispersed central nervous system lacking a conventional centralized brain, our work challenges the notion that associative learning requires complex neuronal circuitry. Moreover, since Cnidaria is the sister group to Bilateria, it suggests the intriguing possibility that advanced neuronal processes, like operant conditioning, are a fundamental property of all nervous systems.
Collapse
Affiliation(s)
- Jan Bielecki
- Institute of Physiology, Kiel University, 24118 Kiel, Germany.
| | | | - Gösta Nachman
- Section of Ecology and Evolution, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Anders Garm
- Marine Biological Section, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
2
|
Chappell DR, Speiser DI. Polarization sensitivity and decentralized visual processing in an animal with a distributed visual system. J Exp Biol 2023; 226:286798. [PMID: 36714995 DOI: 10.1242/jeb.244710] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023]
Abstract
The marine mollusc Acanthopleura granulata (Mollusca; Polyplacophora) has a distributed visual array composed of hundreds of small image-forming eyes embedded within its eight dorsal shell plates. As in other animals with distributed visual systems, we still have a poor understanding of the visual capabilities of A. granulata and we have yet to learn where and how it processes visual information. Using behavioral trials involving isoluminant looming visual stimuli, we found that A. granulata demonstrates spatial vision with an angular resolution of 6 deg. We also found that A. granulata responds to looming stimuli defined by contrasting angles of linear polarization. To learn where and how A. granulata processes visual information, we traced optic nerves using fluorescent lipophilic dyes. We found that the optic nerves innervate the underlying lateral neuropil, a neural tissue layer that circumnavigates the body. Adjacent optic nerves innervate the lateral neuropil with highly overlapping arborizations, suggesting it is the site of an integrated visuotopic map. Using immunohistochemistry, we found that the lateral neuropil of A. granulata is subdivided into two separate layers. In comparison, we found that a chiton with eyespots (Chiton tuberculatus) and two eyeless chitons (Ischnochiton papillosus and Chaetopleura apiculata) have lateral neuropil that is a singular circular layer without subdivision, findings consistent with previous work on chiton neuroanatomy. Overall, our results suggest that A. granulata effectuates its visually mediated behaviors using a unique processing scheme: it extracts spatial and polarization information using a distributed visual system, and then integrates and processes that information using decentralized neural circuits.
Collapse
Affiliation(s)
- Daniel R Chappell
- Department of Biological Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA
| | - Daniel I Speiser
- Department of Biological Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA
| |
Collapse
|
3
|
Wong W. Consilience in the Peripheral Sensory Adaptation Response. Front Hum Neurosci 2021; 15:727551. [PMID: 34744660 PMCID: PMC8569822 DOI: 10.3389/fnhum.2021.727551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/20/2021] [Indexed: 11/13/2022] Open
Abstract
Measurements of the peripheral sensory adaptation response were compared to a simple mathematical relationship involving the spontaneous, peak, and steady-state activities. This relationship is based on the geometric mean and is found to be obeyed to good approximation in peripheral sensory units showing a sustained response to prolonged stimulation. From an extensive review of past studies, the geometric mean relationship is shown to be independent of modality and is satisfied in a wide range of animal species. The consilience of evidence, from nearly 100 years of experiments beginning with the work of Edgar Adrian, suggests that this is a fundamental result of neurophysiology.
Collapse
Affiliation(s)
- Willy Wong
- Department of Electrical and Computer Engineering, Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Nielsen SKD, Koch TL, Wiisbye SH, Grimmelikhuijzen CJP, Garm A. Neuropeptide expression in the box jellyfish Tripedalia cystophora-New insights into the complexity of a "simple" nervous system. J Comp Neurol 2021; 529:2865-2882. [PMID: 33660861 DOI: 10.1002/cne.25133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/11/2021] [Accepted: 02/23/2021] [Indexed: 01/09/2023]
Abstract
Box jellyfish have an elaborate visual system and perform advanced visually guided behaviors. However, the rhopalial nervous system (RNS), believed to be the main visual processing center, only has 1000 neurons in each of the four eye carrying rhopalia. We have examined the detailed structure of the RNS of the box jellyfish Tripedalia cystophora, using immunolabeling with antibodies raised against four putative neuropeptides (T. cystophora RFamide, VWamide, RAamide, and FRamide). In the RNS, T. cystophora RF-, VW-, and RAamide antibodies stain sensory neurons, the pit eyes, the neuropil, and peptide-specific subpopulations of stalk-associated neurons and giant neurons. Furthermore, RFamide ir+ neurites are seen in the epidermal stalk nerve, whereas VWamide antibodies stain the gastrodermal stalk nerve. RFamide has the most widespread expression including in the ring and radial nerves, the pedalium nerve plexus, and the tentacular nerve net. RAamide is the putative neurotransmitter in the motor neurons of the subumbrellar nerve net, and VWamide is a potential marker for neuronal differentiation as it is found in subpopulations of undifferentiated cells both in the rhopalia and in the bell. The results from the FRamide antibodies were not included as only few cells were stained, and in an unreproducible way. Our studies show hitherto-unseen details of the nervous system of T. cystophora and allowed us to identify specific functional groups of neurons. This identification is important for understanding visual processing in the RNS and enables experimental work, directly addressing the role of the different neuropeptides in vision.
Collapse
Affiliation(s)
- Sofie K D Nielsen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas L Koch
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sofus H Wiisbye
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Anders Garm
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Garm A, Simonsen SH, Mendoza-González P, Worsaae K. Have the eyes of bioluminescent scale worms adapted to see their own light? A comparative study of eyes and vision in Harmothoe imbricata and Lepidonotus squamatus. J Exp Biol 2021; 224:271041. [PMID: 34308994 DOI: 10.1242/jeb.242501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/07/2021] [Indexed: 11/20/2022]
Abstract
Annelids constitute a diverse phylum with more than 19,000 species, which exhibit greatly varying morphologies and lifestyles ranging from sessile detritivores to fast swimming active predators. The lifestyle of an animal is closely linked to its sensory systems, not least the visual equipment. Interestingly, many errantian annelid species from different families, such as the scale worms (Polynoidae), have two pairs of eyes on their prostomium. These eyes are typically 100-200 µm in diameter and structurally similar judged from their gross morphology. The polynoids Harmothoe imbricata and Lepidonotus squamatus from the North Atlantic are both benthic predators preying on small invertebrates but only H. imbricata can produce bioluminescence in its scales. Here, we examined the eye morphology, photoreceptor physiology and light-guided behaviour in these two scale worms to assess their visual capacity and visual ecology. The structure and physiology of the two pairs of eyes are remarkably similar within each species, with the only difference being the gaze direction. The photoreceptor physiology, however, differs between species. Both species express a single opsin in their eyes, but in H. imbricata the peak sensitivity is green shifted and the temporal resolution is lower, suggesting that the eyes of H. imbricata are adapted to detect their own bioluminescence. The behavioural experiments showed that both species are strictly night active but yielded no support for the hypothesis that H. imbricata is repelled by its own bioluminescence.
Collapse
Affiliation(s)
- Anders Garm
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Sidsel H Simonsen
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Paula Mendoza-González
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Katrine Worsaae
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
6
|
Arnellos A, Moreno A. Visual Perception and the Emergence of Minimal Representation. Front Psychol 2021; 12:660807. [PMID: 34079497 PMCID: PMC8166269 DOI: 10.3389/fpsyg.2021.660807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/26/2021] [Indexed: 11/29/2022] Open
Abstract
There is a long-lasting quest of demarcating a minimally representational behavior. Based on neurophysiologically-informed behavioral studies, we argue in detail that one of the simplest cases of organismic behavior based on low-resolution spatial vision–the visually-guided obstacle avoidance in the cubozoan medusa Tripedalia cystophora–implies already a minimal form of representation. We further argue that the characteristics and properties of this form of constancy-employing structural representation distinguish it substantially from putative representational states associated with mere sensory indicators, and we reply to some possible objections from the liberal representationalists camp by defending and qualitatively demarcating the minimal nature of our case. Finally, we briefly discuss the implications of our thesis within a naturalistic framework.
Collapse
Affiliation(s)
- Argyris Arnellos
- Complex Systems and Service Design Lab, Department of Product and Systems Design Engineering, University of the Aegean, Syros, Greece.,Department of Logic and Philosophy of Science, IAS-Research Center for Life, Mind and Society, University of the Basque Country, San Sebastián, Spain
| | - Alvaro Moreno
- Department of Logic and Philosophy of Science, IAS-Research Center for Life, Mind and Society, University of the Basque Country, San Sebastián, Spain
| |
Collapse
|
7
|
Leach WB, Reitzel AM. Decoupling behavioral and transcriptional responses to color in an eyeless cnidarian. BMC Genomics 2020; 21:361. [PMID: 32410571 PMCID: PMC7222589 DOI: 10.1186/s12864-020-6766-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/30/2020] [Indexed: 12/30/2022] Open
Abstract
Background Animals have specific molecular, physiological, and behavioral responses to light that are influenced by wavelength and intensity. Predictable environmental changes – predominantly solar and lunar cycles – drive endogenous daily oscillations by setting internal pacemakers, otherwise known as the circadian clock. Cnidarians have been a focal group to discern the evolution of light responsiveness due to their phylogenetic position as a sister phylum to bilaterians and broad range of light-responsive behaviors and physiology. Marine species that occupy a range of depths will experience different ranges of wavelengths and light intensities, which may result in variable phenotypic responses. Here, we utilize the eyeless sea anemone Nematostella vectensis, an estuarine anemone that typically resides in shallow water habitats, to compare behavioral and molecular responses when exposed to different light conditions. Results Quantitative measures of locomotion clearly showed that this species responds to light in the blue and green spectral range with a circadian activity profile, in contrast to a circatidal activity profile in the red spectral range and in constant darkness. Differences in average day/night locomotion was significant in each condition, with overall peak activity during the dark period. Comparative analyses of 96 transcriptomes from individuals sampled every 4 h in each lighting treatment revealed complex differences in gene expression between colors, including in many of the genes likely involved in the cnidarian circadian clock. Transcriptional profiling showed the majority of genes are differentially expressed when comparing mid-day with mid-night, and mostly in red light. Gene expression profiles were largely unique in each color, although animals in blue and green were overall more similar to each other than to red light. Conclusions Together, these analyses support the hypothesis that cnidarians are sensitive to red light, and this perception results in a rich transcriptional and divergent behavioral response. Future work determining the specific molecular mechanisms driving the circadian and potential circatidal rhythms measured here would be impactful to connect gene expression variation with behavioral variation in this eyeless species.
Collapse
Affiliation(s)
- Whitney B Leach
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Woodward Hall, Room 381A, Charlotte, NC, 28223, USA.
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Woodward Hall, Room 381A, Charlotte, NC, 28223, USA
| |
Collapse
|
8
|
Stamatis SA, Worsaae K, Garm A. Regeneration of the Rhopalium and the Rhopalial Nervous System in the Box Jellyfish Tripedalia cystophora. THE BIOLOGICAL BULLETIN 2018; 234:22-36. [PMID: 29694798 DOI: 10.1086/697071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cubozoans have the most intricate visual apparatus within Cnidaria. It comprises four identical sensory structures, the rhopalia, each of which holds six eyes of four morphological types. Two of these eyes are camera-type eyes that are, in many ways, similar to the vertebrate eye. The visual input is used to control complex behaviors, such as navigation and obstacle avoidance, and is processed by an elaborate rhopalial nervous system. Several studies have examined the rhopalial nervous system, which, despite a radial symmetric body plan, is bilaterally symmetrical, connecting the two sides of the rhopalium through commissures in an extensive neuropil. The four rhopalia are interconnected by a nerve ring situated in the oral margin of the bell, and together these structures constitute the cubozoan central nervous system. Cnidarians have excellent regenerative capabilities, enabling most species to regenerate large body areas or body parts, and some species can regenerate completely from just a few hundred cells. Here we test whether cubozoans are capable of regenerating the rhopalia, despite the complexity of the visual system and the rhopalial nervous system. The results show that the rhopalia are readily regrown after amputation and have developed most, if not all, neural elements within two weeks. Using electrophysiology, we investigated the functionality of the regrown rhopalia and found that they generated pacemaker signals and that the lens eyes showed a normal response to light. Our findings substantiate the amazing regenerative ability in Cnidaria by showing here the complex sensory system of Cubozoa, a model system proving to be highly applicable in studies of neurogenesis.
Collapse
Key Words
- CNS, central nervous system
- DAPI, 4′,6-diamidino-2-phenylindole
- EdU, 5-ethynyl-2′-deoxyuridine
- FMRF-LIR, FMRFamide-like immunoreactive
- I-cells, interstitial cells
- PFA, paraformaldehyde
- PNS, peripheral nervous system
- RF-LIR, RFamide-like immunoreactive
- RNS, rhopalial nervous system
- α-tubulin LIR, α-tubulin-like immunoreactions
Collapse
|
9
|
Haen Whitmer KM. Model Systems for Exploring the Evolutionary Origins of the Nervous System. Results Probl Cell Differ 2018; 65:185-196. [PMID: 30083921 DOI: 10.1007/978-3-319-92486-1_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The development of nervous systems can be seen as one of the key transitions in animal evolution, allowing the efficient integration of sensory input and motor output and the expedient transmission of impulses over relatively long distances inside an organism. With the increased availability of genome sequences for animals at the base of the metazoan phylogenetic tree, two alternative hypotheses have been proposed regarding nervous system evolutionary origins, ultimately prompting a debate whether an enormously complicated system like the nervous system could have evolved more than once. This review summarizes what is currently known about nervous system origins, concentrating on the evolution of synapse components, with respect to phylogenetic knowledge of early diverging animal groups, comprising members of the Porifera, Ctenophora, Placozoa, and Cnidaria.
Collapse
Affiliation(s)
- Karri M Haen Whitmer
- Department of Genetics, Development & Cell Biology, Iowa State University, Ames, IA, USA.
| |
Collapse
|
10
|
Bielecki J, Garm A. Vision Made Easy: Cubozoans Can Advance Our Understanding of Systems-Level Visual Information Processing. Results Probl Cell Differ 2018; 65:599-624. [PMID: 30083938 DOI: 10.1007/978-3-319-92486-1_27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Animals relying on vision as their main sensory modality reserve a large part of their central nervous system to appropriately navigate their environment. In general, neural involvement correlates to the complexity of the visual system and behavioural repertoire. In humans, one third of the available neural capacity supports our single-chambered general-purpose eyes, whereas animals with less elaborate visual systems need less computational power, and generally have smaller brains, and thereby lack in visual behaviour. As a consequence, both traditional model animals (mice, zebrafish, and flies) and more experimentally tractable animals (Hydra, Planaria, and C. elegans) cannot contribute to our understanding of systems-level visual information processing-a Goldilocks case of too big and too small.However, one animal, the box jellyfish Tripedalia cystophora, possesses a rather complex visual system, displays multiple visual behaviours, yet processes visual information by means of a relatively simple central nervous system. This-just right-model system could not only provide information on how visual stimuli are processed through distinct combinations of neural circuitry but also provide a processing algorithm for extracting specific information from a complex visual scene.
Collapse
Affiliation(s)
- Jan Bielecki
- GEOMAR - Helmholtz Centre for Ocean Research, Kiel, Germany.
- Institute of Physiology, Christian Albrechts University, Kiel, Germany.
| | - Anders Garm
- Marine Biological Section, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Abstract
Medusae (aka jellyfish) have multiphasic life cycles and a propensity to adapt to, and proliferate in, a plethora of aquatic habitats, connecting them to a number of ecological and societal issues. Now, in the midst of the genomics era, affordable next-generation sequencing (NGS) platforms coupled with publically available bioinformatics tools present the much-anticipated opportunity to explore medusa taxa as potential model systems. Genome-wide studies of medusae would provide a remarkable opportunity to address long-standing questions related to the biology, physiology, and nervous system of some of the earliest pelagic animals. Furthermore, medusae have become key targets in the exploration of marine natural products, in the development of marine biomarkers, and for their application to the biomedical and robotics fields. Presented here is a synopsis of the current state of medusa research, highlighting insights provided by multi-omics studies, as well as existing knowledge gaps, calling upon the scientific community to adopt a number of medusa taxa as model systems in forthcoming research endeavors.
Collapse
Affiliation(s)
- Cheryl Lewis Ames
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, NW, Washington, DC, USA.
| |
Collapse
|
12
|
Leclère L, Röttinger E. Diversity of Cnidarian Muscles: Function, Anatomy, Development and Regeneration. Front Cell Dev Biol 2017; 4:157. [PMID: 28168188 PMCID: PMC5253434 DOI: 10.3389/fcell.2016.00157] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/30/2016] [Indexed: 12/12/2022] Open
Abstract
The ability to perform muscle contractions is one of the most important and distinctive features of eumetazoans. As the sister group to bilaterians, cnidarians (sea anemones, corals, jellyfish, and hydroids) hold an informative phylogenetic position for understanding muscle evolution. Here, we review current knowledge on muscle function, diversity, development, regeneration and evolution in cnidarians. Cnidarian muscles are involved in various activities, such as feeding, escape, locomotion and defense, in close association with the nervous system. This variety is reflected in the large diversity of muscle organizations found in Cnidaria. Smooth epithelial muscle is thought to be the most common type, and is inferred to be the ancestral muscle type for Cnidaria, while striated muscle fibers and non-epithelial myocytes would have been convergently acquired within Cnidaria. Current knowledge of cnidarian muscle development and its regeneration is limited. While orthologs of myogenic regulatory factors such as MyoD have yet to be found in cnidarian genomes, striated muscle formation potentially involves well-conserved myogenic genes, such as twist and mef2. Although satellite cells have yet to be identified in cnidarians, muscle plasticity (e.g., de- and re-differentiation, fiber repolarization) in a regenerative context and its potential role during regeneration has started to be addressed in a few cnidarian systems. The development of novel tools to study those organisms has created new opportunities to investigate in depth the development and regeneration of cnidarian muscle cells and how they contribute to the regenerative process.
Collapse
Affiliation(s)
- Lucas Leclère
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV) Villefranche-sur-mer, France
| | - Eric Röttinger
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging (IRCAN) Nice, France
| |
Collapse
|
13
|
Kelava I, Rentzsch F, Technau U. Evolution of eumetazoan nervous systems: insights from cnidarians. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0065. [PMID: 26554048 PMCID: PMC4650132 DOI: 10.1098/rstb.2015.0065] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cnidarians, the sister group to bilaterians, have a simple diffuse nervous system. This morphological simplicity and their phylogenetic position make them a crucial group in the study of the evolution of the nervous system. The development of their nervous systems is of particular interest, as by uncovering the genetic programme that underlies it, and comparing it with the bilaterian developmental programme, it is possible to make assumptions about the genes and processes involved in the development of ancestral nervous systems. Recent advances in sequencing methods, genetic interference techniques and transgenic technology have enabled us to get a first glimpse into the molecular network underlying the development of a cnidarian nervous system—in particular the nervous system of the anthozoan Nematostella vectensis. It appears that much of the genetic network of the nervous system development is partly conserved between cnidarians and bilaterians, with Wnt and bone morphogenetic protein (BMP) signalling, and Sox genes playing a crucial part in the differentiation of neurons. However, cnidarians possess some specific characteristics, and further studies are necessary to elucidate the full regulatory network. The work on cnidarian neurogenesis further accentuates the need to study non-model organisms in order to gain insights into processes that shaped present-day lineages during the course of evolution.
Collapse
Affiliation(s)
- Iva Kelava
- Department of Molecular Evolution and Development, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Fabian Rentzsch
- Sars Centre, Sars International Centre for Marine Molecular Biology, Thormøhlensgt. 55, 5008 Bergen, Norway
| | - Ulrich Technau
- Department of Molecular Evolution and Development, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
14
|
Lasley RM, Ames CL, Erdman R, Parks S, Collins AG. First record of the box jellyfishTripedalia cystophora(Cnidaria: Cubozoa: Tripedaliidae) in the Gulf of Mexico. P BIOL SOC WASH 2016. [DOI: 10.2988/0006-324x-129.q2.164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
15
|
Meech RW. Electrogenesis in the lower Metazoa and implications for neuronal integration. ACTA ACUST UNITED AC 2015; 218:537-50. [PMID: 25696817 DOI: 10.1242/jeb.111955] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Electrogenic communication appears to have evolved independently in a variety of animal and plant lineages. Considered here are metazoan cells as disparate as the loose three-dimensional parenchyma of glass sponges, the two-dimensional epithelial sheets of hydrozoan jellyfish and the egg cell membranes of the ctenophore Beroe ovata, all of which are capable of generating electrical impulses. Neuronal electrogenesis may have evolved independently in ctenophores and cnidarians but the dearth of electrophysiological data relating to ctenophore nerves means that our attention is focused on the Cnidaria, whose nervous systems have been the subject of extensive study. The aim here is to show how their active and passive neuronal properties interact to give integrated behaviour. Neuronal electrogenesis, goes beyond simply relaying 'states of excitement' and utilizes the equivalent of a set of basic electrical 'apps' to integrate incoming sensory information with internally generated pacemaker activity. A small number of membrane-based processes make up these analogue applications. Passive components include the decremental spread of current determined by cellular anatomy; active components include ion channels specified by their selectivity and voltage dependence. A recurring theme is the role of inactivating potassium channels in regulating performance. Although different aspects of cnidarian behaviour are controlled by separate neuronal systems, integrated responses and coordinated movements depend on interactions between them. Integrative interactions discussed here include those between feeding and swimming, between tentacle contraction and swimming and between slow and fast swimming in the hydrozoan jellyfish Aglantha digitale.
Collapse
Affiliation(s)
- Robert W Meech
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
16
|
Satterlie RA. Multiple conducting systems in the cubomedusa Carybdea marsupialis. THE BIOLOGICAL BULLETIN 2014; 227:274-284. [PMID: 25572215 DOI: 10.1086/bblv227n3p274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Acute responses to mechanical, electrical, and photic stimuli were used to describe neural conducting systems in the cubomedusan jellyfish Carybdea marsupialis underlying three behaviors: contractile responses of single tentacles, protective crumple responses, and alterations of swimming activity by the visual system. Responses of single tentacles consisted of tentacular shortening and inward pedalial bending, and were accompanied by bursts of extracellularly recorded spike activity that were restricted to the stimulated tentacle. With nociceptive stimuli delivered to the subumbrella or margin, all four tentacles produced similar responses in a crumple response. The spike bursts in all four tentacles showed coordinated firing as long as the nerve ring was intact. Crumples were still produced following cuts through the nerve ring, but the activity in individual tentacles was no longer coordinated. Responses to light-on stimulation of a rhopalium, as recorded from the pacemaker region, were weak and inconsistent, but when present, resulted in a stimulation of swimming activity. In comparison, light-off responses were robust and resulted in temporary inhibition of swimming activity. Light-off responses were conducted in the nerve ring to unstimulated rhopalia. In conclusion, three conducting systems have been described as components of the rhopalia-nerve ring centralized system in Carybdea: the swim motor system, the crumple coordination system, and the light-off response system.
Collapse
Affiliation(s)
- Richard A Satterlie
- Department of Biology and Marine Biology and Center for Marine Science, University of North Carolina Wilmington, Wilmington, North Carolina 28403
| |
Collapse
|
17
|
Bielecki J, Zaharoff AK, Leung NY, Garm A, Oakley TH. Ocular and extraocular expression of opsins in the rhopalium of Tripedalia cystophora (Cnidaria: Cubozoa). PLoS One 2014; 9:e98870. [PMID: 24901369 PMCID: PMC4047050 DOI: 10.1371/journal.pone.0098870] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 05/07/2014] [Indexed: 11/18/2022] Open
Abstract
A growing body of work on the neuroethology of cubozoans is based largely on the capabilities of the photoreceptive tissues, and it is important to determine the molecular basis of their light sensitivity. The cubozoans rely on 24 special purpose eyes to extract specific information from a complex visual scene to guide their behavior in the habitat. The lens eyes are the most studied photoreceptive structures, and the phototransduction in the photoreceptor cells is based on light sensitive opsin molecules. Opsins are photosensitive transmembrane proteins associated with photoreceptors in eyes, and the amino acid sequence of the opsins determines the spectral properties of the photoreceptors. Here we show that two distinct opsins (Tripedalia cystophora-lens eye expressed opsin and Tripedalia cystophora-neuropil expressed opsin, or Tc-leo and Tc-neo) are expressed in the Tripedalia cystophora rhopalium. Quantitative PCR determined the level of expression of the two opsins, and we found Tc-leo to have a higher amount of expression than Tc-neo. In situ hybridization located Tc-leo expression in the retinal photoreceptors of the lens eyes where the opsin is involved in image formation. Tc-neo is expressed in a confined part of the neuropil and is probably involved in extraocular light sensation, presumably in relation to diurnal activity.
Collapse
Affiliation(s)
- Jan Bielecki
- Ecology, Evolution and Marine Biology, University of California at Santa Barbara, Santa Barbara, California, United States of America
- * E-mail:
| | - Alexander K. Zaharoff
- Ecology, Evolution and Marine Biology, University of California at Santa Barbara, Santa Barbara, California, United States of America
| | - Nicole Y. Leung
- Ecology, Evolution and Marine Biology, University of California at Santa Barbara, Santa Barbara, California, United States of America
| | - Anders Garm
- Marine Biological Section, University of Copenhagen, Copenhagen, Denmark
| | - Todd H. Oakley
- Ecology, Evolution and Marine Biology, University of California at Santa Barbara, Santa Barbara, California, United States of America
| |
Collapse
|
18
|
Garm A, Hedal I, Islin M, Gurska D. Pattern- and contrast-dependent visual response in the box jellyfish Tripedalia cystophora. ACTA ACUST UNITED AC 2013; 216:4520-9. [PMID: 24031055 DOI: 10.1242/jeb.091934] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cubomedusae possess a total of 24 eyes, some of which are structurally similar to vertebrate eyes. Accordingly, the medusae also display a range of light-guided behaviours including obstacle avoidance, diurnal activity patterns and navigation. Navigation is supported by spatial resolution and image formation in the so-called upper lens eye. Further, there are indications that obstacle avoidance requires image information from the lower lens eye. Here we use a behavioural assay to examine the obstacle avoidance behaviour of the Caribbean cubomedusa Tripedalia cystophora and test whether it requires spatial resolution. The possible influence of the contrast and orientation of the obstacles is also examined. We show that the medusae can only perform the behaviour when spatial information is present, and fail to avoid a uniformly dark wall, directly proving the use of spatial vision. We also show that the medusae respond stronger to high contrast lines than to low contrast lines in a graded fashion, and propose that the medusae use contrast as a semi-reliable measure of distance to the obstacle.
Collapse
Affiliation(s)
- Anders Garm
- Section of Marine Biology, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | | | | | | |
Collapse
|
19
|
Swim pacemaker response to bath applied neurotransmitters in the cubozoan Tripedalia cystophora. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:785-97. [PMID: 23893247 DOI: 10.1007/s00359-013-0839-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 07/05/2013] [Accepted: 07/11/2013] [Indexed: 10/26/2022]
Abstract
The four rhopalia of cubomedusae are integrated parts of the central nervous system carrying their many eyes and thought to be the centres of visual information processing. Rhopalial pacemakers control locomotion through a complex neural signal transmitted to the ring nerve and the signal frequency is modulated by the visual input. Since electrical synapses have never been found in the cubozoan nervous system all signals are thought to be transmitted across chemical synapses, and so far information about the neurotransmitters involved are based on immunocytochemical or behavioural data. Here we present the first direct physiological evidence for the types of neurotransmitters involved in sensory information processing in the rhopalial nervous system. FMRFamide, serotonin and dopamine are shown to have inhibitory effect on the pacemaker frequency. There are some indications that the fast acting acetylcholine and glycine have an initial effect and then rapidly desensitise. Other tested neuroactive compounds (GABA, glutamate, and taurine) could not be shown to have a significant effect.
Collapse
|
20
|
Bielecki J, Høeg JT, Garm A. Fixational eye movements in the earliest stage of metazoan evolution. PLoS One 2013; 8:e66442. [PMID: 23776673 PMCID: PMC3679052 DOI: 10.1371/journal.pone.0066442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 05/05/2013] [Indexed: 11/18/2022] Open
Abstract
All known photoreceptor cells adapt to constant light stimuli, fading the retinal image when exposed to an immobile visual scene. Counter strategies are therefore necessary to prevent blindness, and in mammals this is accomplished by fixational eye movements. Cubomedusae occupy a key position for understanding the evolution of complex visual systems and their eyes are assumedly subject to the same adaptive problems as the vertebrate eye, but lack motor control of their visual system. The morphology of the visual system of cubomedusae ensures a constant orientation of the eyes and a clear division of the visual field, but thereby also a constant retinal image when exposed to stationary visual scenes. Here we show that bell contractions used for swimming in the medusae refresh the retinal image in the upper lens eye of Tripedalia cystophora. This strongly suggests that strategies comparable to fixational eye movements have evolved at the earliest metazoan stage to compensate for the intrinsic property of the photoreceptors. Since the timing and amplitude of the rhopalial movements concur with the spatial and temporal resolution of the eye it circumvents the need for post processing in the central nervous system to remove image blur.
Collapse
Affiliation(s)
- Jan Bielecki
- Marine Biological Section, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
21
|
Jegla T, Marlow HQ, Chen B, Simmons DK, Jacobo SM, Martindale MQ. Expanded functional diversity of shaker K(+) channels in cnidarians is driven by gene expansion. PLoS One 2012; 7:e51366. [PMID: 23251506 PMCID: PMC3519636 DOI: 10.1371/journal.pone.0051366] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 10/29/2012] [Indexed: 12/27/2022] Open
Abstract
The genome of the cnidarian Nematostella vectensis (starlet sea anemone) provides a molecular genetic view into the first nervous systems, which appeared in a late common ancestor of cnidarians and bilaterians. Nematostella has a surprisingly large and diverse set of neuronal signaling genes including paralogs of most neuronal signaling molecules found in higher metazoans. Several ion channel gene families are highly expanded in the sea anemone, including three subfamilies of the Shaker K+ channel gene family: Shaker (Kv1), Shaw (Kv3) and Shal (Kv4). In order to better understand the physiological significance of these voltage-gated K+ channel expansions, we analyzed the function of 18 members of the 20 gene Shaker subfamily in Nematostella. Six of the Nematostella Shaker genes express functional homotetrameric K+ channels in vitro. These include functional orthologs of bilaterian Shakers and channels with an unusually high threshold for voltage activation. We identified 11 Nematostella Shaker genes with a distinct “silent” or “regulatory” phenotype; these encode subunits that function only in heteromeric channels and serve to further diversify Nematostella Shaker channel gating properties. Subunits with the regulatory phenotype have not previously been found in the Shaker subfamily, but have evolved independently in the Shab (Kv2) family in vertebrates and the Shal family in a cnidarian. Phylogenetic analysis indicates that regulatory subunits were present in ancestral cnidarians, but have continued to diversity at a high rate after the split between anthozoans and hydrozoans. Comparison of Shaker family gene complements from diverse metazoan species reveals frequent, large scale duplication has produced highly unique sets of Shaker channels in the major metazoan lineages.
Collapse
Affiliation(s)
- Timothy Jegla
- Department of Biology and Huck Institute of Life Sciences, Eberly College of Science, Penn State University, University Park, PA, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Moroz LL. Phylogenomics meets neuroscience: how many times might complex brains have evolved? ACTA BIOLOGICA HUNGARICA 2012; 63 Suppl 2:3-19. [PMID: 22776469 DOI: 10.1556/abiol.63.2012.suppl.2.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The origin of complex centralized brains is one of the major evolutionary transitions in the history of animals. Monophyly (i.e. presence of a centralized nervous system in urbilateria) vs polyphyly (i.e. multiple origins by parallel centralization of nervous systems within several lineages) are two historically conflicting scenarios to explain such transitions. However, recent phylogenomic and cladistic analysis suggests that complex brains may have independently evolved at least 9 times within different animal lineages. Indeed, even within the phylum Mollusca cephalization might have occurred at least 5 times. Emerging molecular data further suggest that at the genomic level such transitions might have been achieved by changes in expression of just a few transcriptional factors - not surprising since such events might happen multiple times over 700 million years of animal evolution. Both cladistic and genomic analyses also imply that neurons themselves evolved more than once. Ancestral polarized secretory cells were likely involved in coordination of ciliated locomotion in early animals, and these cells can be considered as evolutionary precursors of neurons within different lineages. Under this scenario, the origins of neurons can be linked to adaptations to stress/injury factors in the form of integrated regeneration-type cellular response with secretory signaling peptides as early neurotransmitters. To further reconstruct the parallel evolution of nervous systems genomic approaches are essential to probe enigmatic neurons of basal metazoans, selected lophotrochozoans (e.g. phoronids, brachiopods) and deuterostomes.
Collapse
Affiliation(s)
- L L Moroz
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd. St. Augustine Florida 32080, USA.
| |
Collapse
|
23
|
Garm A, Bielecki J, Petie R, Nilsson DE. Opposite patterns of diurnal activity in the box jellyfish Tripedalia cystophora and Copula sivickisi. THE BIOLOGICAL BULLETIN 2012; 222:35-45. [PMID: 22426630 DOI: 10.1086/bblv222n1p35] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Cubozoan medusae have a stereotypic set of 24 eyes, some of which are structurally similar to vertebrate and cephalopod eyes. Across the approximately 25 described species, this set of eyes varies surprisingly little, suggesting that they are involved in an equally stereotypic set of visual tasks. During the day Tripedalia cystophora is found at the edge of mangrove lagoons where it accumulates close to the surface in sun-lit patches between the prop roots. Copula sivickisi (formerly named Carybdea sivickisi) is associated with coral reefs and has been observed to be active at night. At least superficially, the eyes of the two species are close to identical. We studied the diurnal activity pattern of these two species both in the wild and under controlled conditions in laboratory experiments. Despite the very similar visual systems, we found that they display opposite patterns of diurnal activity. T. cystophora is active exclusively during the day, whereas C. sivickisi is actively swimming at night, when it forages and mates. At night T. cystophora is found on the muddy bottom of the mangrove lagoon. C. sivickisi spends the day attached to structures such as the underside of stones and coral skeletons. This species difference seems to have evolved to optimize foraging, since the patterns of activity follow those of the available prey items in their respective habitats.
Collapse
Affiliation(s)
- A Garm
- Department of Biology, University of Copenhagen, Denmark.
| | | | | | | |
Collapse
|
24
|
Petie R, Garm A, Nilsson DE. Visual control of steering in the box jellyfish Tripedalia cystophora. ACTA ACUST UNITED AC 2011; 214:2809-15. [PMID: 21832123 DOI: 10.1242/jeb.057190] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Box jellyfish carry an elaborate visual system consisting of 24 eyes, which they use for driving a number of behaviours. However, it is not known how visual input controls the swimming behaviour. In this study we exposed the Caribbean box jellyfish Tripedalia cystophora to simple visual stimuli and recorded changes in their swimming behaviour. Animals were tethered in a small experimental chamber, where we could control lighting conditions. The behaviour of the animals was quantified by tracking the movements of the bell, using a high-speed camera. We found that the animals respond predictably to the darkening of one quadrant of the equatorial visual world by (1) increasing pulse frequency, (2) creating an asymmetry in the structure that constricts the outflow opening of the bell, the velarium, and (3) delaying contraction at one of the four sides of the bell. This causes the animals to orient their bell in such a way that, if not tethered, they would turn and swim away from the dark area. We conclude that the visual system of T. cystophora has a predictable effect on swimming behaviour.
Collapse
Affiliation(s)
- Ronald Petie
- Department of Biology, Lund University, Biology Building B, Sölvegatan 35, 223 62 Lund, Sweden.
| | | | | |
Collapse
|
25
|
Stöckl AL, Petie R, Nilsson DE. Setting the pace: new insights into central pattern generator interactions in box jellyfish swimming. PLoS One 2011; 6:e27201. [PMID: 22073288 PMCID: PMC3206948 DOI: 10.1371/journal.pone.0027201] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 10/11/2011] [Indexed: 11/18/2022] Open
Abstract
Central Pattern Generators (CPGs) produce rhythmic behaviour across all animal phyla. Cnidarians, which have a radially symmetric nervous system and pacemaker centres in multiples of four, provide an interesting comparison to bilaterian animals for studying the coordination between CPGs. The box jellyfish Tripedalia cystophora is remarkable among cnidarians due to its most elaborate visual system. Together with their ability to actively swim and steer, they use their visual system for multiple types of behaviour. The four swim CPGs are directly regulated by visual input. In this study, we addressed the question of how the four pacemaker centres of this radial symmetric cnidarian interact. We based our investigation on high speed camera observations of the timing of swim pulses of tethered animals (Tripedalia cystophora) with one or four rhopalia, under different simple light regimes. Additionally, we developed a numerical model of pacemaker interactions based on the inter pulse interval distribution of animals with one rhopalium. We showed that the model with fully resetting coupling and hyperpolarization of the pacemaker potential below baseline fitted the experimental data best. Moreover, the model of four swim pacemakers alone underscored the proportion of long inter pulse intervals (IPIs) considerably. Both in terms of the long IPIs as well as the overall swim pulse distribution, the simulation of two CPGs provided a better fit than that of four. We therefore suggest additional sources of pacemaker control than just visual input. We provide guidelines for future research on the physiological linkage of the cubozoan CPGs and show the insight from bilaterian CPG research, which show that pacemakers have to be studied in their bodily and nervous environment to capture all their functional features, are also manifest in cnidarians.
Collapse
Affiliation(s)
- Anna Lisa Stöckl
- Vision Group, Department of Biology, Lund University, Lund, Sweden.
| | | | | |
Collapse
|
26
|
Abstract
The traditional view of the cnidarian nervous system is of a diffuse nerve net that functions as both a conducting and an integrating system; this is considered an indicator of a primitive condition. Yet, in medusoid members, varying degrees of nerve net compression and neuronal condensation into ganglion-like structures represent more centralized integrating centers. In some jellyfish, this relegates nerve nets to motor distribution systems. The neuronal condensation follows a precept of neuronal organization of higher animals with a relatively close association with the development and elaboration of sensory structures. Nerve nets still represent an efficient system for diffuse, non-directional activation of broad, two-dimensional effector sheets, as required by the radial, non-cephalized body construction. However, in most jellyfish, an argument can be made for the presence of centralized nervous systems that interact with the more diffuse nerve nets.
Collapse
Affiliation(s)
- Richard A Satterlie
- Department of Biology and Marine Biology, University of North Carolina Wilmington and Center for Marine Science, 5600 Marvin K. Moss Lane, Wilmington, NC 28409, USA
| |
Collapse
|
27
|
Garm A, Oskarsson M, Nilsson DE. Box jellyfish use terrestrial visual cues for navigation. Curr Biol 2011; 21:798-803. [PMID: 21530262 DOI: 10.1016/j.cub.2011.03.054] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 02/03/2011] [Accepted: 03/22/2011] [Indexed: 11/30/2022]
Abstract
Box jellyfish have an impressive set of 24 eyes of four different types, including eyes structurally similar to those of vertebrates and cephalopods [1, 2]. However, the known visual responses are restricted to simple phototaxis, shadow responses, and object avoidance responses [3-8], and it has been a puzzle why they need such a complex set of eyes. Here we report that medusae of the box jellyfish Tripedalia cystophora are capable of visually guided navigation in mangrove swamps using terrestrial structures seen through the water surface. They detect the mangrove canopy by an eye type that is specialized to peer up through the water surface and that is suspended such that it is constantly looking straight up, irrespective of the orientation of the jellyfish. The visual information is used to navigate to the preferred habitat at the edge of mangrove lagoons.
Collapse
Affiliation(s)
- Anders Garm
- Section of Marine Biology, Department of Biology, University of Copenhagen, Copenhagen Ø, Denmark.
| | | | | |
Collapse
|
28
|
Garm A, Ekström P. Evidence for multiple photosystems in jellyfish. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 280:41-78. [PMID: 20797681 DOI: 10.1016/s1937-6448(10)80002-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cnidarians are often used as model animals in studies of eye and photopigment evolution. Most cnidarians display photosensitivity at some point in their lifecycle ranging from extraocular photoreception to image formation in camera-type eyes. The available information strongly suggests that some cnidarians even possess multiple photosystems. The evidence is strongest within Cubomedusae where all known species posses 24 eyes of four morphological types. Physiological experiments show that each cubomedusan eye type likely constitutes a separate photosystem controlling separate visually guided behaviors. Further, the visual system of cubomedusae also includes extraocular photoreception. The evidence is supported by immunocytochemical and molecular data indicating multiple photopigments in cubomedusae as well as in other cnidarians. Taken together, available data suggest that multiple photosystems had evolved already in early eumetazoans and that their original level of organization was discrete sets of special-purpose eyes and/or photosensory cells.
Collapse
Affiliation(s)
- Anders Garm
- Department of Comparative Zoology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|