1
|
Edgley DE, Carruthers M, Gabagambi NP, Saxon AD, Smith AM, Joyce DA, Vernaz G, Santos ME, Turner GF, Genner MJ. Lateral line system diversification during the early stages of ecological speciation in cichlid fish. BMC Ecol Evol 2024; 24:24. [PMID: 38378480 PMCID: PMC10877828 DOI: 10.1186/s12862-024-02214-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/09/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND The mechanosensory lateral line system is an important sensory modality in fishes, informing multiple behaviours related to survival including finding food and navigating in dark environments. Given its ecological importance, we may expect lateral line morphology to be under disruptive selection early in the ecological speciation process. Here we quantify the lateral line system morphology of two ecomorphs of the cichlid fish Astatotilapia calliptera in crater Lake Masoko that have diverged from common ancestry within the past 1,000 years. RESULTS Based on geometric morphometric analyses of CT scans, we show that the zooplanktivorous benthic ecomorph that dominates the deeper waters of the lake has large cranial lateral line canal pores, relative to those of the nearshore invertebrate-feeding littoral ecomorph found in the shallower waters. In contrast, fluorescence imaging revealed no evidence for divergence between ecomorphs in the number of either superficial or canal neuromasts. We illustrate the magnitude of the variation we observe in Lake Masoko A. calliptera in the context of the neighbouring Lake Malawi mega-radiation that comprises over 700 species. CONCLUSIONS These results provide the first evidence of divergence in this often-overlooked sensory modality in the early stages of ecological speciation, suggesting that it may have a role in the broader adaptive radiation process.
Collapse
Affiliation(s)
- Duncan E Edgley
- School of Biological Sciences, University of Bristol, Bristol, UK.
| | - Madeleine Carruthers
- School of Biological Sciences, University of Bristol, Bristol, UK
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Nestory P Gabagambi
- Tanzania Fisheries Research Institute, Kyela Centre, P.O. Box 98, Kyela, Mbeya, Tanzania
| | - Andrew D Saxon
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Alan M Smith
- School of Natural Sciences, University of Hull, Hull, UK
| | - Domino A Joyce
- School of Natural Sciences, University of Hull, Hull, UK
| | - Grégoire Vernaz
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, UK
- Wellcome/Cancer Research UK, Gurdon Institute, University of Cambridge, Cambridge, UK
| | - M Emília Santos
- Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Martin J Genner
- School of Biological Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
2
|
Hebberecht L, Wainwright JB, Thompson C, Kershenbaum S, McMillan WO, Montgomery SH. Plasticity and genetic effects contribute to different axes of neural divergence in a community of mimetic Heliconius butterflies. J Evol Biol 2023; 36:1116-1132. [PMID: 37341138 DOI: 10.1111/jeb.14188] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/12/2023] [Accepted: 04/16/2023] [Indexed: 06/22/2023]
Abstract
Changes in ecological preference, often driven by spatial and temporal variation in resource distribution, can expose populations to environments with divergent information content. This can lead to adaptive changes in the degree to which individuals invest in sensory systems and downstream processes, to optimize behavioural performance in different contexts. At the same time, environmental conditions can produce plastic responses in nervous system development and maturation, providing an alternative route to integrating neural and ecological variation. Here, we explore how these two processes play out across a community of Heliconius butterflies. Heliconius communities exhibit multiple Mullerian mimicry rings, associated with habitat partitioning across environmental gradients. These environmental differences have previously been linked to heritable divergence in brain morphology in parapatric species pairs. They also exhibit a unique dietary adaptation, known as pollen feeding, that relies heavily on learning foraging routes, or trap-lines, between resources, which implies an important environmental influence on behavioural development. By comparing brain morphology across 133 wild-caught and insectary-reared individuals from seven Heliconius species, we find strong evidence for interspecific variation in patterns of neural investment. These largely fall into two distinct patterns of variation; first, we find consistent patterns of divergence in the size of visual brain components across both wild and insectary-reared individuals, suggesting genetically encoded divergence in the visual pathway. Second, we find interspecific differences in mushroom body size, a central component of learning and memory systems, but only among wild caught individuals. The lack of this effect in common-garden individuals suggests an extensive role for developmental plasticity in interspecific variation in the wild. Finally, we illustrate the impact of relatively small-scale spatial effects on mushroom body plasticity by performing experiments altering the cage size and structure experienced by individual H. hecale. Our data provide a comprehensive survey of community level variation in brain structure, and demonstrate that genetic effects and developmental plasticity contribute to different axes of interspecific neural variation.
Collapse
Affiliation(s)
- Laura Hebberecht
- School of Biological Sciences, University of Bristol, Bristol, UK
- Department of Zoology, University of Cambridge, Cambridge, UK
- Smithsonian Tropical Research Institute, Gamboa, Panama
| | | | | | | | | | - Stephen H Montgomery
- School of Biological Sciences, University of Bristol, Bristol, UK
- Smithsonian Tropical Research Institute, Gamboa, Panama
| |
Collapse
|
3
|
Brandon AA, Almeida D, Powder KE. Neural crest cells as a source of microevolutionary variation. Semin Cell Dev Biol 2023; 145:42-51. [PMID: 35718684 PMCID: PMC10482117 DOI: 10.1016/j.semcdb.2022.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 05/03/2022] [Accepted: 06/03/2022] [Indexed: 11/28/2022]
Abstract
Vertebrates have some of the most complex and diverse features in animals, from varied craniofacial morphologies to colorful pigmentation patterns and elaborate social behaviors. All of these traits have their developmental origins in a multipotent embryonic lineage of neural crest cells. This "fourth germ layer" is a vertebrate innovation and the source of a wide range of adult cell types. While others have discussed the role of neural crest cells in human disease and animal domestication, less is known about their role in contributing to adaptive changes in wild populations. Here, we review how variation in the development of neural crest cells and their derivatives generates considerable phenotypic diversity in nature. We focus on the broad span of traits under natural and sexual selection whose variation may originate in the neural crest, with emphasis on behavioral factors such as intraspecies communication that are often overlooked. In all, we encourage the integration of evolutionary ecology with developmental biology and molecular genetics to gain a more complete understanding of the role of this single cell type in trait covariation, evolutionary trajectories, and vertebrate diversity.
Collapse
Affiliation(s)
- A Allyson Brandon
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Daniela Almeida
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Kara E Powder
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
4
|
Begum M, Nolan V, MacColl ADC. Ecological constraint, rather than opportunity, promotes adaptive radiation in three-spined stickleback ( Gasterosteus aculeatus) on North Uist. Ecol Evol 2023; 13:e9716. [PMID: 36644706 PMCID: PMC9831901 DOI: 10.1002/ece3.9716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
The context and cause of adaptive radiations have been widely described and explored but why rapid evolutionary diversification does not occur in related evolutionary lineages has yet to be understood. The standard answer is that evolutionary diversification is provoked by ecological opportunity and that some lineages do not encounter the opportunity. Three-spined sticklebacks on the Scottish island of North Uist show enormous diversification, which seems to be associated with the diversity of aquatic habitats. Sticklebacks on the neighboring island of South Uist have not been reported to show the same level of evolutionary diversity, despite levels of environmental variation that we might expect to be similar to North Uist. In this study, we compared patterns of morphological and environmental diversity on North and South Uist. Ancestral anadromous sticklebacks from both islands exhibited similar morphology including size and bony "armor." Resident sticklebacks showed significant variation in armor traits in relation to pH of water. However, North Uist sticklebacks exhibited greater diversity of morphological traits than South Uist and this was associated with greater diversity in pH of the waters of lochs on North Uist. Highly acidic and highly alkaline freshwater habitats are missing, or uncommon, on South Uist. Thus, pH appears to act as a causal factor driving the evolutionary diversification of stickleback in local adaptation in North and South Uist. This is consistent with diversification being more associated with ecological constraint than ecological opportunity.
Collapse
Affiliation(s)
- Mahmuda Begum
- School of Life SciencesUniversity of NottinghamNottinghamUK
- Zoology Section, Biological Research DivisionBangladesh Council of Scientific & Industrial Research (BCSIR)DhakaBangladesh
| | - Victoria Nolan
- School of Life SciencesUniversity of NottinghamNottinghamUK
| | | |
Collapse
|
5
|
Chen B, Mao T, Liu Y, Dai W, Li X, Rajput AP, Pie MR, Yang J, Gross JB, Meegaskumbura M. Sensory evolution in a cavefish radiation: patterns of neuromast distribution and associated behaviour in Sinocyclocheilus (Cypriniformes: Cyprinidae). Proc Biol Sci 2022; 289:20221641. [PMID: 36476002 PMCID: PMC9554722 DOI: 10.1098/rspb.2022.1641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/22/2022] [Indexed: 02/07/2023] Open
Abstract
The genus Sinocyclocheilus, comprising a large radiation of freshwater cavefishes, are well known for their presence of regressive features (e.g. variable eye reduction). Fewer constructive features are known, such as the expansion of the lateral line system (LLS), which is involved in detecting water movements. The precise relationship between LLS expansion and cave adaptation is not well understood. Here, we examine morphology and LLS-mediated behaviour in Sinocyclocheilus species characterized by broad variation in eye size, habitat and geographical distribution. Using live-staining techniques and automated behavioural analyses, we examined 26 Sinocyclocheilus species and quantified neuromast organ number, density and asymmetry within a phylogenetic context. We then examined how these morphological features may relate to wall-following, an established cave-associated behaviour mediated by the lateral line. We show that most species demonstrated laterality (i.e. asymmetry) in neuromast organs on the head, often biased to the right. We also found that wall-following behaviour was distinctive, particularly among eyeless species. Patterns of variation in LLS appear to correlate with the degree of eye loss, as well as geographical distribution. This work reveals that constructive LLS evolution is convergent across distant cavefish taxa and may mediate asymmetric behavioural features that enable survival in stark subterranean microenvironments.
Collapse
Affiliation(s)
- Bing Chen
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, People's Republic of China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, People's Republic of China
| | - Tingru Mao
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, People's Republic of China
| | - Yewei Liu
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, People's Republic of China
| | - Wenzhang Dai
- School of Life Science and Institute of Wetland Ecology, Nanjing University, Nanjing 210000, People's Republic of China
| | - Xianglin Li
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, People's Republic of China
| | - Amrapali P. Rajput
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, People's Republic of China
| | - Marcio R. Pie
- Biology Department, Edge Hill University, Ormskirk, Lancashire L39 4QP, UK
| | - Jian Yang
- Key Laboratory of Environment Change and Resource Use, Beibu Gulf, Nanning Normal University, Nanning, Guangxi, People's Republic of China
| | - Joshua B. Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati OH 45221, USA
| | - Madhava Meegaskumbura
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, People's Republic of China
| |
Collapse
|
6
|
Wertman DL, Reimchen TE. Adaptive divergence of lateral plate ultrastructure in threespine stickleback. CAN J ZOOL 2022. [DOI: 10.1139/cjz-2021-0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The lateral plates of threespine stickleback, Gasterosteus aculeatus Linnaeus, 1758, are well-studied for their adaptive morphological responses to predators, yet it is unknown whether habitat influences plate ultrastructure. We investigate using scanning electron microscopy the lateral plate ultrastructure (tubercles and ridges) of stickleback (<i>N</i> = 61 adult fish) from nine Haida Gwaii (coastal British Columbia) wild-type populations, two experimental transplants, and two lab-reared cohorts reared from source populations. Tubercle density, but not ridge density, differed significantly across habitat types and populations. Among wild-type fish, tubercle densities were greatest in dystrophic habitats containing predatory fish, and lowest in weakly dystrophic systems featuring bird–invertebrate predation and marine populations with diverse predatory fish. No differences in tubercle density were detected between source and transplant populations, despite major habitat shifts. Lab-reared fish exhibited significantly lower tubercle densities than their source populations (< one generation). Tubercle density differences across habitat types may reflect adaptation to divergent predation regimes, with tooth-bearing predators selecting for denser tubercles that disperse point forces. Conservation of ridge density across populations suggests an essential function in dispersing forces applied to dorsal spines during predator manipulation. Lateral plate ultrastructure in threespine stickleback thus results from both heritable effects and developmental plasticity.
Collapse
Affiliation(s)
- Debra L. Wertman
- University of Victoria, 8205, Department of Biology, Victoria, British Columbia, Canada
| | - Thomas E Reimchen
- University of Victoria, 8205, Department of Biology, Victoria, British Columbia, Canada,
| |
Collapse
|
7
|
Planidin NP, Reimchen TE. Behavioural responses of threespine stickleback with lateral line asymmetries to experimental mechanosensory stimuli. J Exp Biol 2021; 225:273859. [PMID: 34939652 DOI: 10.1242/jeb.243661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/15/2021] [Indexed: 11/20/2022]
Abstract
Behavioural asymmetry, typically referred to as laterality, is widespread among bilaterians and is often associated with asymmetry in brain structure. However, the influence of sensory receptor asymmetry on laterality has undergone limited investigation. Here we use threespine stickleback (Gasterosteus aculeatus) to investigate the influence of lateral line asymmetry on laterality during lab simulations of three mechanosensation-dependent behaviours: predator evasion, prey localization and rheotaxis. We recorded the response of stickleback to impacts at the water surface and water flow in photic conditions and low-frequency oscillations in the dark, across four repeat trials. We then compared individuals' laterality to asymmetry in the number of neuromasts on either side of their body. Stickleback hovered with their right side against the arena wall 57% of the time (P<0.001) in illuminated surface impact trials and 56% of the time in (P=0.085) dark low-frequency stimulation trials. Light regime modulated the effect of neuromast count on laterality, as fish with more neuromasts were more likely to hover with the wall on their right during illumination (P=0.007) but were less likely to do so in darkness (P=0.025). Population level laterality diminished in later trials across multiple behaviours and individuals did not show a consistent side bias in any behaviours. Our results demonstrate a complex relationship between sensory structure asymmetry and laterality, suggesting that laterality is modulated multiple sensory modalities and temporally dynamic.
Collapse
|
8
|
Seleit A, Ansai S, Yamahira K, Masengi KWA, Naruse K, Centanin L. Diversity of lateral line patterns and neuromast numbers in the genus Oryzias. J Exp Biol 2021; 224:273715. [PMID: 34897518 DOI: 10.1242/jeb.242490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 11/19/2021] [Indexed: 11/20/2022]
Abstract
A remarkable diversity of lateral line patterns exists in adult teleost fishes, the basis of which is largely unknown. By analysing the lateral line patterns and organ numbers in 29 Oryzias species and strains we report a rapid diversification of the lateral line system within this genus. We show a strong dependence of lateral line elaboration (number of neuromasts per cluster, number of parallel lateral lines) on adult species body size irrespective of phylogenetic relationships. In addition, we report that the degree of elaboration of the anterior lateral line, posterior lateral line and caudal neuromast clusters is tightly linked within species, arguing for a globally coordinated mechanism controlling lateral line organ numbers and patterns. We provide evidence for a polygenic control over neuromast numbers and positioning in the genus Oryzias. Our data also indicate that the diversity in lateral lines can arise as a result of differences in patterning both during embryonic development and post-embryonically, where simpler embryonic patterns generate less complex adult patterns and organ numbers, arguing for a linkage between the two processes.
Collapse
Affiliation(s)
- Ali Seleit
- Laboratory of Clonal Analysis of Post-Embryonic Stem Cells, Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg Universität, 69120 Heidelberg, Germany.,The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (HBIGS), University of Heidelberg, 69120Heidelberg, Germany
| | - Satoshi Ansai
- Laboratory of Bioresources, National Institute for Basic Biology Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Kazunori Yamahira
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Kawilarang W A Masengi
- Faculty of Fisheries and Marine Science, Sam Ratulangi University, 95115 Manado, Indonesia
| | - Kiyoshi Naruse
- Laboratory of Bioresources, National Institute for Basic Biology Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Lázaro Centanin
- Laboratory of Clonal Analysis of Post-Embryonic Stem Cells, Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg Universität, 69120 Heidelberg, Germany
| |
Collapse
|
9
|
García-Cobos D, Gómez-Sánchez DA, Crowe-Riddell JM, Sanders KL, Molina J. Ecological and sexual roles of scale mechanoreceptors in two species of Neotropical freshwater snake (Dipsadinae: Helicops). Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Understanding the roles of ecological and sexual selection in the variation of sensory systems may elucidate aspects of the natural history of organisms. Little is known about the evolution of mechanoreception in snakes and how the function and structure of mechanoreceptors vary between species or sexes. Here, we describe the internal and external morphology of cephalic mechanoreceptor sensilla and quantify inter- and intraspecific variation in four sensilla traits of two freshwater snake species that differ in their habitat and diet preferences, Helicops pastazae and Helicops angulatus, by combining scanning electron microscopy (SEM), histological techniques and image analyses. SEM showed sensilla as prominent evaginations of the epidermis surrounded by concentric rings, with H. pastazae having larger and more heterogeneous sensilla. In both species, histology showed a reduction in the outer epidermal layer above the sensilla with a grouping of dermally derived central cells below it. Higher values of sensilla traits were found in H. pastazae, except for the chin-shields. We also found that males of both species had significantly higher values of sensilla traits on all of the scales examined. We hypothesize that the variation in both qualitative and quantitative traits in scale sensilla might be a consequence of differences in foraging and/or reproductive strategies between species and sexes.
Collapse
Affiliation(s)
- Daniela García-Cobos
- Subdirección de Investigaciones, Colecciones Biológicas, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Claustro de San Agustín, Villa de Leyva, Boyacá, Colombia
- Museo de Historia Natural C.J. Marinkelle, Universidad de los Andes, Departamento de Ciencias Biológicas, Bogotá D.C., Colombia
| | - Diego A Gómez-Sánchez
- Reserva Natural Rey Zamuro – Matarredonda, San Martín de los Llanos, Dpto. Meta, Colombia
| | - Jenna M Crowe-Riddell
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48100, USA
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Kate L Sanders
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Jorge Molina
- Centro de Investigaciones en Microbiología y Parasitología Tropical (CIMPAT), Universidad de los Andes, Departamento de Ciencias Biológicas, Bogotá D.C., Colombia
| |
Collapse
|
10
|
Seleit A, Gross K, Onistschenko J, Hoang OP, Theelke J, Centanin L. Local tissue interactions govern pLL patterning in medaka. Dev Biol 2021; 481:1-13. [PMID: 34517003 DOI: 10.1016/j.ydbio.2021.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/12/2021] [Accepted: 09/03/2021] [Indexed: 11/03/2022]
Abstract
Vertebrate organs are arranged in a stereotypic, species-specific position along the animal body plan. Substantial morphological variation exists between related species, especially so in the vastly diversified teleost clade. It is still unclear how tissues, organs and systems can accommodate such diverse scaffolds. Here, we use the distinctive arrangement of neuromasts in the posterior lateral line (pLL) system of medaka fish to address the tissue-interactions defining a pattern. We show that patterning in this peripheral nervous system is established by autonomous organ precursors independent of neuronal wiring. In addition, we target the keratin 15 gene to generate stuck-in-the-midline (siml) mutants, which display epithelial lesions and a disrupted pLL patterning. By using siml/wt chimeras, we determine that the aberrant siml pLL pattern depends on the mutant epithelium, since a wild type epithelium can rescue the siml phenotype. Inducing epithelial lesions by 2-photon laser ablation during pLL morphogenesis phenocopies siml genetic mutants and reveals that epithelial integrity defines the final position of the embryonic pLL neuromasts. Our results using the medaka pLL disentangle intrinsic from extrinsic properties during the establishment of a sensory system. We speculate that intrinsic programs guarantee proper organ morphogenesis, while instructive interactions from surrounding tissues facilitates the accommodation of sensory organs to the diverse body plans found among teleosts.
Collapse
Affiliation(s)
- Ali Seleit
- Laboratory of Clonal Analysis of Post-Embryonic Stem Cells, Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Universität Heidelberg, 69120, Heidelberg, Germany; Heidelberg Biosciences International Graduate School (HBIGS), Universität Heidelberg, Heidelberg, Germany
| | - Karen Gross
- Laboratory of Clonal Analysis of Post-Embryonic Stem Cells, Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Universität Heidelberg, 69120, Heidelberg, Germany; Heidelberg Biosciences International Graduate School (HBIGS), Universität Heidelberg, Heidelberg, Germany
| | - Jasmin Onistschenko
- Laboratory of Clonal Analysis of Post-Embryonic Stem Cells, Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Universität Heidelberg, 69120, Heidelberg, Germany; Heidelberg Biosciences International Graduate School (HBIGS), Universität Heidelberg, Heidelberg, Germany
| | - Oi Pui Hoang
- Laboratory of Clonal Analysis of Post-Embryonic Stem Cells, Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Universität Heidelberg, 69120, Heidelberg, Germany
| | - Jonas Theelke
- Laboratory of Clonal Analysis of Post-Embryonic Stem Cells, Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Universität Heidelberg, 69120, Heidelberg, Germany
| | - Lázaro Centanin
- Laboratory of Clonal Analysis of Post-Embryonic Stem Cells, Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Universität Heidelberg, 69120, Heidelberg, Germany.
| |
Collapse
|
11
|
Ecological predictors of lateral line asymmetry in stickleback (Gasterosteus aculeatus). Evol Ecol 2021. [DOI: 10.1007/s10682-021-10117-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Kakioka R, Kume M, Ishikawa A, Ansai S, Hosoki TK, Yamasaki YY, Nagano AJ, Toyoda A, Kitano J. Genetic basis for variation in the number of cephalic pores in a hybrid zone between closely related species of goby, Gymnogobius breunigii and Gymnogobius castaneus. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Populations or species exploiting different habitats can differ in sensory perception as a result of divergent adaptation. In bony fish, the water current is perceived via neuromasts, the end organ of the lateral line system. Although fish in different habitats are known to vary in neuromasts, we know little about the genetic basis for such variation. Here, we investigate the genetic basis for variation in supraorbital neuromasts in a hybrid zone between the Japanese gobies Gymnogobius breunigii and Gymnogobius castaneus. The former has supraorbital canal neuromasts with six cephalic pores, whereas the latter has only superficial neuromasts with no canals or pores in the supraorbital region. Our genomic analysis showed that G. breunigii and G. castaneus occur mainly in the lower and mid/upper reaches, respectively. In a river in northern Japan, hybrids were found at the sites between the habitats of the two species. These hybrids exhibited anomalies of cephalic pores. Using this hybrid zone, we conducted genome-wide association studies and identified one locus significantly associated with the number of pores. Genomic cline analysis in the hybrid zone demonstrated that this locus exhibited a higher introgression rate compared with the genomic background, indicating the possibility of adaptive introgression.
Collapse
Affiliation(s)
- Ryo Kakioka
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Manabu Kume
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Asano Ishikawa
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, The Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540,Japan
| | - Satoshi Ansai
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Takuya K Hosoki
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, The Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540,Japan
| | - Yo Y Yamasaki
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Shiga 520-2194,Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540,Japan
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, The Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540,Japan
| |
Collapse
|
13
|
Sayed RKA, Abd-El Aziz NA, Ibrahim IA, Mokhtar DM. Structural, ultrastructural, and functional aspects of the skin of the upper lip of silver carp (Hypophthalmichthys molitrix). Microsc Res Tech 2021; 84:1821-1833. [PMID: 33615621 DOI: 10.1002/jemt.23741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/24/2021] [Accepted: 02/04/2021] [Indexed: 11/07/2022]
Abstract
This study was carried out to analyze the architecture of the skin of the upper lip region in silver carp fishes using light, scanning, and transmission electron microscopies. The skin was composed of epidermis, dermis, and hypodermis. The epidermis of the upper lip was characterized by the presence of large number of metachromatic mucous goblet cells, which showed positive reaction with Periodic Acid-Schiff (PAS), Alcian blue (AB), and toluidine blue. The electroreceptive lateral line system was organized into ampullary and tuberous organs. The scanning electron microscopy showed that the surface of the skin of upper lip was covered by microridges and characterized by the presence of taste buds and openings of lateral line system. As observed by transmission electron microscopy, the cytoplasm of the epidermal layers appeared electron-dense except for the superficial layer, where the cytoplasm was electron-lucent and contained many vacuoles and few profiles of rER. Moreover, the epidermis contained rodlet cells and stem cells. Few organelles were found within the cytoplasm of club cells. Neutrophils and eosinophilic granular cells were also demonstrated as important immune cells in the epidermis of the upper lip. Furthermore, lymphocytes and basophils could be identified with macrophage in the epidermal layer of the upper lip. Numerous telocytes were demonstrated between the collagen fibers of the dermis and bundles of myelinated nerve fibers. In conclusion, the skin of the upper lip region of silver carp displayed many sensory and immunological characteristic features.
Collapse
Affiliation(s)
- Ramy K A Sayed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Nora A Abd-El Aziz
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Ismail A Ibrahim
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Doaa M Mokhtar
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
14
|
Mobley RB, Boughman JW. Variation in the Sensory Space of Three-spined Stickleback Populations. Integr Comp Biol 2020; 61:50-61. [PMID: 33382869 DOI: 10.1093/icb/icaa145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The peripheral sensory systems, whose morphological attributes help determine the acquisition of distinct types of information, provide a means to quantitatively compare multiple modalities of a species' sensory ecology. We used morphological metrics to characterize multiple sensory modalities-the visual, olfactory, and mechanosensory lateral line sensory systems-for Gasterosteus aculeatus, the three-spined stickleback, to compare how sensory systems vary in animals that evolve in different ecological conditions. We hypothesized that the dimensions of sensory organs and correlations among sensory systems vary in populations adapted to marine and freshwater environments, and have diverged further among freshwater lake-dwelling populations. Our results showed that among environments, fish differed in which senses are relatively elaborated or reduced. When controlling for body length, littoral fish had larger eyes, more neuromasts, and smaller olfactory tissue area than pelagic or marine populations. We also found differences in the direction and magnitude of correlations among sensory systems for populations even within the same habitat type. Our data suggest that populations take different trajectories in how visual, olfactory, and lateral line systems respond to their environment. For the populations we studied, sensory modalities do not conform in a predictable way to the ecological categories we assigned.
Collapse
Affiliation(s)
- Robert B Mobley
- Department of Integrative Biology, Ecology, Evolutionary Biology and Behavior, BEACON, Michigan State University, East Lansing, MI, USA
| | - Janette W Boughman
- Department of Integrative Biology, Ecology, Evolutionary Biology and Behavior, BEACON, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
15
|
Ahnelt H, Ramler D, Madsen MØ, Jensen LF, Windhager S. Diversity and sexual dimorphism in the head lateral line system in North Sea populations of threespine sticklebacks, Gasterosteus aculeatus (Teleostei: Gasterosteidae). ZOOMORPHOLOGY 2020. [DOI: 10.1007/s00435-020-00513-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AbstractThe mechanosensory lateral line of fishes is a flow sensing system and supports a number of behaviors, e.g. prey detection, schooling or position holding in water currents. Differences in the neuromast pattern of this sensory system reflect adaptation to divergent ecological constraints. The threespine stickleback, Gasterosteus aculeatus, is known for its ecological plasticity resulting in three major ecotypes, a marine type, a migrating anadromous type and a resident freshwater type. We provide the first comparative study of the pattern of the head lateral line system of North Sea populations representing these three ecotypes including a brackish spawning population. We found no distinct difference in the pattern of the head lateral line system between the three ecotypes but significant differences in neuromast numbers. The anadromous and the brackish populations had distinctly less neuromasts than their freshwater and marine conspecifics. This difference in neuromast number between marine and anadromous threespine stickleback points to differences in swimming behavior. We also found sexual dimorphism in neuromast number with males having more neuromasts than females in the anadromous, brackish and the freshwater populations. But no such dimorphism occurred in the marine population. Our results suggest that the head lateral line of the three ecotypes is under divergent hydrodynamic constraints. Additionally, sexual dimorphism points to divergent niche partitioning of males and females in the anadromous and freshwater but not in the marine populations. Our findings imply careful sampling as an important prerequisite to discern especially between anadromous and marine threespine sticklebacks.
Collapse
|
16
|
Nickles KR, Hu Y, Majoris JE, Buston PM, Webb JF. Organization and Ontogeny of a Complex Lateral Line System in a Goby (Elacatinus lori), with a Consideration of Function and Ecology. COPEIA 2020. [DOI: 10.1643/cg-19-341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Katie R. Nickles
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, Rhode Island 02881; (JFW) . Send reprint requests to JFW
| | - Yinan Hu
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, Rhode Island 02881; (JFW) . Send reprint requests to JFW
| | - John E. Majoris
- Department of Biology and Marine Program, Boston University, 5 Cummington Street, Boston, Massachusetts 02215
| | - Peter M. Buston
- Department of Biology and Marine Program, Boston University, 5 Cummington Street, Boston, Massachusetts 02215
| | - Jacqueline F. Webb
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, Rhode Island 02881; (JFW) . Send reprint requests to JFW
| |
Collapse
|
17
|
Taugbøl A, Quinn TP, Østbye K, Asbjørn Vøllestad L. Allometric relationships in morphological traits associated with foraging, swimming ability, and predator defense reveal adaptations toward brackish and freshwater environments in the threespine stickleback. Ecol Evol 2020; 10:13412-13426. [PMID: 33304548 PMCID: PMC7713926 DOI: 10.1002/ece3.6945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 11/09/2022] Open
Abstract
Freshwater colonization by threespine stickleback has led to divergence in morphology between ancestral marine and derived freshwater populations, making them ideal for studying natural selection on phenotypes. In an open brackish-freshwater system, we previously discovered two genetically distinct stickleback populations that also differ in geometric shape: one mainly found in the brackish water lagoon and one throughout the freshwater system. As shape and size are not perfectly correlated, the aim of this study was to identify the morphological trait(s) that separated the populations in geometric shape. We measured 23 phenotypes likely to be important for foraging, swimming capacity, and defense against predation. The lateral plate morphs in freshwater displayed few significant changes in trait sizes, but the low plated expressed feeding traits more associated with benthic habitats. When comparing the completely plated genetically assigned populations, the freshwater, the hybrids, the migrants and the lagoon fish, many of the linear traits had different slopes and intercepts in trait-size regressions, precluding our ability to directly compare all traits simultaneously, which most likely results from low variation in body length for the lagoon and migrant population. We found the lagoon stickleback population to be more specialized toward the littoral zone, displaying benthic traits such as large, deep bodies with smaller eyes compared to the freshwater completely plated morph. Further, the lagoon and migrant fish had an overall higher body coverage of lateral plates compared to freshwater fish, and the dorsal and pelvic spines were longer. Evolutionary constraints due to allometric scaling relationships could explain the observed, overall restricted, differences in morphology between the sticklebacks in this study, as most traits have diversified in common allometric trajectories. The observed differences in foraging and antipredation traits between the fish with a lagoon and freshwater genetic signature are likely a result of genetic or plastic adaptations toward brackish and freshwater environments.
Collapse
Affiliation(s)
- Annette Taugbøl
- Department of BioscienceCentre for Ecological and Evolutionary Synthesis (CEES)University of OsloBlindernNorway
- Human Dimension DepartmentNorwegian Institute for Nature Research (NINA)LillehammerNorway
| | - Thomas P. Quinn
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWAUSA
| | - Kjartan Østbye
- Department of BioscienceCentre for Ecological and Evolutionary Synthesis (CEES)University of OsloBlindernNorway
- Faculty of Applied Ecology, Agricultural Sciences and BiotechnologyDepartment of Forestry and Wildlife ManagementInland Norway University of Applied SciencesKoppangNorway
| | - Leif Asbjørn Vøllestad
- Department of BioscienceCentre for Ecological and Evolutionary Synthesis (CEES)University of OsloBlindernNorway
| |
Collapse
|
18
|
Body-generated hydrodynamic flows influence male–male contests and female mate choice in a freshwater fish. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Effects of multiple stressors on fish shoal collective motion are independent and vary with shoaling metric. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.07.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Archambeault SL, Bärtschi LR, Merminod AD, Peichel CL. Adaptation via pleiotropy and linkage: Association mapping reveals a complex genetic architecture within the stickleback Eda locus. Evol Lett 2020; 4:282-301. [PMID: 32774879 PMCID: PMC7403726 DOI: 10.1002/evl3.175] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/04/2020] [Accepted: 04/29/2020] [Indexed: 11/26/2022] Open
Abstract
Genomic mapping of the loci associated with phenotypic evolution has revealed genomic "hotspots," or regions of the genome that control multiple phenotypic traits. This clustering of loci has important implications for the speed and maintenance of adaptation and could be due to pleiotropic effects of a single mutation or tight genetic linkage of multiple causative mutations affecting different traits. The threespine stickleback (Gasterosteus aculeatus) is a powerful model for the study of adaptive evolution because the marine ecotype has repeatedly adapted to freshwater environments across the northern hemisphere in the last 12,000 years. Freshwater ecotypes have repeatedly fixed a 16 kilobase haplotype on chromosome IV that contains Ectodysplasin (Eda), a gene known to affect multiple traits, including defensive armor plates, lateral line sensory hair cells, and schooling behavior. Many additional traits have previously been mapped to a larger region of chromosome IV that encompasses the Eda freshwater haplotype. To identify which of these traits specifically map to this adaptive haplotype, we made crosses of rare marine fish heterozygous for the freshwater haplotype in an otherwise marine genetic background. Further, we performed fine-scale association mapping in a fully interbreeding, polymorphic population of freshwater stickleback to disentangle the effects of pleiotropy and linkage on the phenotypes affected by this haplotype. Although we find evidence that linked mutations have small effects on a few phenotypes, a small 1.4-kb region within the first intron of Eda has large effects on three phenotypic traits: lateral plate count, and both the number and patterning of the posterior lateral line neuromasts. Thus, the Eda haplotype is a hotspot of adaptation in stickleback due to both a small, pleiotropic region affecting multiple traits as well as multiple linked mutations affecting additional traits.
Collapse
Affiliation(s)
- Sophie L. Archambeault
- Institute of Ecology and EvolutionUniversity of BernBern3012Switzerland
- Graduate Program in Molecular and Cellular BiologyUniversity of WashingtonSeattleWashington98195
- Divisions of Basic Sciences and Human BiologyFred Hutchinson Cancer Research CenterSeattleWashington98109
| | - Luis R. Bärtschi
- Institute of Ecology and EvolutionUniversity of BernBern3012Switzerland
| | | | - Catherine L. Peichel
- Institute of Ecology and EvolutionUniversity of BernBern3012Switzerland
- Graduate Program in Molecular and Cellular BiologyUniversity of WashingtonSeattleWashington98195
- Divisions of Basic Sciences and Human BiologyFred Hutchinson Cancer Research CenterSeattleWashington98109
| |
Collapse
|
21
|
Planidin N, Reimchen T. Spatial, sexual, and rapid temporal differentiation in neuromast expression on lateral plates of Haida Gwaii threespine stickleback (Gasterosteus aculeatus). CAN J ZOOL 2019. [DOI: 10.1139/cjz-2019-0005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lateral lines, a major sensory modality in fishes, are diverse among taxa, but their intraspecific variation has received limited attention. We examined numbers of superficial neuromasts on the buttressing lateral plates (LP) of 1910 threespine stickleback (Gasterosteus aculeatus Linnaeus, 1758) from 26 ecologically and morphologically diverse populations on the Haida Gwaii archipelago, western Canada. Extending from previous studies, we predicted that (i) highly stained dystrophic localities would have threespine stickleback with elevated numbers of neuromasts per plate due to a greater reliance on non-visual sensory modalities and (ii) that LP count and neuromast numbers per plate would functionally covary with predatory assemblage. We found that there were no differences in neuromast count across major habitats (marine, lake, stream), but clear-water populations and those with predatory fish had significantly more neuromasts per plate than most populations in highly stained dystrophic lakes, the effects being accentuated on the first buttressing plate (LP4). We also report the first evidence that neuromast counts per plate are sexually dimorphic, with males having a greater density of neuromasts in most populations. Two transplant experiments between ecologically opposite habitats indicate that within 12 generations, neuromast counts per plate can rapidly shift in response to a change in habitat.
Collapse
Affiliation(s)
- N.P. Planidin
- Department of Biology, University of Victoria, P.O. Box 3020, Victoria, BC V8W 3N5, Canada
- Department of Biology, University of Victoria, P.O. Box 3020, Victoria, BC V8W 3N5, Canada
| | - T.E. Reimchen
- Department of Biology, University of Victoria, P.O. Box 3020, Victoria, BC V8W 3N5, Canada
- Department of Biology, University of Victoria, P.O. Box 3020, Victoria, BC V8W 3N5, Canada
| |
Collapse
|
22
|
Pike TW, Ramsey M, Wilkinson A. Environmentally induced changes to brain morphology predict cognitive performance. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0287. [PMID: 30104432 DOI: 10.1098/rstb.2017.0287] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2018] [Indexed: 11/12/2022] Open
Abstract
The relationship between the size and structure of a species' brain and its cognitive capacity has long interested scientists. Generally, this work relates interspecific variation in brain anatomy with performance on a variety of cognitive tasks. However, brains are known to show considerable short-term plasticity in response to a range of social, ecological and environmental factors. Despite this, we have a remarkably poor understanding of how this impacts on an animal's cognitive performance. Here, we non-invasively manipulated the relative size of brain regions associated with processing visual and chemical information in fish (the optic tectum and olfactory bulbs, respectively). We then tested performance in a cognitive task in which information from the two sensory modalities was in conflict. Although the fish could effectively use both visual and chemical information if presented in isolation, when they received cues from both modalities simultaneously, those with a relatively better developed optic tectum showed a greater reliance on visual information, while individuals with relatively better developed olfactory bulbs showed a greater reliance on chemical information. These results suggest that short-term changes in brain structure, possibly resulting from an attempt to minimize the costs of developing unnecessary but energetically expensive brain regions, may have marked effects on cognitive performance.This article is part of the theme issue 'Causes and consequences of individual differences in cognitive abilities'.
Collapse
Affiliation(s)
- Thomas W Pike
- School of Life Sciences, University of Lincoln, Lincoln LN6 7TS, UK
| | - Michael Ramsey
- School of Life Sciences, University of Lincoln, Lincoln LN6 7TS, UK.,School of Science and Technology, Nottingham Trent University, Nottingham NG1 4FQ, UK
| | - Anna Wilkinson
- School of Life Sciences, University of Lincoln, Lincoln LN6 7TS, UK.,Wildlife Research Center, Kyoto University, Kyoto 606-8203, Japan
| |
Collapse
|
23
|
Mogdans J. Sensory ecology of the fish lateral-line system: Morphological and physiological adaptations for the perception of hydrodynamic stimuli. JOURNAL OF FISH BIOLOGY 2019; 95:53-72. [PMID: 30873616 DOI: 10.1111/jfb.13966] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
Fishes are able to detect and perceive the hydrodynamic and physical environment they inhabit and process this sensory information to guide the resultant behaviour through their mechanosensory lateral-line system. This sensory system consists of up to several thousand neuromasts distributed across the entire body of the animal. Using the lateral-line system, fishes perceive water movements of both biotic and abiotic origin. The anatomy of the lateral-line system varies greatly between and within species. It is still a matter of debate as to how different lateral-line anatomies reflect adaptations to the hydrodynamic conditions to which fishes are exposed. While there are many accounts of lateral-line system adaptations for the detection of hydrodynamic signals in distinct behavioural contexts and environments for specific fish species, there is only limited knowledge on how the environment influences intra and interspecific variations in lateral-line morphology. Fishes live in a wide range of habitats with highly diverse hydrodynamic conditions, from pools and lakes and slowly moving deep-sea currents to turbulent and fast running rivers and rough coastal surf regions. Perhaps surprisingly, detailed characterisations of the hydrodynamic properties of natural water bodies are rare. In particular, little is known about the spatio-temporal patterns of the small-scale water motions that are most relevant for many fish behaviours, making it difficult to relate environmental stimuli to sensory system morphology and function. Humans use bodies of water extensively for recreational, industrial and domestic purposes and in doing so often alter the aquatic environment, such as through the release of toxicants, the blocking of rivers by dams and acoustic noise emerging from boats and construction sites. Although the effects of anthropogenic interferences are often not well understood or quantified, it seems obvious that they change not only water quality and appearance but also, they alter hydrodynamic conditions and thus the types of hydrodynamic stimuli acting on fishes. To date, little is known about how anthropogenic influences on the aquatic environment affect the morphology and function of sensory systems in general and the lateral-line system in particular. This review starts out by briefly describing naturally occurring hydrodynamic stimuli and the morphology and neurobiology of the fish lateral-line system. In the main part, adaptations of the fish lateral-line system for the detection and analysis of water movements during various behaviours are presented. Finally, anthropogenic influences on the aquatic environment and potential effects on the fish lateral-line system are discussed.
Collapse
|
24
|
Edgley DE, Genner MJ. Adaptive Diversification of the Lateral Line System during Cichlid Fish Radiation. iScience 2019; 16:1-11. [PMID: 31146127 PMCID: PMC6542376 DOI: 10.1016/j.isci.2019.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/06/2019] [Accepted: 05/10/2019] [Indexed: 01/19/2023] Open
Abstract
The mechanosensory lateral line system is used by fishes to sense hydrodynamic stimuli in their environment. It provides information about flow regimes, proximity to substrate, and the presence and identity of prey and predators and represents a means of receiving communication signals from other fish. Thus we may expect lateral line system structures to be under strong divergent selection during adaptive radiation. Here, we used X-ray micro-computed tomography scans to quantify variation in cranial lateral line canal morphology within the adaptive radiation of Lake Malawi cichlids. We report that cranial lateral line canal morphology is strongly correlated with diet and other aspects of craniofacial morphology, including the shape of oral jaws. These results indicate an adaptive role for the lateral line system in prey detection and suggest that diversification of this system has taken an important role in the spectacular evolution of Lake Malawi's cichlid fish diversity.
Collapse
Affiliation(s)
- Duncan E Edgley
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK.
| | - Martin J Genner
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK.
| |
Collapse
|
25
|
Diamond KM, Lagarde R, Schoenfuss HL, Walker JA, Ponton D, Blob RW. Relationship of escape performance with predator regime and ontogeny in fishes. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Kelly M Diamond
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - RaphaëL Lagarde
- Hydrô Réunion, Z.I des Sables, Etang Salé, La Réunion, France
- ENTROPIE, IRD-Université de La Réunion-CNRS, Laboratoire d’Excellence CORAIL, c/o Université de Perpignan Via Domitia, Perpignan, France
| | - Heiko L Schoenfuss
- Aquatic Toxicology Laboratory, Saint Cloud State University, Saint Cloud, MN, USA
| | - Jeffrey A Walker
- Department of Biological Sciences, University of Southern Maine, Portland, ME, USA
| | - Dominique Ponton
- ENTROPIE, IRD-Université de La Réunion-CNRS, Laboratoire d’Excellence CORAIL, c/o Université de Perpignan Via Domitia, Perpignan, France
| | - Richard W Blob
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| |
Collapse
|
26
|
Torres-Dowdall J, Rometsch SJ, Aguilera G, Goyenola G, Meyer A. Asymmetry in genitalia is in sync with lateralized mating behavior but not with the lateralization of other behaviors. Curr Zool 2019; 66:71-81. [PMID: 32467707 PMCID: PMC7245012 DOI: 10.1093/cz/zoz019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/14/2019] [Indexed: 12/29/2022] Open
Abstract
Asymmetries in bilateral organisms attract a lot of curiosity given that they are conspicuous departures from the norm. They allow the investigation of the integration at different levels of biological organization. Here we study whether and how behavioral and asymmetrical anatomical traits co-evolved and work together. We ask if asymmetry is determined locally for each trait or at a whole individual level in a species bearing conspicuous asymmetrical genitalia. Asymmetric genitalia evolved in many species; however, in most cases the direction of asymmetry is fixed. Therefore, it has been rarely determined if there is an association between the direction of asymmetry in genitalia and other traits. In onesided livebearer fish of the genus Jenynsia (Cyprinodontiformes, Anablepidae), the anal fin of males is modified into a gonopodium, an intromittent organ that serves to inseminate females. The gonopodium shows a conspicuous asymmetry, with its tip bending either to the left or the right. By surveying 13 natural populations of Jenynsia lineata, we found that both genital morphs are equally common in wild populations. In a series of experiments in a laboratory population, we discovered asymmetry and lateralization for multiple other traits; yet, the degree of integration varied highly among them. Lateralization in exploratory behavior in response to different stimuli was not associated with genital morphology. Interestingly, the direction of genital asymmetry was positively correlated with sidedness of mating preference and the number of neuromasts in the lateral line. This suggests integration of functionally linked asymmetric traits; however, there is no evidence that asymmetry is determined at the whole individual level in our study species.
Collapse
Affiliation(s)
- Julián Torres-Dowdall
- Department of Biology, University of Konstanz, Konstanz, Germany.,Zukunftskolleg, University of Konstanz, Konstanz, Germany
| | - Sina J Rometsch
- Department of Biology, University of Konstanz, Konstanz, Germany.,Hector Fellow Academy, Karlsruhe, Germany
| | - Gastón Aguilera
- Unidad Ejecutora Lillo (CONICET), Fundación Miguel Lillo, Tucumán, Argentina
| | - Guillermo Goyenola
- Departamento de Ecología y Gestión Ambiental, Centro Universitario Regional Del Este, Universidad de la República, Uruguay
| | - Axel Meyer
- Department of Biology, University of Konstanz, Konstanz, Germany.,Hector Fellow Academy, Karlsruhe, Germany
| |
Collapse
|
27
|
Carrillo A, Van Le D, Byron M, Jiang H, McHenry MJ. Canal neuromasts enhance foraging in zebrafish (Danio rerio). BIOINSPIRATION & BIOMIMETICS 2019; 14:035003. [PMID: 30856616 DOI: 10.1088/1748-3190/ab0eb5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Aquatic animals commonly sense flow using superficial neuromasts (SNs), which are receptors that extend from the body's surface. The lateral line of fishes is unique among these systems because it additionally possesses receptors, the canal neuromasts (CNs), that are recessed within a channel. The lateral line has inspired the development of engineered sensors and concepts in the analysis of flow fields for submersible navigation. The biophysics of CNs are known to be different from the SNs and thereby offer a distinct submodality. However, it is generally unclear whether CNs play a distinct role in behavior. We therefore tested whether CNs enhance foraging in the dark by zebrafish (Danio rerio), a behavior that we elicited with a vibrating rod. We found that juvenile fish, which have only SNs, bite at this rod at about one-third the rate and from as little as one-third the distance of adults for a high-frequency stimulus (50 < f < 100 Hz). We used novel techniques for manipulating the lateral line in adults to find that CNs offered only a modest benefit at a lower frequency (20 Hz) and that foraging was mediated entirely by cranial neuromasts. Consistent with our behavioral results, biophysical models predicted CNs to be more than an order of magnitude more sensitive than SNs at high frequencies. This enhancement helps to overcome the rapid spatial decay in high-frequency components in the flow around the stimulus. These findings contrast what has been previously established for fishes that are at least ten-times the length of zebrafish, which use trunk CNs to localize prey. Therefore, CNs generally enhance foraging, but in a manner that varies with the size of the fish and its prey. These results have the potential to improve our understanding of flow sensing in aquatic animals and engineered systems.
Collapse
Affiliation(s)
- Andres Carrillo
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, United States of America
| | | | | | | | | |
Collapse
|
28
|
Kelley JL, Chapuis L, Davies WIL, Collin SP. Sensory System Responses to Human-Induced Environmental Change. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00095] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
29
|
Higham TE, Rogers SM, Langerhans RB, Jamniczky HA, Lauder GV, Stewart WJ, Martin CH, Reznick DN. Speciation through the lens of biomechanics: locomotion, prey capture and reproductive isolation. Proc Biol Sci 2017; 283:rspb.2016.1294. [PMID: 27629033 DOI: 10.1098/rspb.2016.1294] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/24/2016] [Indexed: 11/12/2022] Open
Abstract
Speciation is a multifaceted process that involves numerous aspects of the biological sciences and occurs for multiple reasons. Ecology plays a major role, including both abiotic and biotic factors. Whether populations experience similar or divergent ecological environments, they often adapt to local conditions through divergence in biomechanical traits. We investigate the role of biomechanics in speciation using fish predator-prey interactions, a primary driver of fitness for both predators and prey. We highlight specific groups of fishes, or specific species, that have been particularly valuable for understanding these dynamic interactions and offer the best opportunities for future studies that link genetic architecture to biomechanics and reproductive isolation (RI). In addition to emphasizing the key biomechanical techniques that will be instrumental, we also propose that the movement towards linking biomechanics and speciation will include (i) establishing the genetic basis of biomechanical traits, (ii) testing whether similar and divergent selection lead to biomechanical divergence, and (iii) testing whether/how biomechanical traits affect RI. Future investigations that examine speciation through the lens of biomechanics will propel our understanding of this key process.
Collapse
Affiliation(s)
- Timothy E Higham
- Department of Biology, University of California, Riverside, CA, USA
| | - Sean M Rogers
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - R Brian Langerhans
- Department of Biological Sciences and W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA
| | - Heather A Jamniczky
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - George V Lauder
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | | | | | - David N Reznick
- Department of Biology, University of California, Riverside, CA, USA
| |
Collapse
|
30
|
Currey MC, Bassham S, Perry S, Cresko WA. Developmental timing differences underlie armor loss across threespine stickleback populations. Evol Dev 2017; 19:231-243. [PMID: 29115024 DOI: 10.1111/ede.12242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Comparing ontogenetic patterns within a well-described evolutionary context aids in inferring mechanisms of change, including heterochronies or deletion of developmental pathways. Because selection acts on phenotypes throughout ontogeny, any within-taxon developmental variation has implications for evolvability. We compare ontogenetic order and timing of locomotion and defensive traits in three populations of threespine stickleback that have evolutionarily divergent adult forms. This analysis adds to the growing understanding of developmental genetic mechanisms of adaptive change in this evolutionary model species by delineating when chondrogenesis and osteogenesis in two derived populations begin to deviate from the developmental pattern in their immediate ancestors. We found that differences in adult defensive morphologies arise through abolished or delayed initiation of these traits rather than via an overall heterochronic shift, that intra-population ontogenetic variation is increased for some derived traits, and that altered armor developmental timing differentiates the derived populations from each other despite parallels in adult lateral plate armor phenotypes. We found that changes in ossified elements of the pelvic armor are linked to delayed and incomplete development of an early-forming pelvic cartilage, and that this disruption likely presages the variable pelvic vestiges documented in many derived populations.
Collapse
Affiliation(s)
- Mark C Currey
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon
| | - Susan Bassham
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon
| | - Stephen Perry
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon
| | - William A Cresko
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon
| |
Collapse
|
31
|
Chagnaud BP, Engelmann J, Fritzsch B, Glover JC, Straka H. Sensing External and Self-Motion with Hair Cells: A Comparison of the Lateral Line and Vestibular Systems from a Developmental and Evolutionary Perspective. BRAIN, BEHAVIOR AND EVOLUTION 2017; 90:98-116. [PMID: 28988233 DOI: 10.1159/000456646] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Detection of motion is a feature essential to any living animal. In vertebrates, mechanosensory hair cells organized into the lateral line and vestibular systems are used to detect external water or head/body motion, respectively. While the neuronal components to detect these physical attributes are similar between the two sensory systems, the organizational pattern of the receptors in the periphery and the distribution of hindbrain afferent and efferent projections are adapted to the specific functions of the respective system. Here we provide a concise review comparing the functional organization of the vestibular and lateral line systems from the development of the organs to the wiring from the periphery and the first processing stages. The goal of this review is to highlight the similarities and differences to demonstrate how evolution caused a common neuronal substrate to adapt to different functions, one for the detection of external water stimuli and the generation of sensory maps and the other for the detection of self-motion and the generation of motor commands for immediate behavioral reactions.
Collapse
Affiliation(s)
- Boris P Chagnaud
- Ludwig-Maximilians-Universität München, Department Biology II, Division of Neurobiology, Martinsried-Planegg, Germany
| | | | | | | | | |
Collapse
|
32
|
Hinaux H, Devos L, Blin M, Elipot Y, Bibliowicz J, Alié A, Rétaux S. Sensory evolution in blind cavefish is driven by early embryonic events during gastrulation and neurulation. Development 2017; 143:4521-4532. [PMID: 27899509 DOI: 10.1242/dev.141291] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/20/2016] [Indexed: 11/20/2022]
Abstract
Natural variations in sensory systems constitute adaptive responses to the environment. Here, we compared sensory placode development in the blind cave-adapted morph and the eyed river-dwelling morph of Astyanax mexicanus Focusing on the lens and olfactory placodes, we found a trade-off between these two sensory components in the two morphs: from neural plate stage onwards, cavefish have larger olfactory placodes and smaller lens placodes. In a search for developmental mechanisms underlying cavefish sensory evolution, we analyzed the roles of Shh, Fgf8 and Bmp4 signaling, which are known to be fundamental in patterning the vertebrate head and are subtly modulated in space and time during cavefish embryogenesis. Modulating these signaling systems at the end of gastrulation shifted the balance toward a larger olfactory derivative. Olfactory tests to assess potential behavioral outcomes of such developmental evolution revealed that Astyanax cavefish are able to respond to a 105-fold lower concentration of amino acids than their surface-dwelling counterparts. We suggest that similar evolutionary developmental mechanisms may be used throughout vertebrates to drive adaptive sensory specializations according to lifestyle and habitat.
Collapse
Affiliation(s)
- Hélène Hinaux
- DECA group, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette 91198, France
| | - Lucie Devos
- DECA group, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette 91198, France
| | - Maryline Blin
- DECA group, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette 91198, France
| | - Yannick Elipot
- DECA group, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette 91198, France
| | - Jonathan Bibliowicz
- DECA group, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette 91198, France
| | - Alexandre Alié
- DECA group, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette 91198, France
| | - Sylvie Rétaux
- DECA group, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette 91198, France
| |
Collapse
|
33
|
Oke KB, Rolshausen G, LeBlond C, Hendry AP. How Parallel Is Parallel Evolution? A Comparative Analysis in Fishes. Am Nat 2017; 190:1-16. [DOI: 10.1086/691989] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
34
|
Spiller L, Grierson PF, Davies PM, Hemmi J, Collin SP, Kelley JL. Functional diversity of the lateral line system among populations of a native Australian freshwater fish. J Exp Biol 2017; 220:2265-2276. [PMID: 28396354 DOI: 10.1242/jeb.151530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/06/2017] [Indexed: 11/20/2022]
Abstract
Fishes use their mechanoreceptive lateral line system to sense nearby objects by detecting slight fluctuations in hydrodynamic motion within their immediate environment. Species of fish from different habitats often display specialisations of the lateral line system, in particular the distribution and abundance of neuromasts, but the lateral line can also exhibit considerable diversity within a species. Here, we provide the first investigation of the lateral line system of the Australian western rainbowfish (Melanotaenia australis), a species that occupies a diversity of freshwater habitats across semi-arid northwest Australia. We collected 155 individuals from eight populations and surveyed each habitat for environmental factors that may contribute to lateral line specialisation, including water flow, predation risk, habitat structure and prey availability. Scanning electron microscopy and fluorescent dye labelling were used to describe the lateral line system in M. australis, and to examine whether the abundance and arrangement of superficial neuromasts (SNs) varied within and among populations. We found that the SNs of M. australis were present in distinct body regions rather than lines. The abundance of SNs within each body region was highly variable, and also differed among populations and individuals. Variation in SN abundance among populations was best explained by habitat structure and the availability of invertebrate prey. Our finding that specific environmental factors explain among-population variation in a key sensory system suggests that the ability to acquire sensory information is specialised for the particular behavioural needs of the animal.
Collapse
Affiliation(s)
- Lindsey Spiller
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Pauline F Grierson
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Peter M Davies
- Centre of Excellence in Natural Resource Management, The University of Western Australia, Albany, Western Australia 6332, Australia
| | - Jan Hemmi
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia.,UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Shaun P Collin
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia.,UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Jennifer L Kelley
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| |
Collapse
|
35
|
Jiang Y, Peichel CL, Torrance L, Rizvi Z, Thompson S, Palivela VV, Pham H, Ling F, Bolnick DI. Sensory trait variation contributes to biased dispersal of threespine stickleback in flowing water. J Evol Biol 2017; 30:681-695. [PMID: 28029723 DOI: 10.1111/jeb.13035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 12/16/2016] [Accepted: 12/20/2016] [Indexed: 12/13/2022]
Abstract
Gene flow is widely thought to homogenize spatially separate populations, eroding effects of divergent selection. The resulting theory of 'migration-selection balance' is predicated on a common assumption that all genotypes are equally prone to dispersal. If instead certain genotypes are disproportionately likely to disperse, then migration can actually promote population divergence. For example, previous work has shown that threespine stickleback (Gasterosteus aculeatus) differ in their propensity to move up- or downstream ('rheotactic response'), which may facilitate genetic divergence between adjoining lake and stream populations of stickleback. Here, we demonstrate that intraspecific variation in a sensory system (superficial neuromast lines) contributes to this variation in swimming behaviour in stickleback. First, we show that intact neuromasts are necessary for a typical rheotactic response. Next, we showed that there is heritable variation in the number of neuromasts and that stickleback with more neuromasts are more likely to move downstream. Variation in pectoral fin shape contributes to additional variation in rheotactic response. These results illustrate how within-population quantitative variation in sensory and locomotor traits can influence dispersal behaviour, thereby biasing dispersal between habitats and favouring population divergence.
Collapse
Affiliation(s)
- Y Jiang
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - C L Peichel
- Divisions of Basic Sciences and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - L Torrance
- Texas A&M University, Corpus Christi, TX, USA
| | - Z Rizvi
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - S Thompson
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - V V Palivela
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - H Pham
- University of Texas Health Science Center, Houston, TX, USA
| | - F Ling
- Department of Fisheries Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - D I Bolnick
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
36
|
Becker EA, Bird NC, Webb JF. Post-embryonic development of canal and superficial neuromasts and the generation of two cranial lateral line phenotypes. J Morphol 2016; 277:1273-91. [DOI: 10.1002/jmor.20574] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 05/23/2016] [Accepted: 06/18/2016] [Indexed: 01/26/2023]
Affiliation(s)
- Emily A. Becker
- Department of Biological Sciences; University of Rhode Island; 120 Flagg Road Kingston Rhode Island 02881
| | - Nathan C. Bird
- Department of Biological Sciences; University of Rhode Island; 120 Flagg Road Kingston Rhode Island 02881
| | - Jacqueline F. Webb
- Department of Biological Sciences; University of Rhode Island; 120 Flagg Road Kingston Rhode Island 02881
| |
Collapse
|
37
|
Vanderpham JP, Nakagawa S, Senior AM, Closs GP. Habitat-related specialization of lateral-line system morphology in a habitat-generalist and a habitat-specialist New Zealand eleotrid. JOURNAL OF FISH BIOLOGY 2016; 88:1631-1641. [PMID: 26892757 DOI: 10.1111/jfb.12912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 12/27/2015] [Indexed: 06/05/2023]
Abstract
An investigation of intraspecific habitat-related patterns of variation in oculoscapular lateral-line superficial neuromasts (SN) identified a decrease in the ratio of total SNs to pores, and a trend towards decreased asymmetry in SNs in the habitat-generalist common bully Gobiomorphus cotidianus from fluvial habitats compared to lacustrine habitats, suggesting habitat-related phenotypic variability. A greater ratio of pores to SNs, as well as less variation in the total number and asymmetry of SNs observed in the fluvial habitat-specialist redfin bully Gobiomorphus huttoni may provide further evidence of variations in the oculoscapular lateral-line morphology of fluvial habitat G. cotidianus individuals serving as adaptations to more turbulent environments.
Collapse
Affiliation(s)
- J P Vanderpham
- Vanderpham Consulting, 11027 50th Ave SE, Everett, WA, 98208, U.S.A
| | - S Nakagawa
- School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
- Department of Zoology, University of Otago, P. O. Box 56, Dunedin, 9054, New Zealand
| | - A M Senior
- Charles Perkins Centre and School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, 2006, Australia
| | - G P Closs
- Department of Zoology, University of Otago, P. O. Box 56, Dunedin, 9054, New Zealand
| |
Collapse
|
38
|
Sawyer EK, Catania KC. Somatosensory organ topography across the star of the star-nosed mole (Condylura cristata). J Comp Neurol 2016; 524:917-29. [PMID: 26659700 PMCID: PMC4731273 DOI: 10.1002/cne.23943] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 11/06/2022]
Abstract
Quantifying somatosensory receptor distribution in glabrous skin is usually difficult because of the diversity of skin receptor subtypes and their location within the dermis and epidermis. However, the glabrous noses of moles are an exception. In most species of moles, the skin on the nose is covered with domed mechanosensory units known as an Eimer's organs. Eimer's organs contain a stereotyped array of different mechanosensory neurons, meaning that the distribution of mechanosensitive nerve endings can be inferred by visual inspection of the skin surface. Here we detail the distribution of Eimer's organs on the highly derived somatosensory star on the rostrum of the star-nosed mole (Condylura cristata). The star consists of 22 fleshy appendages, or rays, that are covered in Eimer's organs. We find that the density of Eimer's organs increases from proximal to distal locations along the length of the star's rays with a ratio of 1:2.3:3.1 from the surface nearest to the nostril, to the middle part of ray, to the ray tip, respectively. This ratio is comparable to the increase in receptor unit density reported for the human hand, from the palm, to the middle of the digits, to the distal fingertips. We also note that the tactile fovea of the star-nosed mole, located on the medial ventral ray, does not have increased sensory organ density, and we describe these findings in comparison with other sensory fovea.
Collapse
Affiliation(s)
- Eva K Sawyer
- Neuroscience Graduate Program, Vanderbilt University, Nashville, Tennessee, 37240
| | - Kenneth C Catania
- Department of Biological Science, Vanderbilt University, Nashville, Tennessee, 37232
| |
Collapse
|
39
|
Miller SE, Samuk KM, Rennison DJ. An experimental test of the effect of predation upon behaviour and trait correlations in the threespine stickleback. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Sara E. Miller
- Department of Zoology; University of British Columbia; Vancouver BC Canada
| | - Kieran M. Samuk
- Department of Zoology; University of British Columbia; Vancouver BC Canada
| | - Diana J. Rennison
- Department of Zoology; University of British Columbia; Vancouver BC Canada
| |
Collapse
|
40
|
Brown AD, Sisneros JA, Jurasin T, Coffin AB. Effects of Hatchery Rearing on the Structure and Function of Salmonid Mechanosensory Systems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 875:117-24. [PMID: 26610951 DOI: 10.1007/978-1-4939-2981-8_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
This paper reviews recent studies on the effects of hatchery rearing on the auditory and lateral line systems of salmonid fishes. Major conclusions are that (1) hatchery-reared juveniles exhibit abnormal lateral line morphology (relative to wild-origin conspecifics), suggesting that the hatchery environment affects lateral line structure, perhaps due to differences in the hydrodynamic conditions of hatcheries versus natural rearing environments, and (2) hatchery-reared salmonids have a high proportion of abnormal otoliths, a condition associated with reduced auditory sensitivity and suggestive of inner ear dysfunction.
Collapse
Affiliation(s)
- Andrew D Brown
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| | - Joseph A Sisneros
- Departments of Psychology and Biology, University of Washington, Seattle, WA, 98195, USA.
| | - Tyler Jurasin
- Department of Fisheries, Quinault Indian Nation, Taholah, WA, 98587, USA.
| | - Allison B Coffin
- Department of Integrative Physiology and Neuroscience, Washington State University Vancouver, Vancouver, WA, 98686, USA.
| |
Collapse
|
41
|
Bhandiwad AA, Sisneros JA. Revisiting Psychoacoustic Methods for the Assessment of Fish Hearing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 877:157-84. [PMID: 26515314 DOI: 10.1007/978-3-319-21059-9_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Behavioral methods have been critical in the study of auditory perception and discrimination in fishes. In this chapter, we review some of the common methods used in fish psychoacoustics. We discuss associative methods, such as operant, avoidance, and classical conditioning, and their use in constructing audiograms, measuring frequency selectivity, and auditory stream segregation. We also discuss the measurement of innate behavioral responses, such as the acoustic startle response (ASR), prepulse inhibition (PPI), and phonotaxis, and their use in the assessment of fish hearing to determine auditory thresholds and in the testing of mechanisms for sound source localization. For each psychoacoustic method, we provide examples of their use and discuss the parameters and situations where such methods can be best utilized. In the case of the ASR, we show how this method can be used to construct and compare audiograms between two species of larval fishes, the three-spined stickleback (Gasterosteus aculeatus) and the zebrafish (Danio rerio). We also discuss considerations for experimental design with respect to stimulus presentation and threshold criteria and how these techniques can be used in future studies to investigate auditory perception in fishes.
Collapse
Affiliation(s)
- Ashwin A Bhandiwad
- Department of Psychology, University of Washington, Seattle, WA, 98103, USA.
| | - Joseph A Sisneros
- Department of Psychology, University of Washington, Seattle, WA, 98103, USA.,Department of Biology, University of Washington, Seattle, WA, 98103, USA
| |
Collapse
|
42
|
Zakon HH. Human impact on fish sensory systems in the long term: an evolutionary perspective. Integr Zool 2015; 10:83-90. [PMID: 24919803 DOI: 10.1111/1749-4877.12097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Humans have severely impacted global ecosystems and this shows few signs of abating. Many aspects of an animal's biology, including its sensory systems, may be adversely influenced by pollutants and environmental noise. This review focuses on whether and/or how various environmental disturbances disrupt the sensory systems of fishes. As critical as it is to document and understand the current effects of the human footprint, it is also important to consider how organisms might adapt to these impacts over the long term. The present paper outlines the sources of genetic and genomic variation upon which natural selection can act and then reviews examples of known genetic contributions of variation in fish chemosensory, visual and acoustico-lateralis systems.
Collapse
Affiliation(s)
- Harold H Zakon
- Sections of Neurobiology and Integrative Biology, The University of Texas, Austin, TX, USA
| |
Collapse
|
43
|
Lucek K, Sivasundar A, Seehausen O. DISENTANGLING THE ROLE OF PHENOTYPIC PLASTICITY AND GENETIC DIVERGENCE IN CONTEMPORARY ECOTYPE FORMATION DURING A BIOLOGICAL INVASION. Evolution 2014; 68:2619-32. [DOI: 10.1111/evo.12443] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 04/13/2014] [Indexed: 01/09/2023]
Affiliation(s)
- Kay Lucek
- Department of Aquatic Ecology and Evolution; Institute of Ecology and Evolution; University of Bern; Baltzerstrasse 6 CH-3012 Bern Switzerland
- Department of Fish Ecology and Evolution, Center for Ecology; Evolution and Biogeochemistry; EAWAG Swiss Federal Institute of Aquatic Science and Technology; CH-6047 Kastanienbaum Switzerland
| | - Arjun Sivasundar
- Department of Aquatic Ecology and Evolution; Institute of Ecology and Evolution; University of Bern; Baltzerstrasse 6 CH-3012 Bern Switzerland
- Department of Fish Ecology and Evolution, Center for Ecology; Evolution and Biogeochemistry; EAWAG Swiss Federal Institute of Aquatic Science and Technology; CH-6047 Kastanienbaum Switzerland
- National Centre for Biological Sciences; Tata Institute for Fundamental Research; Bellary Road Bangalore 560065 India
| | - Ole Seehausen
- Department of Aquatic Ecology and Evolution; Institute of Ecology and Evolution; University of Bern; Baltzerstrasse 6 CH-3012 Bern Switzerland
- Department of Fish Ecology and Evolution, Center for Ecology; Evolution and Biogeochemistry; EAWAG Swiss Federal Institute of Aquatic Science and Technology; CH-6047 Kastanienbaum Switzerland
| |
Collapse
|
44
|
Mills MG, Greenwood AK, Peichel CL. Pleiotropic effects of a single gene on skeletal development and sensory system patterning in sticklebacks. EvoDevo 2014; 5:5. [PMID: 24499504 PMCID: PMC3976036 DOI: 10.1186/2041-9139-5-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/20/2013] [Indexed: 11/10/2022] Open
Abstract
Background Adaptation to a new environment can be facilitated by co-inheritance of a suite of phenotypes that are all advantageous in the new habitat. Although experimental evidence demonstrates that multiple phenotypes often map to the same genomic regions, it is challenging to determine whether phenotypes are associated due to pleiotropic effects of a single gene or to multiple tightly linked genes. In the threespine stickleback fish (Gasterosteus aculeatus), multiple phenotypes are associated with a genomic region around the gene Ectodysplasin (Eda), but only the presence of bony lateral plates has been conclusively shown to be caused by Eda. Results Here, we ask whether pleiotropy or linkage is responsible for the association between lateral plates and the distribution of the neuromasts of the lateral line. We first identify a strong correlation between plate appearance and changes in the spatial distribution of neuromasts through development. We then use an Eda transgene to induce the formation of ectopic plates in low plated fish, which also results in alterations to neuromast distribution. Our results also show that other loci may modify the effects of Eda on plate formation and neuromast distribution. Conclusions Together, these results demonstrate that Eda has pleiotropic effects on at least two phenotypes, highlighting the role of pleiotropy in the genetic basis of adaptation.
Collapse
Affiliation(s)
| | | | - Catherine L Peichel
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle WA, 98109, USA.
| |
Collapse
|
45
|
McGee MD, Schluter D, Wainwright PC. Functional basis of ecological divergence in sympatric stickleback. BMC Evol Biol 2013; 13:277. [PMID: 24380474 PMCID: PMC3890603 DOI: 10.1186/1471-2148-13-277] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 12/04/2013] [Indexed: 11/10/2022] Open
Abstract
Background The evolution of ecological divergence in closely related species is a key component of adaptive radiation. However, in most examples of adaptive radiation the mechanistic basis of ecological divergence remains unclear. A classic example is seen in the young benthic and limnetic stickleback species pairs of British Columbia. In each pair the benthic species feeds on littoral macroinvertebrates whereas the limnetic feeds on pelagic zooplankton. Previous studies indicate that in both short-term feeding trials and long-term enclosure studies, benthics and limnetics exhibit enhanced performance on their own resource but fare more poorly on the other species’ resource. We examined the functional basis of ecological divergence in the stickleback species pair from Paxton Lake, BC, using biomechanical models of fish feeding applied to morphological traits. We examined the consequences of morphological differences using high speed video of feeding fish. Results Benthic stickleback possess morphological traits that predict high suction generation capacity, including greatly hypertrophied epaxial musculature. In contrast, limnetic stickleback possess traits thought to enhance capture of evasive planktonic prey, including greater jaw protrusion than benthics and greater displacement advantage in both the lower jaw-opening lever system and the opercular four-bar linkage. Kinematic data support the expectations from the morphological analysis that limnetic stickleback exhibit faster strikes and greater jaw protrusion than benthic fish, whereas benthics exert greater suction force on attached prey. Conclusions We reveal a previously unknown suite of complex morphological traits that affect rapid ecological divergence in sympatric stickleback. These results indicate that postglacial divergence in stickleback involves many functional systems and shows the value of investigating the functional consequences of phenotypic divergence in adaptive radiation.
Collapse
Affiliation(s)
- Matthew D McGee
- Department of Evolution and Ecology, University of California Davis, 1 Shields Avenue, Davis, CA 95616, USA.
| | | | | |
Collapse
|
46
|
Lucek K, Sivasundar A, Roy D, Seehausen O. Repeated and predictable patterns of ecotypic differentiation during a biological invasion: lake-stream divergence in parapatric Swiss stickleback. J Evol Biol 2013; 26:2691-709. [DOI: 10.1111/jeb.12267] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 08/12/2013] [Accepted: 09/16/2013] [Indexed: 01/26/2023]
Affiliation(s)
- K. Lucek
- Institute for Ecology and Evolution; University of Bern; Bern Switzerland
- Center for Ecology, Evolution & Biogeochemistry; EAWAG Federal Institute of Aquatic Science and Technology; Kastanienbaum Switzerland
| | - A. Sivasundar
- Institute for Ecology and Evolution; University of Bern; Bern Switzerland
- Center for Ecology, Evolution & Biogeochemistry; EAWAG Federal Institute of Aquatic Science and Technology; Kastanienbaum Switzerland
| | - D. Roy
- Center for Ecology, Evolution & Biogeochemistry; EAWAG Federal Institute of Aquatic Science and Technology; Kastanienbaum Switzerland
| | - O. Seehausen
- Institute for Ecology and Evolution; University of Bern; Bern Switzerland
- Center for Ecology, Evolution & Biogeochemistry; EAWAG Federal Institute of Aquatic Science and Technology; Kastanienbaum Switzerland
| |
Collapse
|
47
|
Genetic and neural modularity underlie the evolution of schooling behavior in threespine sticklebacks. Curr Biol 2013; 23:1884-8. [PMID: 24035541 DOI: 10.1016/j.cub.2013.07.058] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/18/2013] [Accepted: 07/16/2013] [Indexed: 01/25/2023]
Abstract
Although descriptions of striking diversity in animal behavior are plentiful, little is known about the mechanisms by which behaviors change and evolve between groups. To fully understand behavioral evolution, it will be necessary to identify the genetic mechanisms that mediate behavioral change in a natural context. Genetic analysis of behavior can also reveal associations between behavior and morphological or neural phenotypes, providing insight into the proximate mechanisms that control behavior. Relatively few studies to date have successfully identified genes or genomic regions that contribute to behavioral variation among natural populations or species, particularly in vertebrates. Here, we apply genetic approaches to dissect a complex social behavior that has long fascinated biologists, schooling behavior. We performed quantitative trait locus (QTL) analysis of schooling in an F2 intercross between strongly schooling marine and weakly schooling benthic sticklebacks (Gasterosteus aculeatus) and found that distinct genetic modules control different aspects of schooling behavior. Two key components of the behavior, tendency to school and body position when schooling, are uncorrelated in hybrids and map to different genomic regions. Our results further point to a genetic link between one behavioral component, schooling position, and variation in the neurosensory lateral line.
Collapse
|
48
|
Ishikawa A, Takeuchi N, Kusakabe M, Kume M, Mori S, Takahashi H, Kitano J. Speciation in ninespine stickleback: reproductive isolation and phenotypic divergence among cryptic species of Japanese ninespine stickleback. J Evol Biol 2013; 26:1417-30. [PMID: 23663028 DOI: 10.1111/jeb.12146] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 01/19/2013] [Accepted: 02/11/2013] [Indexed: 01/28/2023]
Abstract
Although similar patterns of phenotypic diversification are often observed in phylogenetically independent lineages, differences in the magnitude and direction of phenotypic divergence have been also observed among independent lineages, even when exposed to the same ecological gradients. The stickleback family is a good model with which to explore the ecological and genetic basis of parallel and nonparallel patterns of phenotypic evolution, because there are a variety of populations and species that are locally adapted to divergent environments. Although the patterns of phenotypic divergence as well as the genetic and ecological mechanisms have been well characterized in threespine sticklebacks, Gasterosteus aculeatus, we know little about the patterns of phenotypic diversification in other stickleback lineages. In eastern Hokkaido, Japan, there are three species of ninespine sticklebacks, Pungitius tymensis and the freshwater type and the brackish-water type of the P. pungitius-P. sinensis species complex. They utilize divergent habitats along coast-stream gradients of rivers. Here, we investigated genetic, ecological and phenotypic divergence among three species of Japanese ninespine sticklebacks. Divergence in trophic morphology and salinity tolerance occurred in the direction predicted by the patterns observed in threespine sticklebacks. However, the patterns of divergence in armour plate were different from those previously found in threespine sticklebacks. Furthermore, the genetic basis of plate variation may differ from that in threespine sticklebacks. Because threespine sticklebacks are well-established model for evolutionary research, the sympatric trio of ninespine sticklebacks will be an invaluable resource for ecological and genetic studies on both common and lineage-specific patterns of phenotypic diversification.
Collapse
Affiliation(s)
- A Ishikawa
- Ecological Genetics Laboratory, Center for Frontier Research, National Institute of Genetics, Mishima, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Merilä J. Nine-spined stickleback (Pungitius pungitius): an emerging model for evolutionary biology research. Ann N Y Acad Sci 2013; 1289:18-35. [DOI: 10.1111/nyas.12089] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Juha Merilä
- Ecological Genetics Research Unit, Department of Biosciences; University of Helsinki; Helsinki; Finland
| |
Collapse
|
50
|
Brown AD, Sisneros JA, Jurasin T, Nguyen C, Coffin AB. Differences in lateral line morphology between hatchery- and wild-origin steelhead. PLoS One 2013; 8:e59162. [PMID: 23554988 PMCID: PMC3598794 DOI: 10.1371/journal.pone.0059162] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/12/2013] [Indexed: 11/18/2022] Open
Abstract
Despite identification of multiple factors mediating salmon survival, significant disparities in survival-to-adulthood among hatchery- versus wild-origin juveniles persist. In the present report, we explore the hypothesis that hatchery-reared juveniles might exhibit morphological defects in vulnerable mechanosensory systems prior to release from the hatchery, potentiating reduced survival after release. Juvenile steelhead (Oncorhynchus mykiss) from two different hatcheries were compared to wild-origin juveniles on several morphological traits including lateral line structure, otolith composition (a proxy for auditory function), and brain weight. Wild juveniles were found to possess significantly more superficial lateral line neuromasts than hatchery-reared juveniles, although the number of hair cells within individual neuromasts was not significantly different across groups. Wild juveniles were also found to possess primarily normal, aragonite-containing otoliths, while hatchery-reared juveniles possessed a high proportion of crystallized (vaterite) otoliths. Finally, wild juveniles were found to have significantly larger brains than hatchery-reared juveniles. These differences together predict reduced sensitivity to biologically important hydrodynamic and acoustic signals from natural biotic (predator, prey, conspecific) and abiotic (turbulent flow, current) sources among hatchery-reared steelhead, in turn predicting reduced survival fitness after release. Physiological and behavioral studies are required to establish the functional significance of these morphological differences.
Collapse
Affiliation(s)
- Andrew D. Brown
- Department of Speech & Hearing Sciences, University of Washington, Seattle, Washington, United States of America
| | - Joseph A. Sisneros
- Departments of Psychology and Biology, University of Washington, Seattle, Washington, United States of America
| | - Tyler Jurasin
- Department of Fisheries, Quinault Indian Nation, Taholah, Washington, United States of America
| | - Chau Nguyen
- College of Arts and Sciences, Washington State University, Vancouver, Washington, United States of America
| | - Allison B. Coffin
- College of Arts and Sciences, Washington State University, Vancouver, Washington, United States of America
- Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University, Vancouver, Washington, United States of America
- * E-mail:
| |
Collapse
|