1
|
Loew ER, Browman HI. In memoriam - Craig W. Hawryshyn (1954-2023). J Exp Biol 2024; 227:jeb247161. [PMID: 38164713 DOI: 10.1242/jeb.247161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Affiliation(s)
- Ellis R Loew
- Cornell University, Department of Biomedical Sciences, T4-018 VRT, Ithaca, New York, 14853USA
| | - Howard I Browman
- Institute of Marine Research, Ecosystem Acoustics Group, Austevoll Research Station, Sauganeset 16, 5392 Storebø, Norway
| |
Collapse
|
2
|
Santos TP, Soares PRL, da Silva MCG, da Silva SCBL, de Andrade ALC, Dos Santos AR, da Silva JF, da Silva Oliveira EG, da Silva Souza EHL, de Sá FB, Cadena MRS, Cadena PG. Thyroxine, levothyroxine, and thyroxine complexed into cyclodextrin changed animal behavior, oxygen consumption, and photopic electroretinogram of Colossoma macropomum. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1177-1187. [PMID: 30941630 DOI: 10.1007/s10695-019-00630-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
The toxic effects of thyroxine (T4F), levothyroxine (L-T4), and thyroxine complexed into β-cyclodextrin (β-CD-T4) on the biological parameters of tambaqui (Colossoma macropomum) were evaluated. The animals were exposed to a chronic toxicity test based on concentrations of influent (60 ng/L) for 2 months. Weight, total length, animal behavior, oxygen consumption, photopic electroretinogram (ERG), and the Flicker exam were evaluated. No significant differences were observed (p > 0.05) on the weight and total length measurements between all groups studied. Behavioral observations of the animals exposed to L-T4 and β-CD-T4 complex showed a reduction (p < 0.05) in slow swimming and an increase in staying motionless events. The animals exposed to the β-CD-T4 complex presented the highest O2 consumption. L-T4 and β-CD-T4 promoted a reduction in the ability of the animals to respond to stimuli in the photoreceptors according to the photopic ERG examination. Data from the experimental Flicker exam showed no significant differences (p > 0.05) in all groups studied. It can be concluded that the complexation of T4 into β-CD and L-T4 modified the toxicity of this hormone, promoting changes in the behavior, oxygen consumption, and electrophysiological responses of the exposed animals, suggesting that inclusion complexes should be submitted to new toxicity tests to ensure higher safety.
Collapse
Affiliation(s)
- Thamiris Pinheiro Santos
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos,, Recife, PE, 52171-900, Brazil
| | - Priscila Rafaela Leão Soares
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos,, Recife, PE, 52171-900, Brazil
| | - Marília Cordeiro Galvão da Silva
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos,, Recife, PE, 52171-900, Brazil
| | - Stephannie Caroline Barros Lucas da Silva
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos,, Recife, PE, 52171-900, Brazil
| | - André Lucas Correa de Andrade
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos,, Recife, PE, 52171-900, Brazil
| | - Amanda Rodrigues Dos Santos
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos,, Recife, PE, 52171-900, Brazil
| | - Jadson Freitas da Silva
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos,, Recife, PE, 52171-900, Brazil
| | - Elyda Grazyelle da Silva Oliveira
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos,, Recife, PE, 52171-900, Brazil
| | - Elton Hugo Lima da Silva Souza
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos,, Recife, PE, 52171-900, Brazil
| | - Fabrício Bezerra de Sá
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos,, Recife, PE, 52171-900, Brazil
| | - Marilia Ribeiro Sales Cadena
- Departamento de Biologia (DB), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, Recife, PE, 52171-900, Brazil
| | - Pabyton Gonçalves Cadena
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos,, Recife, PE, 52171-900, Brazil.
- Laboratório de Ecofisiologia e Comportamento Animal (LECA), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, Recife, PE, 52171-900, Brazil.
| |
Collapse
|
3
|
Le Blay K, Préau L, Morvan-Dubois G, Demeneix B. Expression of the inactivating deiodinase, Deiodinase 3, in the pre-metamorphic tadpole retina. PLoS One 2018; 13:e0195374. [PMID: 29641587 PMCID: PMC5895027 DOI: 10.1371/journal.pone.0195374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 03/21/2018] [Indexed: 01/27/2023] Open
Abstract
Thyroid hormone (TH) orchestrates amphibian metamorphosis. Thus, this developmental phase is often used to study TH-dependent responses in specific tissues. However, TH signaling appears early in development raising the question of the control of TH availability in specific cell types prior to metamorphosis. TH availability is under strict temporal and tissue-specific control by deiodinases. We examined the expression of the TH-inactivating enzyme, deiodinase type 3 (D3), during early retinal development. To this end we created a Xenopus laevis transgenic line expressing GFP from the Xenopus dio3 promoter region (pdio3) and followed pdio3-GFP expression in pre-metamorphic tadpoles. To validate retinal GFP expression in the transgenic line as a function of dio3 promoter activity, we used in situ hybridization to compare endogenous dio3 expression to reporter-driven GFP activity. Retinal expression of dio3 increased during pre-metamorphosis through stages NF41, 45 and 48. Both sets of results show dio3 to have cell-specific, dynamic expression in the pre-metamorphic retina. At stage NF48, dio3 expression co-localised with markers for photoreceptors, rods, Opsin-S cones and bipolar neurons. In contrast, in post-metamorphic juveniles dio3 expression was reduced and spatially confined to certain photoreceptors and amacrine cells. We compared dio3 expression at stages NF41 and NF48 with TH-dependent transcriptional responses using another transgenic reporter line: THbZIP-GFP and by analyzing the expression of T3-regulated genes in distinct TH availability contexts. At stage NF48, the majority of retinal cells expressing dio3 were negative for T3 signaling. Notably, most ganglion cells were virtually both dio3-free and T3-responsive. The results show that dio3 can reduce TH availability at the cellular scale. Further, a reduction in dio3 expression can trigger fine-tuned T3 action in cell-type specific maturation at the right time, as exemplified here in photoreceptor survival in the pre-metamorphic retina.
Collapse
Affiliation(s)
- Karine Le Blay
- Département Adaptation du Vivant, UMR CNRS, Evolution des Régulations Endocriniennes, Muséum National d’Histoire Naturelle, Paris, France
| | - Laëtitia Préau
- Zoologisches Institut, Zell-und Entwicklungsbiologie, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Ghislaine Morvan-Dubois
- Département Adaptation du Vivant, UMR CNRS, Evolution des Régulations Endocriniennes, Muséum National d’Histoire Naturelle, Paris, France
| | - Barbara Demeneix
- Département Adaptation du Vivant, UMR CNRS, Evolution des Régulations Endocriniennes, Muséum National d’Histoire Naturelle, Paris, France
| |
Collapse
|
4
|
Thyroid Hormone Signaling in Retinal Development, Survival, and Disease. VITAMINS AND HORMONES 2018; 106:333-349. [DOI: 10.1016/bs.vh.2017.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
5
|
Zak MA, Regish AM, McCormick SD, Manzon RG. Exogenous thyroid hormones regulate the activity of citrate synthase and cytochrome c oxidase in warm- but not cold-acclimated lake whitefish (Coregonus clupeaformis). Gen Comp Endocrinol 2017; 247:215-222. [PMID: 28212894 DOI: 10.1016/j.ygcen.2017.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/10/2017] [Accepted: 02/12/2017] [Indexed: 11/22/2022]
Abstract
Thermal acclimation is known to elicit metabolic adjustments in ectotherms, but the cellular mechanisms and endocrine control of these shifts have not been fully elucidated. Here we examined the relationship between thermal acclimation, thyroid hormones and oxidative metabolism in juvenile lake whitefish. Impacts of thermal acclimation above (19°C) or below (8°C) the thermal optimum (13°C) and exposure to exogenous thyroid hormone (60µg T4/g body weight) were assessed by quantifying citrate synthase and cytochrome c oxidase activities in liver, red muscle, white muscle and heart. Warm acclimation decreased citrate synthase activity in liver and elevated both citrate synthase and cytochrome c oxidase activities in red muscle. In contrast, induction of hyperthyroidism in warm-acclimated fish stimulated a significant increase in liver citrate synthase and heart cytochrome c oxidase activities, and a decrease in the activity of both enzymes in red muscle. No change in citrate synthase or cytochrome c oxidase activities was observed following cold acclimation in either the presence or absence of exogenous thyroid hormones. Collectively, our results indicate that thyroid hormones influence the activity of oxidative enzymes more strongly in warm-acclimated than in cold-acclimated lake whitefish, and they may play a role in mediating metabolic adjustments observed during thermal acclimation.
Collapse
Affiliation(s)
- Megan A Zak
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Amy M Regish
- U.S. Geological Survey, Leetown Science Center, Conte Anadromous Fish Research Laboratory, Turner Falls, MA 01376, USA
| | - Stephen D McCormick
- U.S. Geological Survey, Leetown Science Center, Conte Anadromous Fish Research Laboratory, Turner Falls, MA 01376, USA
| | - Richard G Manzon
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada.
| |
Collapse
|
6
|
Baumann L, Ros A, Rehberger K, Neuhauss SCF, Segner H. Thyroid disruption in zebrafish (Danio rerio) larvae: Different molecular response patterns lead to impaired eye development and visual functions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 172:44-55. [PMID: 26765085 DOI: 10.1016/j.aquatox.2015.12.015] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/12/2015] [Accepted: 12/15/2015] [Indexed: 05/09/2023]
Abstract
The vertebrate thyroid system is important for multiple developmental processes, including eye development. Thus, its environmentally induced disruption may impact important fitness-related parameters like visual capacities and behaviour. The present study investigated the relation between molecular effects of thyroid disruption and morphological and physiological changes of eye development in zebrafish (Danio rerio). Two test compounds representing different molecular modes of thyroid disruption were used: propylthiouracil (PTU), which is an enzyme-inhibitor of thyroid hormone synthesis, and tetrabromobisphenol A (TBBPA), which interacts with the thyroid hormone receptors. Both chemicals significantly altered transcript levels of thyroid system-related genes (TRα, TRβ, TPO, TSH, DIO1, DIO2 and DIO3) in a compound-specific way. Despite these different molecular response patterns, both treatments resulted in similar pathological alterations of the eyes such as reduced size, RPE cell diameter and pigmentation, which were concentration-dependent. The morphological changes translated into impaired visual performance of the larvae: the optokinetic response was significantly and concentration-dependently decreased in both treatments, together with a significant increase of light preference of PTU-treated larvae. In addition, swimming activity was impacted. This study provides first evidence that different modes of molecular action of the thyroid disruptors can be associated with uniform apical responses. Furthermore, this study is the first to show that pathological eye development, as it can be induced by exposure to thyroid disruptors, indeed translates into impaired visual capacities of zebrafish early life stages.
Collapse
Affiliation(s)
- Lisa Baumann
- University of Berne, Vetsuisse Faculty, Centre for Fish and Wildlife Health, Länggassstrasse 122, CH-3012 Berne, Switzerland.
| | - Albert Ros
- University of Berne, Vetsuisse Faculty, Centre for Fish and Wildlife Health, Länggassstrasse 122, CH-3012 Berne, Switzerland.
| | - Kristina Rehberger
- University of Berne, Vetsuisse Faculty, Centre for Fish and Wildlife Health, Länggassstrasse 122, CH-3012 Berne, Switzerland.
| | - Stephan C F Neuhauss
- University of Zurich, Institute of Molecular Life Sciences, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - Helmut Segner
- University of Berne, Vetsuisse Faculty, Centre for Fish and Wildlife Health, Länggassstrasse 122, CH-3012 Berne, Switzerland.
| |
Collapse
|
7
|
Bhumika S, Lemmens K, Vancamp P, Moons L, Darras VM. Decreased thyroid hormone signaling accelerates the reinnervation of the optic tectum following optic nerve crush in adult zebrafish. Mol Cell Neurosci 2015; 68:92-102. [PMID: 25913150 DOI: 10.1016/j.mcn.2015.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/21/2015] [Indexed: 11/25/2022] Open
Abstract
The regenerative capacity of the adult mammalian central nervous system (CNS) is poor and finding ways to stimulate long distance axonal regeneration in humans remains a challenge for neuroscientists. Thyroid hormones, well known for their key function in CNS development and maturation, more recently also emerged as molecules influencing regeneration. While several studies investigated their influence on peripheral nerve regeneration, in vivo studies on their role in adult CNS regeneration remain scarce. We therefore investigated the effect of lowering T3 signaling on the regeneration of the optic nerve (ON) following crush in zebrafish, a species where full recovery occurs spontaneously. Adult zebrafish were exposed to iopanoic acid (IOP), which lowered intracellular 3,5,3'-triiodothyronine (T3) availability, or to the thyroid hormone receptor β antagonist methylsulfonylnitrobenzoate (C1). Both treatments accelerated optic tectum (OT) reinnervation. At 7days post injury (7dpi) there was a clear increase in the biocytin labeled area in the OT following anterograde tracing as well as an increased immunostaining of Gap43, a protein expressed in outgrowing axons. This effect was attenuated by T3 supplementation to IOP-treated fish. ON crush induced very limited cell death and proliferation at the level of the retina in control, IOP- and C1-treated fish. The treatments also had no effect on the mRNA upregulation of the regeneration markers gap43, tub1a, and socs3b at the level of the retina at 4 and 7dpi. We did, however, find a correlation between the accelerated OT reinnervation and a more rapid resolution of microglia/macrophages in the ON and the OT of IOP-treated fish. Taken together these data indicate that lowering T3 signaling accelerates OT reinnervation following ON crush in zebrafish and that this is accompanied by a more rapid resolution of the inflammatory response.
Collapse
Affiliation(s)
- Stitipragyan Bhumika
- Laboratory of Comparative Endocrinology, Division Animal Physiology and Neurobiology, Biology Department, KU Leuven, B-3000 Leuven, Belgium
| | - Kim Lemmens
- Laboratory of Neural Circuit Development and Regeneration, Division Animal Physiology and Neurobiology, Biology Department, KU Leuven, B-3000 Leuven, Belgium
| | - Pieter Vancamp
- Laboratory of Comparative Endocrinology, Division Animal Physiology and Neurobiology, Biology Department, KU Leuven, B-3000 Leuven, Belgium
| | - Lieve Moons
- Laboratory of Neural Circuit Development and Regeneration, Division Animal Physiology and Neurobiology, Biology Department, KU Leuven, B-3000 Leuven, Belgium
| | - Veerle M Darras
- Laboratory of Comparative Endocrinology, Division Animal Physiology and Neurobiology, Biology Department, KU Leuven, B-3000 Leuven, Belgium.
| |
Collapse
|
8
|
Hecht BC, Valle ME, Thrower FP, Nichols KM. Divergence in expression of candidate genes for the smoltification process between juvenile resident rainbow and anadromous steelhead trout. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:638-656. [PMID: 24952010 DOI: 10.1007/s10126-014-9579-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 06/03/2014] [Indexed: 06/03/2023]
Abstract
Rainbow and steelhead trout (Oncorhynchus mykiss), among other salmonid fishes, exhibit tremendous life history diversity, foremost of which is variation in migratory propensity. While some individuals possess the ability to undertake an anadromous marine migration, others remain resident in freshwater throughout their life cycle. Those that will migrate undergo tremendous physiological, morphological, and behavioral transformations in a process called smoltification which transitions freshwater-adapted parr to marine-adapted smolts. While the behavior, ecology, and physiology of smoltification are well described, our understanding of the proximate genetic mechanisms that trigger the process are not well known. Quantitative genetic analyses have identified several genomic regions associated with smoltification and migration-related traits within this species. Here we investigate the divergence in gene expression of 18 functional and positional candidate genes for the smoltification process in the brain, gill, and liver tissues of migratory smolts, resident parr, and precocious mature male trout at the developmental stage of out-migration. Our analysis reveals several genes differentially expressed between life history classes and validates the candidate nature of several genes in the parr-smolt transformation including Clock1α, FSHβ, GR, GH2, GHR1, GHR2, NDK7, p53, SC6a7, Taldo1, THRα, THRβ, and Vdac2.
Collapse
Affiliation(s)
- Benjamin C Hecht
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | | | | | | |
Collapse
|
9
|
Bhumika S, Darras VM. Role of thyroid hormones in different aspects of nervous system regeneration in vertebrates. Gen Comp Endocrinol 2014; 203:86-94. [PMID: 24681191 DOI: 10.1016/j.ygcen.2014.03.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 03/08/2014] [Accepted: 03/11/2014] [Indexed: 12/19/2022]
Abstract
Spontaneous functional recovery from injury in the adult human nervous system is rare and trying to improve recovery remains a clinical challenge. Nervous system regeneration is a complicated sequence of events involving cell death or survival, cell proliferation, axon extension and remyelination, and finally reinnervation and functional recovery. Successful recovery depends on the cell-specific and time-dependent activation and repression of a wide variety of growth factors and guidance molecules. Thyroid hormones (THs), well known for their regulatory role in neurodevelopment, have recently emerged as important modulators of neuroregeneration. This review focuses on the endogenous changes in the proteins regulating TH availability and action in different cell types of the adult mammalian nervous system during regeneration as well as the impact of TH supplementation on the consecutive steps in this process. It also addresses possible differences in TH involvement between different vertebrate classes, early or late developmental stages and peripheral or central nervous system. The available data show that THs are able to stimulate many signaling pathways necessary for successful neurogeneration. They however also suggest that supplementation with T4 and/or T3 may have beneficial or detrimental influences depending on the dose and more importantly on the specific phase of the regeneration process.
Collapse
Affiliation(s)
- Stitipragyan Bhumika
- Laboratory of Comparative Endocrinology, Division Animal Physiology and Neurobiology, Biology Department, KU Leuven, B-3000 Leuven, Belgium
| | - Veerle M Darras
- Laboratory of Comparative Endocrinology, Division Animal Physiology and Neurobiology, Biology Department, KU Leuven, B-3000 Leuven, Belgium.
| |
Collapse
|
10
|
Raine JC, Coffin AB, Hawryshyn CW. In ovo thyroxine exposure alters later UVS cone loss in juvenile rainbow trout. ACTA ACUST UNITED AC 2011; 214:2248-57. [PMID: 21653819 DOI: 10.1242/jeb.055566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Thyroid hormones (THs) play a vital role in vertebrate neural development, and, together with the beta isoform of the thyroid hormone receptor (TRβ), the development and differentiation of cone photoreceptors in the vertebrate retina. Rainbow trout undergo a natural process of cone cell degeneration during development and this change in photoreceptor distribution is regulated by thyroxine (T4; a thyroid hormone). In an effort to further understand the role of T4 in photoreceptor ontogeny and later developmental changes in photoreceptor subtype distribution, the influence of enhanced in ovo T4 content on the onset of opsin expression and cone development was examined. Juvenile trout reared from the initial in ovo-treated embryos were challenged with exogenous T4 at the parr stage of development to determine if altered embryonic exposure to yolk THs would affect later T4-induced short-wavelength-sensitive (SWS1) opsin transcript downregulation and ultraviolet-sensitive (UVS) cone loss. In ovo TH manipulation led to upregulation of both SWS1 and long-wavelength-sensitive (LWS) opsin transcripts in the pre-hatch rainbow trout retina and to changes in the relative expression of TRβ. After 7 days of exposure to T4, juveniles that were also treated with T4 in ovo had greatly reduced SWS1 expression levels and premature loss of UVS cones relative to T4-treated juveniles raised from untreated eggs. These results suggest that changes in egg TH levels can have significant consequences much later in development, particularly in the retina.
Collapse
Affiliation(s)
- Jason C Raine
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | | | | |
Collapse
|
11
|
Abstract
Mammalian retinas display an astonishing diversity in the spatial arrangement of their spectral cone photoreceptors, probably in adaptation to different visual environments. Opsin expression patterns like the dorsoventral gradients of short-wave-sensitive (S) and middle- to long-wave-sensitive (M) cone opsin found in many species are established early in development and thought to be stable thereafter throughout life. In mouse early development, thyroid hormone (TH), through its receptor TRβ2, is an important regulator of cone spectral identity. However, the role of TH in the maintenance of the mature cone photoreceptor pattern is unclear. We here show that TH also controls adult cone opsin expression. Methimazole-induced suppression of serum TH in adult mice and rats yielded no changes in cone numbers but reversibly altered cone patterns by activating the expression of S-cone opsin and repressing the expression of M-cone opsin. Furthermore, treatment of athyroid Pax8(-/-) mice with TH restored a wild-type pattern of cone opsin expression that reverted back to the mutant S-opsin-dominated pattern after termination of treatment. No evidence for cone death or the generation of new cones from retinal progenitors was found in retinas that shifted opsin expression patterns. Together, this suggests that opsin expression in terminally differentiated mammalian cones remains subject to control by TH, a finding that is in contradiction to previous work and challenges the current view that opsin identity in mature mammalian cones is fixed by permanent gene silencing.
Collapse
|
12
|
The maturation of photoreceptors in the avian retina is stimulated by thyroid hormone. Neuroscience 2011; 178:250-60. [PMID: 21256198 DOI: 10.1016/j.neuroscience.2011.01.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 01/11/2011] [Accepted: 01/12/2011] [Indexed: 11/22/2022]
Abstract
During retinal development, the cell-fate of photoreceptors is committed long before maturation, which entails the expression of opsins and functional transduction of light. The mechanisms that delay the maturation of photoreceptors remain unknown. We have recently reported that immature photoreceptors express the LIM domain transcription factors Islet2 and Lim3, as well as the cell-surface glycoprotein axonin1 [Fischer et al., (2008a) J Comp Neurol 506:584-603]. As the photoreceptors mature to form outer segments and express photopigments, the expression of the Islet2, Lim3 and axonin1 is diminished. The purpose of this study was to investigate whether thyroid hormone (TH) influences the maturation of photoreceptors. We studied the maturation of photoreceptors across the gradient of maturity that exists in far peripheral regions of the post-natal chicken retina [Ghai et al., (2008) Brain Res 1192:76-89]. We found that intraocular injections of TH down-regulated Islet2, Lim3 and axonin1 in photoreceptors in far peripheral regions of the retina. By contrast, TH stimulated the up-regulation of red-green opsin, violet opsin, rhodopsin and calbindin in photoreceptors. We found a correlation between the onset of RLIM (RING finger LIM-domain binding protein) and down-regulation of Islet2 and Lim3 in maturing photoreceptors; RLIM is known to interfere with the transcriptional activity of LIM-domain transcription factors. We conclude that TH stimulates the maturation of photoreceptors in the avian retina. We propose that TH inhibits the expression of Islet2 and Lim3, which thereby permits photoreceptor maturation and the onset of photopigment-expression.
Collapse
|
13
|
Billings NA, Emerson MM, Cepko CL. Analysis of thyroid response element activity during retinal development. PLoS One 2010; 5:e13739. [PMID: 21060789 PMCID: PMC2966421 DOI: 10.1371/journal.pone.0013739] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 10/06/2010] [Indexed: 01/10/2023] Open
Abstract
Thyroid hormone (TH) signaling components are expressed during retinal development in dynamic spatial and temporal patterns. To probe the competence of retinal cells to mount a transcriptional response to TH, reporters that included thyroid response elements (TREs) were introduced into developing retinal tissue. The TREs were placed upstream of a minimal TATA-box and two reporter genes, green fluorescent protein (GFP) and human placental alkaline phosphatase (PLAP). Six of the seven tested TREs were first tested in vitro where they were shown to drive TH-dependent expression. However, when introduced into the developing retina, the TREs reported in different cell types in both a TH-dependent and TH-independent manner, as well as revealed specific spatial patterns in their expression. The role of the known thyroid receptors (TR), TRα and TRβ, was probed using shRNAs, which were co-electroporated into the retina with the TREs. Some TREs were positively activated by TR+TH in the developing outer nuclear layer (ONL), where photoreceptors reside, as well as in the outer neuroblastic layer (ONBL) where cycling progenitor cells are located. Other TREs were actively repressed by TR+TH in cells of the ONBL. These data demonstrate that non-TRs can activate some TREs in a spatially regulated manner, whereas other TREs respond only to the known TRs, which also read out activity in a spatially regulated manner. The transcriptional response to even simple TREs provides a starting point for understanding the regulation of genes by TH, and highlights the complexity of transcriptional regulation within developing tissue.
Collapse
Affiliation(s)
- Nathan A. Billings
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mark M. Emerson
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Constance L. Cepko
- Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
14
|
Sabbah S, Laria RL, Gray SM, Hawryshyn CW. Functional diversity in the color vision of cichlid fishes. BMC Biol 2010; 8:133. [PMID: 21029409 PMCID: PMC2988715 DOI: 10.1186/1741-7007-8-133] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 10/28/2010] [Indexed: 11/15/2022] Open
Abstract
Background Color vision plays a critical role in visual behavior. An animal's capacity for color vision rests on the presence of differentially sensitive cone photoreceptors. Spectral sensitivity is a measure of the visual responsiveness of these cones at different light wavelengths. Four classes of cone pigments have been identified in vertebrates, but in teleost fishes, opsin genes have undergone gene duplication events and thus can produce a larger number of spectrally distinct cone pigments. In this study, we examine the question of large-scale variation in color vision with respect to individual, sex and species that may result from differential expression of cone pigments. Cichlid fishes are an excellent model system for examining variation in spectral sensitivity because they have seven distinct cone opsin genes that are differentially expressed. Results To examine the variation in the number of cones that participate in cichlid spectral sensitivity, we used whole organism electrophysiology, opsin gene expression and empirical modeling. Examination of over 100 spectral sensitivity curves from 34 individuals of three species revealed that (1) spectral sensitivity of individual cichlids was based on different subsets of four or five cone pigments, (2) spectral sensitivity was shaped by multiple cone interactions and (3) spectral sensitivity differed between species and correlated with foraging mode and the spectral reflectance of conspecifics. Our data also suggest that there may be significant differences in opsin gene expression between the sexes. Conclusions Our study describes complex opponent and nonopponent cone interactions that represent the requisite neural processing for color vision. We present the first comprehensive evidence for pentachromatic color vision in vertebrates, which offers the potential for extraordinary spectral discrimination capabilities. We show that opsin gene expression in cichlids, and possibly also spectral sensitivity, may be sex-dependent. We argue that females and males sample their visual environment differently, providing a neural basis for sexually dimorphic visual behaviour. The diversification of spectral sensitivity likely contributes to sensory adaptations that enhance the contrast of transparent prey and the detection of optical signals from conspecifics, suggesting a role for both natural and sexual selection in tuning color vision.
Collapse
Affiliation(s)
- Shai Sabbah
- Department of Biology, Queen's University, Kingston, ON, Canada
| | | | | | | |
Collapse
|