1
|
Dvořáček J, Kodrík D. Brain and cognition: The need for a broader biological perspective to overcome old biases. Neurosci Biobehav Rev 2024; 167:105928. [PMID: 39427812 DOI: 10.1016/j.neubiorev.2024.105928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/02/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Even with accumulating knowledge, no consensus regarding the understanding of intelligence or cognition exists, and the universal brain bases for these functions remain unclear. Traditionally, our understanding of cognition is based on self-evident principles that appear indisputable when looking only at our species; however, this can distance us from understanding its essence (anthropocentrism, corticocentrism, intellectocentrism, neurocentrism, and idea of orthogenesis of brain evolution). Herein, we use several examples from biology to demonstrate the usefulness of comparative ways of thinking in relativizing these biases. We discuss the relationship between the number of neurons and cognition and draw attention to the highly developed cognitive performance of animals with small brains, to some "tricks" of evolution, to how animals cope with small hardware, to some animals with high-quality brains with an alternative architecture to vertebrates, and to surprising basal cognitive skills in aneural, unicellular organisms. Cognition can be supplemented by the idea of a multicellular organism as a continuum, with many levels of cognitive function, including the possible basal learning in single cells.
Collapse
Affiliation(s)
- Jiří Dvořáček
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05, České Budĕjovice, Czech Republic; Psychiatric Hospital Cerveny Dvur, Cerveny Dvur 1, 381 01, Cesky Krumlov, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budĕjovice, Czech Republic.
| | - Dalibor Kodrík
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05, České Budĕjovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budĕjovice, Czech Republic
| |
Collapse
|
2
|
Howard SR, Dyer AG. Quantity misperception by hymenopteran insects observing the solitaire illusion. iScience 2024; 27:108697. [PMID: 38288356 PMCID: PMC10823103 DOI: 10.1016/j.isci.2023.108697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/30/2023] [Accepted: 12/06/2023] [Indexed: 01/31/2024] Open
Abstract
Visual illusions are errors in signal perception and inform us about the visual and cognitive processes of different animals. Invertebrates are relatively less studied for their illusionary perception, despite the insight that comparative data provides on the evolution of common perceptual mechanisms. The Solitaire Illusion is a numerosity illusion where a viewer typically misperceives the relative quantities of two items of different colors consisting of identical quantity, with more centrally clustered items appearing more numerous. We trained European honeybees (Apis mellifera) and European wasps (Vespula vulgaris) to select stimuli containing a higher quantity of yellow dots in arrays of blue and yellow dots and then presented them with the Solitaire Illusion. Insects learnt to discriminate between dot quantities and showed evidence of perceiving the Solitaire Illusion. Further work should determine whether the illusion is caused by numerical cues only or by both quantity and non-numerical spatial cues.
Collapse
Affiliation(s)
- Scarlett R. Howard
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Adrian G. Dyer
- Department of Physiology, Monash University, Clayton, VIC, Australia
- Institute of Developmental Biology and Neurobiology (iDN), Johannes Gutenberg University, 55122 Mainz, Germany
| |
Collapse
|
3
|
Straw EA, Stanley DA. Weak evidence base for bee protective pesticide mitigation measures. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:1604-1612. [PMID: 37458300 PMCID: PMC10564266 DOI: 10.1093/jee/toad118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/21/2023] [Accepted: 06/06/2023] [Indexed: 10/12/2023]
Abstract
Pesticides help produce food for humanity's growing population, yet they have negative impacts on the environment. Limiting these impacts, while maintaining food supply, is a crucial challenge for modern agriculture. Mitigation measures are actions taken by pesticide users, which modify the risk of the application to nontarget organisms, such as bees. Through these, the impacts of pesticides can be reduced, with minimal impacts on the efficacy of the pesticide. Here we collate the scientific evidence behind mitigation measures designed to reduce pesticide impacts on bees using a systematic review methodology. We included all publications which tested the effects of any pesticide mitigation measure (using a very loose definition) on bees, at any scale (from individual through to population level), so long as they presented evidence on the efficacy of the measure. We found 34 publications with direct evidence on the topic, covering a range of available mitigation measures. No currently used mitigation measures were thoroughly tested, and some entirely lacked empirical support, showing a weak evidence base for current recommendations and policy. We found mitigation measure research predominantly focuses on managed bees, potentially failing to protect wild bees. We also found that label-recommended mitigation measures, which are the mitigation measures most often applied, specifically are seldom tested empirically. Ultimately, we recommend that more, and stronger, scientific evidence is required to justify existing mitigation measures to help reduce the impacts of pesticides on bees while maintaining crop protection.
Collapse
Affiliation(s)
- Edward A Straw
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Dara A Stanley
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Guiraud M, Roper M, Wolf S, Woodgate JL, Chittka L. Discrimination of edge orientation by bumblebees. PLoS One 2022; 17:e0263198. [PMID: 35709295 PMCID: PMC9202920 DOI: 10.1371/journal.pone.0263198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/01/2022] [Indexed: 11/19/2022] Open
Abstract
Simple feature detectors in the visual system, such as edge-detectors, are likely to underlie even the most complex visual processing, so understanding the limits of these systems is crucial for a fuller understanding of visual processing. We investigated the ability of bumblebees (Bombus terrestris) to discriminate between differently angled edges. In a multiple-choice, “meadow-like” scenario, bumblebees successfully discriminated between angled bars with 7° differences, significantly exceeding the previously reported performance of eastern honeybees (Apis cerana, limit: 15°). Neither the rate at which bees learned, nor their final discrimination performance were affected by the angular orientation of the training bars, indicating a uniform performance across the visual field. Previous work has found that, in dual-choice tests, eastern honeybees cannot reliably discriminate between angles with less than 25° difference, suggesting that performance in discrimination tasks is affected by the training regime, and doesn’t simply reflect the perceptual limitations of the visual system. We used high resolution LCD monitors to investigate bumblebees’ angular resolution in a dual-choice experiment. Bumblebees could still discriminate 7° angle differences under such conditions (exceeding the previously reported limit for Apis mellifera, of 10°, as well as that of A. cerana). Bees eventually reached similar levels of accuracy in the dual-choice experiment as they did under multiple-choice conditions but required longer learning periods. Bumblebees show impressive abilities to discriminate between angled edges, performing better than two previously tested species of honeybee. This high performance may, in turn, support complex visual processing in the bumblebee brain.
Collapse
Affiliation(s)
- Marie Guiraud
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
- * E-mail:
| | - Mark Roper
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
- Drone Development Lab, Ben Thorns Ltd, Colchester, United Kingdom
| | - Stephan Wolf
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Joseph L. Woodgate
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Lars Chittka
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
5
|
Howard SR, Greentree J, Avarguès-Weber A, Garcia JE, Greentree AD, Dyer AG. Numerosity Categorization by Parity in an Insect and Simple Neural Network. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.805385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A frequent question as technology improves and becomes increasingly complex, is how we enable technological solutions and models inspired by biological systems. Creating technology based on humans is challenging and costly as human brains and cognition are complex. The honeybee has emerged as a valuable comparative model which exhibits some cognitive-like behaviors. The relative simplicity of the bee brain compared to large mammalian brains enables learning tasks, such as categorization, that can be mimicked by simple neural networks. Categorization of abstract concepts can be essential to how we understand complex information. Odd and even numerical processing is known as a parity task in human mathematical representations, but there appears to be a complete absence of research exploring parity processing in non-human animals. We show that free-flying honeybees can visually acquire the capacity to differentiate between odd and even quantities of 1–10 geometric elements and extrapolate this categorization to the novel numerosities of 11 and 12, revealing that such categorization is accessible to a comparatively simple system. We use this information to construct a neural network consisting of five neurons that can reliably categorize odd and even numerosities up to 40 elements. While the simple neural network is not directly based on the biology of the honeybee brain, it was created to determine if simple systems can replicate the parity categorization results we observed in honeybees. This study thus demonstrates that a task, previously only shown in humans, is accessible to a brain with a comparatively small numbers of neurons. We discuss the possible mechanisms or learning processes allowing bees to perform this categorization task, which range from numeric explanations, such as counting, to pairing elements and memorization of stimuli or patterns. The findings should encourage further testing of parity processing in a wider variety of animals to inform on its potential biological roots, evolutionary drivers, and potential technology innovations for concept processing.
Collapse
|
6
|
Avila L, Dunne E, Hofmann D, Brosi BJ. Upper-limit agricultural dietary exposure to streptomycin in the laboratory reduces learning and foraging in bumblebees. Proc Biol Sci 2022; 289:20212514. [PMID: 35135346 PMCID: PMC8826297 DOI: 10.1098/rspb.2021.2514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/13/2022] [Indexed: 11/12/2022] Open
Abstract
In the past decade, the broadcast-spray application of antibiotics in US crops has increased exponentially in response to bacterial crop pathogens, but little is known about the sublethal impacts on beneficial organisms in agroecosystems. This is concerning given the key roles that microbes play in modulating insect fitness. A growing body of evidence suggests that insect gut microbiomes may play a role in learning and behaviour, which are key for the survival of pollinators and for their pollination efficacy, and which in turn could be disrupted by dietary antibiotic exposure. In the laboratory, we tested the effects of an upper-limit dietary exposure to streptomycin (200 ppm)-an antibiotic widely used to treat bacterial pathogens in crops-on bumblebee (Bombus impatiens) associative learning, foraging and stimulus avoidance behaviour. We used two operant conditioning assays: a free movement proboscis extension reflex protocol focused on short-term memory formation, and an automated radio-frequency identification tracking system focused on foraging. We show that upper-limit dietary streptomycin exposure slowed training, decreased foraging choice accuracy, increased avoidance behaviour and was associated with reduced foraging on sucrose-rewarding artificial flowers flowers. This work underscores the need to further study the impacts of antibiotic use on beneficial insects in agricultural systems.
Collapse
Affiliation(s)
- Laura Avila
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Elizabeth Dunne
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - David Hofmann
- Department of Physics, Emory University, Atlanta, GA 30322, USA
- Initiative in Theory and Modeling of Living Systems, Emory University, Atlanta, GA 30322, USA
| | - Berry J. Brosi
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
7
|
Wiley B, Batabyal A, Lukowiak K. Fluoride alters feeding and memory in Lymnaea stagnalis. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 208:267-277. [PMID: 34854952 DOI: 10.1007/s00359-021-01528-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 10/19/2022]
Abstract
Fluoride occurs naturally in the terrestrial and aquatic environment and is a major component in tea. Prolonged fluoride exposure alters metabolic activity in several aquatic invertebrates. For the first time, we investigated the effects of fluoride on cognition in the pond snail Lymnaea stagnalis as it is capable of a higher form of associative learning called configural learning. We first showed suppressive effects of black tea and fluoride on feeding (i.e., rasping) behavior. We then investigated how fluoride may alter cognition by introducing fluoride (1.86 mg/L) before, during, after, a day before and a week before the snails underwent the configural learning training procedure. Our results show that any 45-min exposure to fluoride (before, during or after a configural learning training procedure) blocks configural learning memory formation in Lymnaea and these effects are long-lasting. One week after a fluoride exposure, snails are still unable to form a configural learning memory and this result is upheld when the snails are exposed to a lower concentration of fluoride, one which is naturally occurring in ponds that a wild strain of Lymnaea can be found (0.3 mg/L). Thus, fluoride obstructs configural learning memory formation in a fluoride-naïve, inbred strain of Lymnaea.
Collapse
Affiliation(s)
- Bevin Wiley
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Anuradha Batabyal
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
8
|
Sargent C, Ebanks B, Hardy ICW, Davies TGE, Chakrabarti L, Stöger R. Acute Imidacloprid Exposure Alters Mitochondrial Function in Bumblebee Flight Muscle and Brain. FRONTIERS IN INSECT SCIENCE 2021; 1:765179. [PMID: 38468884 PMCID: PMC10926543 DOI: 10.3389/finsc.2021.765179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/12/2021] [Indexed: 03/13/2024]
Abstract
Mitochondria are intracellular organelles responsible for cellular respiration with one of their major roles in the production of energy in the form of ATP. Activities with increased energetic demand are especially dependent on efficient ATP production, hence sufficient mitochondrial function is fundamental. In bees, flight muscle and the brain have particularly high densities of mitochondria to facilitate the substantial ATP production required for flight activity and neuronal signalling. Neonicotinoids are systemic synthetic insecticides that are widely utilised against crop herbivores but have been reported to cause, by unknown mechanisms, mitochondrial dysfunction, decreasing cognitive function and flight activity among pollinating bees. Here we explore, using high-resolution respirometry, how the neonicotinoid imidacloprid may affect oxidative phosphorylation in the brain and flight muscle of the buff-tailed bumblebee, Bombus terrestris. We find that acute exposure increases routine oxygen consumption in the flight muscle of worker bees. This provides a candidate explanation for prior reports of early declines in flight activity following acute exposure. We further find that imidacloprid increases the maximum electron transport capacity in the brain, with a trend towards increased overall oxygen consumption. However, intra-individual variability is high, limiting the extent to which apparent effects of imidacloprid on brain mitochondria are shown conclusively. Overall, our results highlight the necessity to examine tissue-specific effects of imidacloprid on respiration and energy production.
Collapse
Affiliation(s)
- Chloe Sargent
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, United Kingdom
| | - Brad Ebanks
- School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Loughborough, United Kingdom
| | - Ian C. W. Hardy
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, United Kingdom
- School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Loughborough, United Kingdom
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - T. G. Emyr Davies
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - Lisa Chakrabarti
- School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Loughborough, United Kingdom
- Medical Research Council Versus Arthritis Centre for Musculoskeletal Ageing Research, Birmingham, United Kingdom
| | - Reinhard Stöger
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, United Kingdom
| |
Collapse
|
9
|
Howard SR, Dyer AG, Garcia JE, Giurfa M, Reser DH, Rosa MGP, Avarguès-Weber A. Naïve and Experienced Honeybee Foragers Learn Normally Configured Flowers More Easily Than Non-configured or Highly Contrasted Flowers. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.662336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Angiosperms have evolved to attract and/or deter specific pollinators. Flowers provide signals and cues such as scent, colour, size, pattern, and shape, which allow certain pollinators to more easily find and visit the same type of flower. Over evolutionary time, bees and angiosperms have co-evolved resulting in flowers being more attractive to bee vision and preferences, and allowing bees to recognise specific flower traits to make decisions on where to forage. Here we tested whether bees are instinctively tuned to process flower shape by training both flower-experienced and flower-naïve honeybee foragers to discriminate between pictures of two different flower species when images were either normally configured flowers or flowers which were scrambled in terms of spatial configuration. We also tested whether increasing picture contrast, to make flower features more salient, would improve or impair performance. We used four flower conditions: (i) normally configured greyscale flower pictures, (ii) scrambled flower configurations, (iii) high contrast normally configured flowers, and (iv) asymmetrically scrambled flowers. While all flower pictures contained very similar spatial information, both experienced and naïve bees were better able to learn to discriminate between normally configured flowers than between any of the modified versions. Our results suggest that a specialisation in flower recognition in bees is due to a combination of hard-wired neural circuitry and experience-dependent factors.
Collapse
|
10
|
Configural learning memory can be transformed from intermediate-term to long-term in pond snail Lymnaea stagnalis. Physiol Behav 2021; 239:113509. [PMID: 34175362 DOI: 10.1016/j.physbeh.2021.113509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/09/2021] [Accepted: 06/22/2021] [Indexed: 01/28/2023]
Abstract
A lab bred W-strain of Lymnaea stagnalis exhibits configural learning (CL). CL is a form of higher order associative learning wherein when snails experience two contrasting stimuli together such as predatory odour (CE: crayfish effluent) and food odour (C: carrot odour) they learn and associate risk with food. The memory for CL has been shown to last 3 h. Here, we show that when only a single CL-training session is given only a 3 h memory is formed. Memory is not present 24 h after the training session. However, memory can be enhanced and snails show long term memory (24 h memory) when trained for a second time within a 7-day time period after the first CL-training. We further hypothesised that Green tea exposure will enhance memory persistence as catechins in green tea are shown to be cognitive enhancers. We thus subjected snails to CL training followed by green tea exposure which resulted in enhanced memory persistence and it occurred during memory consolidation phase. Thus, we show for the first time that CL intermediate-term memory can be transformed to long-term memory by green tea and multiple trainings in a lab bred strain of Lymnaea.
Collapse
|
11
|
Howard SR. Wild non-eusocial bees learn a colour discrimination task in response to simulated predation events. Naturwissenschaften 2021; 108:28. [PMID: 34152477 DOI: 10.1007/s00114-021-01739-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/06/2021] [Accepted: 05/31/2021] [Indexed: 02/08/2023]
Abstract
Despite representing the majority of bee species, non-eusocial bees (e.g. solitary, subsocial, semisocial, and quasisocial species) are comparatively understudied in learning, memory, and cognitive-like behaviour compared to eusocial bees, such as honeybees and bumblebees. Ecologically relevant colour discrimination tasks are well-studied in eusocial bees, and research has shown that a few non-eusocial bee species are also capable of colour learning and long-term memory retention. Australia hosts over 2000 native bee species, most of which are non-eusocial, yet evidence of cognitive-like behaviour and learning abilities under controlled testing conditions is lacking. In the current study, I examine the learning ability of a non-eusocial Australian bee, Lasioglossum (Chilalictus) lanarium, using aversive differential conditioning during a colour discrimination task. L. lanarium learnt to discriminate between salient blue- and yellow-coloured stimuli following training with simulated predation events. This study acts as a bridge between cognitive studies on eusocial and non-social bees and introduces a framework for testing non-eusocial wild bees on elemental visual learning tasks using aversive conditioning. Non-eusocial bee species are far more numerous than eusocial species and contribute to agriculture, economics, and ecosystem services in Australia and across the globe. Thus, it is important to study their capacity to learn flower traits allowing for successful foraging and pollination events, thereby permitting us a better understanding of their role in plant-pollinator interactions.
Collapse
Affiliation(s)
- Scarlett R Howard
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, Australia.
| |
Collapse
|
12
|
Quigley TP, Amdam GV. Social modulation of ageing: mechanisms, ecology, evolution. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190738. [PMID: 33678020 PMCID: PMC7938163 DOI: 10.1098/rstb.2019.0738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2020] [Indexed: 12/11/2022] Open
Abstract
Human life expectancy increases, but the disease-free part of lifespan (healthspan) and the quality of life in old people may not show the same development. The situation poses considerable challenges to healthcare systems and economies, and calls for new strategies to increase healthspan and for sustainable future approaches to elder care. This call has motivated innovative research on the role of social relationships during ageing. Correlative data from clinical surveys indicate that social contact promotes healthy ageing, and it is time to reveal the causal mechanisms through experimental research. The fruit fly Drosophila melanogaster is a prolific model animal, but insects with more developed social behaviour can be equally instrumental for this research. Here, we discuss the role of social contact in ageing, and identify lines of study where diverse insect models can help uncover the mechanisms that are involved. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'
Collapse
Affiliation(s)
- Tyler P. Quigley
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287, USA
| | - Gro V. Amdam
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287, USA
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5002, N-1432 Aas, Norway
| |
Collapse
|
13
|
Peng T, Derstroff D, Maus L, Bauer T, Grüter C. Forager age and foraging state, but not cumulative foraging activity, affect biogenic amine receptor gene expression in the honeybee mushroom bodies. GENES BRAIN AND BEHAVIOR 2021; 20:e12722. [PMID: 33325617 DOI: 10.1111/gbb.12722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 01/17/2023]
Abstract
Foraging behavior is crucial for the development of a honeybee colony. Biogenic amines are key mediators of learning and the transition from in-hive tasks to foraging. Foragers vary considerably in their behavior, but whether and how this behavioral diversity depends on biogenic amines is not yet well understood. For example, forager age, cumulative foraging activity or foraging state may all be linked to biogenic amine signaling. Furthermore, expression levels may fluctuate depending on daytime. We tested if these intrinsic and extrinsic factors are linked to biogenic amine signaling by quantifying the expression of octopamine, dopamine and tyramine receptor genes in the mushroom bodies, important tissues for learning and memory. We found that older foragers had a significantly higher expression of Amdop1, Amdop2, AmoctαR1, and AmoctβR1 compared to younger foragers, whereas Amtar1 showed the opposite pattern. Surprisingly, our measures of cumulative foraging activity were not related to the expression of the same receptor genes in the mushroom bodies. Furthermore, we trained foragers to collect sucrose solution at a specific time of day and tested if the foraging state of time-trained foragers affected receptor gene expression. Bees engaged in foraging had a higher expression of Amdop1 and AmoctβR3/4 than inactive foragers. Finally, the expression of Amdop1, Amdop3, AmoctαR1, and Amtar1 also varied with daytime. Our results show that receptor gene expression in forager mushroom bodies is complex and depends on both intrinsic and extrinsic factors.
Collapse
Affiliation(s)
- Tianfei Peng
- College of Plant Science, Jilin University, Changchun, China.,Institute of Organismic and Molecular Evolutionary Biology, Johannes-Gutenberg University of Mainz, Mainz, Germany
| | - Dennis Derstroff
- Institute of Organismic and Molecular Evolutionary Biology, Johannes-Gutenberg University of Mainz, Mainz, Germany
| | - Lea Maus
- Institute of Organismic and Molecular Evolutionary Biology, Johannes-Gutenberg University of Mainz, Mainz, Germany
| | - Timo Bauer
- Institute of Organismic and Molecular Evolutionary Biology, Johannes-Gutenberg University of Mainz, Mainz, Germany
| | - Christoph Grüter
- Institute of Organismic and Molecular Evolutionary Biology, Johannes-Gutenberg University of Mainz, Mainz, Germany.,School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
14
|
Cross FR, Carvell GE, Jackson RR, Grace RC. Arthropod Intelligence? The Case for Portia. Front Psychol 2020; 11:568049. [PMID: 33154726 PMCID: PMC7591756 DOI: 10.3389/fpsyg.2020.568049] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022] Open
Abstract
Macphail’s “null hypothesis,” that there are no differences in intelligence, qualitative, or quantitative, between non-human vertebrates has been controversial. This controversy can be useful if it encourages interest in acquiring a detailed understanding of how non-human animals express flexible problem-solving capacity (“intelligence”), but limiting the discussion to vertebrates is too arbitrary. As an example, we focus here on Portia, a spider with an especially intricate predatory strategy and a preference for other spiders as prey. We review research on pre-planned detours, expectancy violation, and a capacity to solve confinement problems where, in each of these three contexts, there is experimental evidence of innate cognitive capacities and reliance on internal representation. These cognitive capacities are related to, but not identical to, intelligence. When discussing intelligence, as when discussing cognition, it is more useful to envisage a continuum instead of something that is simply present or not; in other words, a continuum pertaining to flexible problem-solving capacity for “intelligence” and a continuum pertaining to reliance on internal representation for “cognition.” When envisaging a continuum pertaining to intelligence, Daniel Dennett’s notion of four Creatures (Darwinian, Skinnerian, Popperian, and Gregorian) is of interest, with the distinction between Skinnerian and Popperian Creatures being especially relevant when considering Portia. When we consider these distinctions, a case can be made for Portia being a Popperian Creature. Like Skinnerian Creatures, Popperian Creatures express flexible problem solving capacity, but the manner in which this capacity is expressed by Popperian Creatures is more distinctively cognitive.
Collapse
Affiliation(s)
- Fiona R Cross
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,International Centre of Insect Physiology and Ecology, Mbita Point, Kenya
| | - Georgina E Carvell
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| | - Robert R Jackson
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,International Centre of Insect Physiology and Ecology, Mbita Point, Kenya
| | - Randolph C Grace
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
15
|
Different mechanisms underlie implicit visual statistical learning in honey bees and humans. Proc Natl Acad Sci U S A 2020; 117:25923-25934. [PMID: 32989162 DOI: 10.1073/pnas.1919387117] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability of developing complex internal representations of the environment is considered a crucial antecedent to the emergence of humans' higher cognitive functions. Yet it is an open question whether there is any fundamental difference in how humans and other good visual learner species naturally encode aspects of novel visual scenes. Using the same modified visual statistical learning paradigm and multielement stimuli, we investigated how human adults and honey bees (Apis mellifera) encode spontaneously, without dedicated training, various statistical properties of novel visual scenes. We found that, similarly to humans, honey bees automatically develop a complex internal representation of their visual environment that evolves with accumulation of new evidence even without a targeted reinforcement. In particular, with more experience, they shift from being sensitive to statistics of only elemental features of the scenes to relying on co-occurrence frequencies of elements while losing their sensitivity to elemental frequencies, but they never encode automatically the predictivity of elements. In contrast, humans involuntarily develop an internal representation that includes single-element and co-occurrence statistics, as well as information about the predictivity between elements. Importantly, capturing human visual learning results requires a probabilistic chunk-learning model, whereas a simple fragment-based memory-trace model that counts occurrence summary statistics is sufficient to replicate honey bees' learning behavior. Thus, humans' sophisticated encoding of sensory stimuli that provides intrinsic sensitivity to predictive information might be one of the fundamental prerequisites of developing higher cognitive abilities.
Collapse
|
16
|
Howard SR, Schramme J, Garcia JE, Ng L, Avarguès-Weber A, Greentree AD, Dyer AG. Spontaneous quantity discrimination of artificial flowers by foraging honeybees. J Exp Biol 2020; 223:223/9/jeb223610. [DOI: 10.1242/jeb.223610] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/07/2020] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Many animals need to process numerical and quantity information in order to survive. Spontaneous quantity discrimination allows differentiation between two or more quantities without reinforcement or prior training on any numerical task. It is useful for assessing food resources, aggressive interactions, predator avoidance and prey choice. Honeybees have previously demonstrated landmark counting, quantity matching, use of numerical rules, quantity discrimination and arithmetic, but have not been tested for spontaneous quantity discrimination. In bees, spontaneous quantity discrimination could be useful when assessing the quantity of flowers available in a patch and thus maximizing foraging efficiency. In the current study, we assessed the spontaneous quantity discrimination behaviour of honeybees. Bees were trained to associate a single yellow artificial flower with sucrose. Bees were then tested for their ability to discriminate between 13 different quantity comparisons of artificial flowers (numeric ratio range: 0.08–0.8). Bees significantly preferred the higher quantity only in comparisons where ‘1’ was the lower quantity and where there was a sufficient magnitudinal distance between quantities (e.g. 1 versus 12, 1 versus 4, and 1 versus 3 but not 1 versus 2). Our results suggest a possible evolutionary benefit to choosing a foraging patch with a higher quantity of flowers when resources are scarce.
Collapse
Affiliation(s)
- Scarlett R. Howard
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC 3125, Australia
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse 31000, France
| | - Jürgen Schramme
- Institute of Developmental Biology and Neurobiology (iDN), Johannes Gutenberg University, Mainz 55122, Germany
| | - Jair E. Garcia
- Bio-inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, VIC 3000, Australia
| | - Leslie Ng
- School of BioSciences, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Aurore Avarguès-Weber
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse 31000, France
| | - Andrew D. Greentree
- ARC Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Adrian G. Dyer
- Bio-inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, VIC 3000, Australia
- Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
17
|
Howard SR, Avarguès-Weber A, Garcia JE, Greentree AD, Dyer AG. Surpassing the subitizing threshold: appetitive–aversive conditioning improves discrimination of numerosities in honeybees. J Exp Biol 2019; 222:222/19/jeb205658. [DOI: 10.1242/jeb.205658] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/02/2019] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Animals including humans, fish and honeybees have demonstrated a quantity discrimination threshold at four objects, often known as subitizing elements. Discrimination between numerosities at or above the subitizing range is considered a complex capacity. In the current study, we trained and tested two groups of bees on their ability to differentiate between quantities (4 versus 5 through to 4 versus 8) when trained with different conditioning procedures. Bees trained with appetitive (reward) differential conditioning demonstrated no significant learning of this task, and limited discrimination above the subitizing range. In contrast, bees trained using appetitive–aversive (reward–aversion) differential conditioning demonstrated significant learning and subsequent discrimination of all tested comparisons from 4 versus 5 to 4 versus 8. Our results show conditioning procedure is vital to performance on numerically challenging tasks, and may inform future research on numerical abilities in other animals.
Collapse
Affiliation(s)
- Scarlett R. Howard
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31400 Toulouse, France
- Bio-inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, VIC 3000, Australia
| | - Aurore Avarguès-Weber
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31400 Toulouse, France
| | - Jair E. Garcia
- Bio-inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, VIC 3000, Australia
| | - Andrew D. Greentree
- ARC Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Adrian G. Dyer
- Bio-inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, VIC 3000, Australia
- Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
18
|
Color preference and spatial distribution of glaphyrid beetles suggest a key role in the maintenance of the color polymorphism in the peacock anemone (Anemone pavonina, Ranunculaceae) in Northern Greece. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:735-743. [DOI: 10.1007/s00359-019-01360-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/02/2019] [Accepted: 07/15/2019] [Indexed: 10/26/2022]
|
19
|
Paine KC, White TE, Whitney KD. Intraspecific floral color variation as perceived by pollinators and non-pollinators: evidence for pollinator-imposed constraints? Evol Ecol 2019. [DOI: 10.1007/s10682-019-09991-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Budaev S, Jørgensen C, Mangel M, Eliassen S, Giske J. Decision-Making From the Animal Perspective: Bridging Ecology and Subjective Cognition. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00164] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
21
|
Hannah L, Dyer AG, Garcia JE, Dorin A, Burd M. Psychophysics of the hoverfly: categorical or continuous color discrimination? Curr Zool 2019; 65:483-492. [PMID: 31413720 PMCID: PMC6688577 DOI: 10.1093/cz/zoz008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/26/2019] [Indexed: 12/12/2022] Open
Abstract
There is increasing interest in flies as potentially important pollinators. Flies are known to have a complex visual system, including 4 spectral classes of photoreceptors that contribute to the perception of color. Our current understanding of how color signals are perceived by flies is based on data for the blowfly Lucilia sp., which after being conditioned to rewarded monochromatic light stimuli, showed evidence of a categorical color visual system. The resulting opponent fly color space has 4 distinct categories, and has been used to interpret how some fly pollinators may perceive flower colors. However, formal proof that flower flies (Syrphidae) only use a simple, categorical color process remains outstanding. In free-flying experiments, we tested the hoverfly Eristalis tenax, a Batesian mimic of the honeybee, that receives its nutrition by visiting flowers. Using a range of broadband similar–dissimilar color stimuli previously used to test color perception in pollinating hymenopteran species, we evaluated if there are steep changes in behavioral choices with continuously increasing color differences as might be expected by categorical color processing. Our data revealed that color choices by the hoverfly are mediated by a continuous monotonic function. Thus, these flies did not use a categorical processing, but showed evidence of a color discrimination function similar to that observed in several bee species. We therefore empirically provide data for the minimum color distance that can be discriminated by hoverflies in fly color space, enabling an improved understanding of plant–pollinator interactions with a non-model insect species.
Collapse
Affiliation(s)
- Lea Hannah
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia.,Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales 2753, Australia
| | - Adrian G Dyer
- School of Media and Communication, RMIT University, Melbourne, Victoria 3001, Australia.,Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
| | - Jair E Garcia
- School of Media and Communication, RMIT University, Melbourne, Victoria 3001, Australia
| | - Alan Dorin
- Faculty of Information Technology, Monash University, Clayton, Victoria 3800, Australia
| | - Martin Burd
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
22
|
Kagan D, Lukowiak K. Configural learning in freshly collected, smart, wild Lymnaea. J Exp Biol 2019; 222:jeb.212886. [DOI: 10.1242/jeb.212886] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022]
Abstract
An inbred laboratory strain (W-strain) of Lymnaea is capable of configural learning (CL). CL a higher form of learning is an association between two stimuli experienced together that is different from the simple sum of their components. In our CL procedure a food substance (carrot, CO) is experienced together with crayfish effluent (CE) (i.e. CO+CE). Following CL, CO now elicits a fear-state rather than increased feeding. We hypothesized that freshly collected wild strains of predator-experiencedLymnaea also possess the ability to form CL; even though they experience crayfish daily in their environment. We therefore subjected freshly collected wild strain Lymnaea to the CL procedure. Following the CL procedure CO became a risk signal and evoked anti-predator behaviours. Thus, CL was demonstrated in wild, freshly collected snails. We believe that CL occurs in the snail's natural environment and is important for their survival.
Collapse
Affiliation(s)
- Diana Kagan
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1
| | - Ken Lukowiak
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1
| |
Collapse
|
23
|
Swinton C, Swinton E, Shymansky T, Hughes E, Zhang J, Kakadiya CRM, Lukowiak K. Configural learning: a higher form of learning in Lymnaea. J Exp Biol 2019; 222:jeb.190405. [DOI: 10.1242/jeb.190405] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 01/03/2019] [Indexed: 01/05/2023]
Abstract
Events typically occur in a specific context and the ability to assign importance to this occurrence plays a significant role in memory formation and recall. When the scent of a crayfish predator (CE) is encountered in Lymnaea strains known to be predator-experienced (e.g. the W-strain), enhancement of memory formation and depression of feeding occurs, which are part of a suite of anti-predator behaviours. We hypothesized that Lymnaea possess a form of higher-order conditioning, namely configural learning. We tested this by simultaneously exposing W-strain Lymnaea to a carrot food-odour (CO) and predator scent (CE). Two hours later we operantly conditioned these snails with a single 0.5h training session in CO to determine whether training in CO results in long-term memory (LTM). In W-strain snails two 0.5h training sessions are required to cause LTM formation. A series of control experiments followed and demonstrated that only the CO+CE snails trained in CO had acquired enhanced memory forming ability. Additionally, following CE+CO pairing, CO no longer elicited an increased feeding response. Hence, snails have the ability to undergo configural learning. Following configural learning, CO becomes risk-signaling and evokes behavioural responses phenotypically similar to those elicited by exposure to CE.
Collapse
Affiliation(s)
- Cayley Swinton
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Erin Swinton
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tamila Shymansky
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Emily Hughes
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jack Zhang
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Ken Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
24
|
Garcia JE, Shrestha M, Dyer AG. Flower signal variability overwhelms receptor-noise and requires plastic color learning in bees. Behav Ecol 2018. [DOI: 10.1093/beheco/ary127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jair E Garcia
- Bio-Inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, Victoria, Australia
| | - Mani Shrestha
- Bio-Inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, Victoria, Australia
- APIS Lab, Faculty of Information Technology, Monash University, Clayton, Victoria, Australia
| | - Adrian G Dyer
- Bio-Inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, Victoria, Australia
- Department of Physiology, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
25
|
Ximenes NG, Gawryszewski FM. Prey and predators perceive orb-web spider conspicuousness differently: evaluating alternative hypotheses for color polymorphism evolution. Curr Zool 2018; 65:559-570. [PMID: 31616487 PMCID: PMC6784512 DOI: 10.1093/cz/zoy069] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/02/2018] [Indexed: 11/13/2022] Open
Abstract
Color polymorphisms have been traditionally attributed to apostatic selection. The perception of color depends on the visual system of the observer. Theoretical models predict that differently perceived degrees of conspicuousness by two predator and prey species may cause the evolution of polymorphisms in the presence of anti-apostatic and apostatic selection. The spider Gasteracantha cancriformis (Araneidae) possesses several conspicuous color morphs. In orb-web spiders, the prey attraction hypothesis states that conspicuous colors are prey lures that increase spider foraging success via flower mimicry. Therefore, polymorphism could be maintained if each morph attracted a different prey species (multiple prey hypothesis) and each spider mimicked a different flower color (flower mimicry hypothesis). Conspicuous colors could be a warning signal to predators because of the spider’s hard abdomen and spines. Multiple predators could perceive morphs differently and exert different degrees of selective pressures (multiple predator hypothesis). We explored these 3 hypotheses using reflectance data and color vision modeling to estimate the chromatic and achromatic contrast of G. cancriformis morphs as perceived by several potential prey and predator taxa. Our results revealed that individual taxa perceive the conspicuousness of morphs differently. Therefore, the multiple prey hypothesis and, in part, the multiple predator hypothesis may explain the evolution of color polymorphism in G. cancriformis, even in the presence of anti-apostatic selection. The flower mimicry hypothesis received support by color metrics, but not by color vision models. Other parameters not evaluated by color vision models could also affect the perception of morphs and influence morph survival and polymorphism stability.
Collapse
Affiliation(s)
- Nathalia G Ximenes
- Animal Colouration and Evolution Lab, Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil.,Pós-Graduação em Ecologia e Evolução, Universidade Federal de Goiás, Campus Samambaia, Goiânia, GO, Brazil
| | - Felipe M Gawryszewski
- Animal Colouration and Evolution Lab, Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| |
Collapse
|
26
|
Gawryszewski FM. Color vision models: Some simulations, a general n-dimensional model, and the colourvision R package. Ecol Evol 2018; 8:8159-8170. [PMID: 30250692 PMCID: PMC6144980 DOI: 10.1002/ece3.4288] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/23/2018] [Accepted: 05/19/2018] [Indexed: 11/19/2022] Open
Abstract
The development of color vision models has allowed the appraisal of color vision independent of the human experience. These models are now widely used in ecology and evolution studies. However, in common scenarios of color measurement, color vision models may generate spurious results. Here I present a guide to color vision modeling (Chittka (1992, Journal of Comparative Physiology A, 170, 545) color hexagon, Endler & Mielke (2005, Journal Of The Linnean Society, 86, 405) model, and the linear and log-linear receptor noise limited models (Vorobyev & Osorio 1998, Proceedings of the Royal Society B, 265, 351; Vorobyev et al. 1998, Journal of Comparative Physiology A, 183, 621)) using a series of simulations, present a unified framework that extends and generalize current models, and provide an R package to facilitate the use of color vision models. When the specific requirements of each model are met, between-model results are qualitatively and quantitatively similar. However, under many common scenarios of color measurements, models may generate spurious values. For instance, models that log-transform data and use relative photoreceptor outputs are prone to generate spurious outputs when the stimulus photon catch is smaller than the background photon catch; and models may generate unrealistic predictions when the background is chromatic (e.g. leaf reflectance) and the stimulus is an achromatic low reflectance spectrum. Nonetheless, despite differences, all three models are founded on a similar set of assumptions. Based on that, I provide a new formulation that accommodates and extends models to any number of photoreceptor types, offers flexibility to build user-defined models, and allows users to easily adjust chromaticity diagram sizes to account for changes when using different number of photoreceptors.
Collapse
Affiliation(s)
- Felipe M. Gawryszewski
- Departamento de ZoologiaInstituto de Ciências BiológicasUniversidade de BrasíliaBrasíliaBrazil
| |
Collapse
|
27
|
Buatois A, Flumian C, Schultheiss P, Avarguès-Weber A, Giurfa M. Transfer of Visual Learning Between a Virtual and a Real Environment in Honey Bees: The Role of Active Vision. Front Behav Neurosci 2018; 12:139. [PMID: 30057530 PMCID: PMC6053632 DOI: 10.3389/fnbeh.2018.00139] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/18/2018] [Indexed: 01/19/2023] Open
Abstract
To study visual learning in honey bees, we developed a virtual reality (VR) system in which the movements of a tethered bee walking stationary on a spherical treadmill update the visual panorama presented in front of it (closed-loop conditions), thus creating an experience of immersion within a virtual environment. In parallel, we developed a small Y-maze with interchangeable end-boxes, which allowed replacing repeatedly a freely walking bee into the starting point of the maze for repeated decision recording. Using conditioning and transfer experiments between the VR setup and the Y-maze, we studied the extent to which movement freedom and active vision are crucial for learning a simple color discrimination. Approximately 57% of the bees learned the visual discrimination in both conditions. Transfer from VR to the maze improved significantly the bees’ performances: 75% of bees having chosen the CS+ continued doing so and 100% of bees having chosen the CS− reverted their choice in favor of the CS+. In contrast, no improvement was seen for these two groups of bees during the reciprocal transfer from the Y-maze to VR. In this case, bees exhibited inconsistent choices in the VR setup. The asymmetric transfer between contexts indicates that the information learned in each environment may be different despite the similar learning success. Moreover, it shows that reducing the possibility of active vision and movement freedom in the passage from the maze to the VR impairs the expression of visual learning while increasing them in the reciprocal transfer improves it. Our results underline the active nature of visual processing in bees and allow discussing the developments required for immersive VR experiences in insects.
Collapse
Affiliation(s)
- Alexis Buatois
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, Toulouse, France
| | - Clara Flumian
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, Toulouse, France
| | - Patrick Schultheiss
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, Toulouse, France
| | - Aurore Avarguès-Weber
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, Toulouse, France
| | - Martin Giurfa
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, Toulouse, France
| |
Collapse
|
28
|
Howard SR, Avarguès-Weber A, Garcia JE, Stuart-Fox D, Dyer AG. Perception of contextual size illusions by honeybees in restricted and unrestricted viewing conditions. Proc Biol Sci 2018; 284:rspb.2017.2278. [PMID: 29167368 DOI: 10.1098/rspb.2017.2278] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/23/2017] [Indexed: 12/15/2022] Open
Abstract
How different visual systems process images and make perceptual errors can inform us about cognitive and visual processes. One of the strongest geometric errors in perception is a misperception of size depending on the size of surrounding objects, known as the Ebbinghaus or Titchener illusion. The ability to perceive the Ebbinghaus illusion appears to vary dramatically among vertebrate species, and even populations, but this may depend on whether the viewing distance is restricted. We tested whether honeybees perceive contextual size illusions, and whether errors in perception of size differed under restricted and unrestricted viewing conditions. When the viewing distance was unrestricted, there was an effect of context on size perception and thus, similar to humans, honeybees perceived contrast size illusions. However, when the viewing distance was restricted, bees were able to judge absolute size accurately and did not succumb to visual illusions, despite differing contextual information. Our results show that accurate size perception depends on viewing conditions, and thus may explain the wide variation in previously reported findings across species. These results provide insight into the evolution of visual mechanisms across vertebrate and invertebrate taxa, and suggest convergent evolution of a visual processing solution.
Collapse
Affiliation(s)
- Scarlett R Howard
- Bio-inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, Victoria, Australia .,School of Biosciences, University of Melbourne, Parkville, Victoria, Australia
| | - Aurore Avarguès-Weber
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jair E Garcia
- Bio-inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, Victoria, Australia
| | - Devi Stuart-Fox
- School of Biosciences, University of Melbourne, Parkville, Victoria, Australia
| | - Adrian G Dyer
- Bio-inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, Victoria, Australia.,Department of Physiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
29
|
Howard SR, Avarguès-Weber A, Garcia J, Dyer AG. Free-flying honeybees extrapolate relational size rules to sort successively visited artificial flowers in a realistic foraging situation. Anim Cogn 2017; 20:627-638. [DOI: 10.1007/s10071-017-1086-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 02/08/2023]
|
30
|
Avarguès-Weber A, Mota T. Advances and limitations of visual conditioning protocols in harnessed bees. ACTA ACUST UNITED AC 2016; 110:107-118. [PMID: 27998810 DOI: 10.1016/j.jphysparis.2016.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/06/2016] [Accepted: 12/14/2016] [Indexed: 12/12/2022]
Abstract
Bees are excellent invertebrate models for studying visual learning and memory mechanisms, because of their sophisticated visual system and impressive cognitive capacities associated with a relatively simple brain. Visual learning in free-flying bees has been traditionally studied using an operant conditioning paradigm. This well-established protocol, however, can hardly be combined with invasive procedures for studying the neurobiological basis of visual learning. Different efforts have been made to develop protocols in which harnessed honey bees could associate visual cues with reinforcement, though learning performances remain poorer than those obtained with free-flying animals. Especially in the last decade, the intention of improving visual learning performances of harnessed bees led many authors to adopt distinct visual conditioning protocols, altering parameters like harnessing method, nature and duration of visual stimulation, number of trials, inter-trial intervals, among others. As a result, the literature provides data hardly comparable and sometimes contradictory. In the present review, we provide an extensive analysis of the literature available on visual conditioning of harnessed bees, with special emphasis on the comparison of diverse conditioning parameters adopted by different authors. Together with this comparative overview, we discuss how these diverse conditioning parameters could modulate visual learning performances of harnessed bees.
Collapse
Affiliation(s)
- Aurore Avarguès-Weber
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France.
| | - Theo Mota
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas - ICB, Universidade Federal de Minas Gerais - UFMG, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
31
|
Mota T, Kreissl S, Carrasco Durán A, Lefer D, Galizia G, Giurfa M. Synaptic Organization of Microglomerular Clusters in the Lateral and Medial Bulbs of the Honeybee Brain. Front Neuroanat 2016; 10:103. [PMID: 27847468 PMCID: PMC5088189 DOI: 10.3389/fnana.2016.00103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/07/2016] [Indexed: 11/13/2022] Open
Abstract
The honeybee Apis mellifera is an established model for the study of visual orientation. Yet, research on this topic has focused on behavioral aspects and has neglected the investigation of the underlying neural architectures in the bee brain. In other insects, the anterior optic tubercle (AOTU), the lateral (LX) and the central complex (CX) are important brain regions for visuospatial performances. In the central brain of the honeybee, a prominent group of neurons connecting the AOTU with conspicuous microglomerular synaptic structures in the LX has been recently identified, but their neural organization and ultrastructure have not been investigated. Here we characterized these microglomerular structures by means of immunohistochemical and ultrastructural analyses, in order to evaluate neurotransmission and synaptic organization. Three-dimensional reconstructions of the pre-synaptic and post-synaptic microglomerular regions were performed based on confocal microscopy. Each pre-synaptic region appears as a large cup-shaped profile that embraces numerous post-synaptic profiles of GABAergic tangential neurons connecting the LX to the CX. We also identified serotonergic broad field neurons that probably provide modulatory input from the CX to the synaptic microglomeruli in the LX. Two distinct clusters of microglomerular structures were identified in the lateral bulb (LBU) and medial bulb (MBU) of the LX. Although the ultrastructure of both clusters is very similar, we found differences in the number of microglomeruli and in the volume of the pre-synaptic profiles of each cluster. We discuss the possible role of these microglomerular clusters in the visuospatial behavior of honeybees and propose research avenues for studying their neural plasticity and synaptic function.
Collapse
Affiliation(s)
- Theo Mota
- Department of Physiology and Biophysics, Federal University of Minas GeraisBelo Horizonte, Brazil
- Research Center on Animal Cognition, Université de ToulouseToulouse, France
- Research Center on Animal Cognition, Centre National de la Recherche ScientifiqueToulouse, France
| | - Sabine Kreissl
- Department of Neurobiology, University of KonstanzKonstanz, Germany
| | - Ana Carrasco Durán
- Research Center on Animal Cognition, Université de ToulouseToulouse, France
- Research Center on Animal Cognition, Centre National de la Recherche ScientifiqueToulouse, France
| | - Damien Lefer
- Research Center on Animal Cognition, Université de ToulouseToulouse, France
- Research Center on Animal Cognition, Centre National de la Recherche ScientifiqueToulouse, France
| | - Giovanni Galizia
- Department of Neurobiology, University of KonstanzKonstanz, Germany
| | - Martin Giurfa
- Research Center on Animal Cognition, Université de ToulouseToulouse, France
- Research Center on Animal Cognition, Centre National de la Recherche ScientifiqueToulouse, France
| |
Collapse
|
32
|
Does flower and fruit conspicuousness affect plant fitness? Contrast, color coupling and the interplay of pollination and seed dispersal in two Vaccinium species. Evol Ecol 2016. [DOI: 10.1007/s10682-016-9864-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Stejskal K, Streinzer M, Dyer A, Paulus HF, Spaethe J. Functional Significance of Labellum Pattern Variation in a Sexually Deceptive Orchid (Ophrys heldreichii): Evidence of Individual Signature Learning Effects. PLoS One 2015; 10:e0142971. [PMID: 26571020 PMCID: PMC4646623 DOI: 10.1371/journal.pone.0142971] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/29/2015] [Indexed: 11/19/2022] Open
Abstract
Mimicking female insects to attract male pollinators is an important strategy in sexually deceptive orchids of the genus Ophrys, and some species possess flowers with conspicuous labellum patterns. The function of the variation of the patterns remains unresolved, with suggestions that these enhance pollinator communication. We investigated the possible function of the labellum pattern in Ophrys heldreichii, an orchid species in which the conspicuous and complex labellum pattern contrasts with a dark background. The orchid is pollinated exclusively by males of the solitary bee, Eucera berlandi. Comparisons of labellum patterns revealed that patterns within inflorescences are more similar than those of other conspecific plants. Field observations showed that the males approach at a great speed and directly land on flowers, but after an unsuccessful copulation attempt, bees hover close and visually scan the labellum pattern for up to a minute. Learning experiments conducted with honeybees as an accessible model of bee vision demonstrated that labellum patterns of different plants can be reliably learnt; in contrast, patterns of flowers from the same inflorescence could not be discriminated. These results support the hypothesis that variable labellum patterns in O. heldreichii are involved in flower-pollinator communication which would likely help these plants to avoid geitonogamy.
Collapse
Affiliation(s)
- Kerstin Stejskal
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- * E-mail:
| | - Martin Streinzer
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Wuerzburg, Würzburg, Germany
- current address: Department of Neurobiology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Adrian Dyer
- Department of Physiology, Monash University, Clayton, Australia
- School of Media and Communication, RMIT University, Melbourne, Australia
| | - Hannes F. Paulus
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Johannes Spaethe
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Wuerzburg, Würzburg, Germany
| |
Collapse
|
34
|
Renoult JP, Kelber A, Schaefer HM. Colour spaces in ecology and evolutionary biology. Biol Rev Camb Philos Soc 2015; 92:292-315. [DOI: 10.1111/brv.12230] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 09/14/2015] [Accepted: 09/17/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Julien P. Renoult
- Institute of Arts Creations Theories & Aesthetics, CNRS-University Paris 1 Panthéon-Sorbonne; 47 r. des bergers 75015 Paris France
| | - Almut Kelber
- Lund Vision Group, Department of Biology; Lund University; Helgonavägen 3 22362 Lund Sweden
| | - H. Martin Schaefer
- Department of Evolutionary Biology and Animal Ecology; Faculty of Biology, University of Freiburg; Hauptstrasse 1 79104 Freiburg Germany
| |
Collapse
|
35
|
Avarguès-Weber A, Dyer AG, Ferrah N, Giurfa M. The forest or the trees: preference for global over local image processing is reversed by prior experience in honeybees. Proc Biol Sci 2015; 282:20142384. [PMID: 25473017 DOI: 10.1098/rspb.2014.2384] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traditional models of insect vision have assumed that insects are only capable of low-level analysis of local cues and are incapable of global, holistic perception. However, recent studies on honeybee (Apis mellifera) vision have refuted this view by showing that this insect also processes complex visual information by using spatial configurations or relational rules. In the light of these findings, we asked whether bees prioritize global configurations or local cues by setting these two levels of image analysis in competition. We trained individual free-flying honeybees to discriminate hierarchical visual stimuli within a Y-maze and tested bees with novel stimuli in which local and/or global cues were manipulated. We demonstrate that even when local information is accessible, bees prefer global information, thus relying mainly on the object's spatial configuration rather than on elemental, local information. This preference can be reversed if bees are pre-trained to discriminate isolated local cues. In this case, bees prefer the hierarchical stimuli with the local elements previously primed even if they build an incorrect global configuration. Pre-training with local cues induces a generic attentional bias towards any local elements as local information is prioritized in the test, even if the local cues used in the test are different from the pre-trained ones. Our results thus underline the plasticity of visual processing in insects and provide new insights for the comparative analysis of visual recognition in humans and animals.
Collapse
Affiliation(s)
- Aurore Avarguès-Weber
- Centre de Recherches sur la Cognition Animale, Université de Toulouse; UPS, 118 route de Narbonne, Toulouse Cedex 9 31062, France Centre de Recherches sur la Cognition Animale, CNRS, 118 route de Narbonne, Toulouse Cedex 9 31062, France
| | - Adrian G Dyer
- Department of Physiology, Monash University, Clayton, Victoria 3800, Australia School of Media and Communication, Royal Melbourne Institute of Technology, Melbourne, Victoria 3000, Australia
| | - Noha Ferrah
- Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
| | - Martin Giurfa
- Centre de Recherches sur la Cognition Animale, Université de Toulouse; UPS, 118 route de Narbonne, Toulouse Cedex 9 31062, France Centre de Recherches sur la Cognition Animale, CNRS, 118 route de Narbonne, Toulouse Cedex 9 31062, France
| |
Collapse
|
36
|
Service E, Plowright C. Food restriction and threat of predation affect visual pattern choices by flower-naïve bumblebees. LEARNING AND MOTIVATION 2015. [DOI: 10.1016/j.lmot.2014.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Kemp DJ, Herberstein ME, Fleishman LJ, Endler JA, Bennett ATD, Dyer AG, Hart NS, Marshall J, Whiting MJ. An integrative framework for the appraisal of coloration in nature. Am Nat 2015; 185:705-24. [PMID: 25996857 DOI: 10.1086/681021] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The world in color presents a dazzling dimension of phenotypic variation. Biological interest in this variation has burgeoned, due to both increased means for quantifying spectral information and heightened appreciation for how animals view the world differently than humans. Effective study of color traits is challenged by how to best quantify visual perception in nonhuman species. This requires consideration of at least visual physiology but ultimately also the neural processes underlying perception. Our knowledge of color perception is founded largely on the principles gained from human psychophysics that have proven generalizable based on comparative studies in select animal models. Appreciation of these principles, their empirical foundation, and the reasonable limits to their applicability is crucial to reaching informed conclusions in color research. In this article, we seek a common intellectual basis for the study of color in nature. We first discuss the key perceptual principles, namely, retinal photoreception, sensory channels, opponent processing, color constancy, and receptor noise. We then draw on this basis to inform an analytical framework driven by the research question in relation to identifiable viewers and visual tasks of interest. Consideration of the limits to perceptual inference guides two primary decisions: first, whether a sensory-based approach is necessary and justified and, second, whether the visual task refers to perceptual distance or discriminability. We outline informed approaches in each situation and discuss key challenges for future progress, focusing particularly on how animals perceive color. Given that animal behavior serves as both the basic unit of psychophysics and the ultimate driver of color ecology/evolution, behavioral data are critical to reconciling knowledge across the schools of color research.
Collapse
Affiliation(s)
- Darrell J Kemp
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Giurfa M. Learning and cognition in insects. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2015; 6:383-395. [PMID: 26263427 DOI: 10.1002/wcs.1348] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/28/2015] [Accepted: 02/08/2015] [Indexed: 11/11/2022]
Abstract
Insects possess small brains but exhibit sophisticated behavioral performances. Recent works have reported the existence of unsuspected cognitive capabilities in various insect species, which go beyond the traditional studied framework of simple associative learning. In this study, I focus on capabilities such as attention, social learning, individual recognition, concept learning, and metacognition, and discuss their presence and mechanistic bases in insects. I analyze whether these behaviors can be explained on the basis of elemental associative learning or, on the contrary, require higher-order explanations. In doing this, I highlight experimental challenges and suggest future directions for investigating the neurobiology of higher-order learning in insects, with the goal of uncovering l architectures underlying cognitive processing.
Collapse
Affiliation(s)
- Martin Giurfa
- Centre de Recherches sur la Cognition Animale, Université de Toulouse (UPS), Toulouse, France.,Centre de Recherches sur la Cognition Animale, Centre National de la Recherche Scientifique (CNRS), Toulouse, France
| |
Collapse
|
39
|
Wolf S, Roper M, Chittka L. Bumblebees utilize floral cues differently on vertically and horizontally arranged flowers. Behav Ecol 2015. [DOI: 10.1093/beheco/arv010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
40
|
|
41
|
van der Kooi CJ, Dyer AG, Stavenga DG. Is floral iridescence a biologically relevant cue in plant-pollinator signaling? THE NEW PHYTOLOGIST 2015; 205:18-20. [PMID: 25243861 DOI: 10.1111/nph.13066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Affiliation(s)
- Casper J van der Kooi
- Computational Physics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747 AG, Groningen, the Netherlands; Plant Physiology, Center for Ecological and Evolutionary Studies, University of Groningen, Nijenborgh 7, NL-9747 AG, Groningen, the Netherlands
| | | | | |
Collapse
|
42
|
Barry KL, White TE, Rathnayake DN, Fabricant SA, Herberstein ME. Sexual signals for the colour‐blind: cryptic female mantids signal quality through brightness. Funct Ecol 2014. [DOI: 10.1111/1365-2435.12363] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Katherine L. Barry
- Department of Biological Sciences Macquarie University Sydney NSW 2109 Australia
| | - Thomas E. White
- Department of Biological Sciences Macquarie University Sydney NSW 2109 Australia
| | | | - Scott A. Fabricant
- Department of Biological Sciences Macquarie University Sydney NSW 2109 Australia
| | - Marie E. Herberstein
- Department of Biological Sciences Macquarie University Sydney NSW 2109 Australia
| |
Collapse
|
43
|
Orbán LL, Plowright CMS. Getting to the start line: how bumblebees and honeybees are visually guided towards their first floral contact. INSECTES SOCIAUX 2014; 61:325-336. [PMID: 25328168 PMCID: PMC4196025 DOI: 10.1007/s00040-014-0366-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 08/16/2014] [Accepted: 08/20/2014] [Indexed: 05/08/2023]
Abstract
Much of the literature on foraging behaviour in bees focuses on what they learn after they have had rewarded experience with flowers. This review focuses on how honeybees and bumblebees are drawn to candidate food sources in the first place: the foundation on which learning is built. Prior to rewarded foraging experience, flower-naïve bumblebees and honeybees rely heavily on visual cues to discover their first flower. This review lists methodological issues that surround the study of flower-naïve behaviour and describes technological advances. The role of distinct visual properties of flowers in attracting bees is considered: colour, floral size, patterning and social cues. The research reviewed is multi-disciplinary and takes the perspectives of both the bees and the plants they visit. Several avenues for future research are proposed.
Collapse
Affiliation(s)
- L. L. Orbán
- School of Psychology, University of Ottawa, Ottawa, Canada
- Present Address: Department of Psychology, Kwantlen Polytechnic University, 12666 72nd Avenue, Surrey, BC Canada
| | | |
Collapse
|
44
|
Renoult JP, Blüthgen N, Binkenstein J, Weiner CN, Werner M, Schaefer HM. The relative importance of color signaling for plant generalization in pollination networks. OIKOS 2014. [DOI: 10.1111/oik.01361] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Julien P. Renoult
- Inst. of Arts Creation Theory and Aesthetics; UMR 8218-CNRS, 49 r. des bergers FR-75015 Paris France
| | - Nico Blüthgen
- Dept of Biology; Univ. of Darmstadt; Schnittspahnstrasse 3 DE-64287 Darmstadt Germany
| | - Julia Binkenstein
- Dept of Evolutionary Biology and Animal Ecology; Faculty of Biology, Univ. of Freiburg; Hauptstrasse 1 DE-79104 Freiburg Germany
| | - Christiane N. Weiner
- Dept of Animal Ecology and Tropical Biology; Univ. of Würzburg; Am Hubland DE-97074 Würzburg Germany
| | - Michael Werner
- Dept of Animal Ecology and Tropical Biology; Univ. of Würzburg; Am Hubland DE-97074 Würzburg Germany
| | - H. Martin Schaefer
- Dept of Evolutionary Biology and Animal Ecology; Faculty of Biology, Univ. of Freiburg; Hauptstrasse 1 DE-79104 Freiburg Germany
| |
Collapse
|
45
|
Yilmaz A, Aksoy V, Camlitepe Y, Giurfa M. Eye structure, activity rhythms, and visually-driven behavior are tuned to visual niche in ants. Front Behav Neurosci 2014; 8:205. [PMID: 24982621 PMCID: PMC4056385 DOI: 10.3389/fnbeh.2014.00205] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/21/2014] [Indexed: 11/13/2022] Open
Abstract
Insects have evolved physiological adaptations and behavioral strategies that allow them to cope with a broad spectrum of environmental challenges and contribute to their evolutionary success. Visual performance plays a key role in this success. Correlates between life style and eye organization have been reported in various insect species. Yet, if and how visual ecology translates effectively into different visual discrimination and learning capabilities has been less explored. Here we report results from optical and behavioral analyses performed in two sympatric ant species, Formica cunicularia and Camponotus aethiops. We show that the former are diurnal while the latter are cathemeral. Accordingly, F. cunicularia workers present compound eyes with higher resolution, while C. aethiops workers exhibit eyes with lower resolution but higher sensitivity. The discrimination and learning of visual stimuli differs significantly between these species in controlled dual-choice experiments: discrimination learning of small-field visual stimuli is achieved by F. cunicularia but not by C. aethiops, while both species master the discrimination of large-field visual stimuli. Our work thus provides a paradigmatic example about how timing of foraging activities and visual environment match the organization of compound eyes and visually-driven behavior. This correspondence underlines the relevance of an ecological/evolutionary framework for analyses in behavioral neuroscience.
Collapse
Affiliation(s)
- Ayse Yilmaz
- Department of Biology, Faculty of Sciences, Trakya University Edirne, Turkey ; Department of Behavioral Physiology and Sociobiology, University of Würzburg Würzburg, Germany
| | - Volkan Aksoy
- Department of Biology, Faculty of Sciences, Trakya University Edirne, Turkey
| | - Yilmaz Camlitepe
- Department of Biology, Faculty of Sciences, Trakya University Edirne, Turkey
| | - Martin Giurfa
- Research Centre for Animal Cognition, Université de Toulouse Toulouse, France ; CNRS, Research Centre for Animal Cognition Toulouse, France
| |
Collapse
|
46
|
Hempel de Ibarra N, Vorobyev M, Menzel R. Mechanisms, functions and ecology of colour vision in the honeybee. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:411-33. [PMID: 24828676 PMCID: PMC4035557 DOI: 10.1007/s00359-014-0915-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/15/2014] [Accepted: 04/17/2014] [Indexed: 11/06/2022]
Abstract
Research in the honeybee has laid the foundations for our understanding of insect colour vision. The trichromatic colour vision of honeybees shares fundamental properties with primate and human colour perception, such as colour constancy, colour opponency, segregation of colour and brightness coding. Laborious efforts to reconstruct the colour vision pathway in the honeybee have provided detailed descriptions of neural connectivity and the properties of photoreceptors and interneurons in the optic lobes of the bee brain. The modelling of colour perception advanced with the establishment of colour discrimination models that were based on experimental data, the Colour-Opponent Coding and Receptor Noise-Limited models, which are important tools for the quantitative assessment of bee colour vision and colour-guided behaviours. Major insights into the visual ecology of bees have been gained combining behavioural experiments and quantitative modelling, and asking how bee vision has influenced the evolution of flower colours and patterns. Recently research has focussed on the discrimination and categorisation of coloured patterns, colourful scenes and various other groupings of coloured stimuli, highlighting the bees' behavioural flexibility. The identification of perceptual mechanisms remains of fundamental importance for the interpretation of their learning strategies and performance in diverse experimental tasks.
Collapse
Affiliation(s)
- N Hempel de Ibarra
- Department of Psychology, Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK,
| | | | | |
Collapse
|
47
|
Avarguès-Weber A, Giurfa M. Cognitive components of color vision in honey bees: how conditioning variables modulate color learning and discrimination. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:449-61. [PMID: 24788332 DOI: 10.1007/s00359-014-0909-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 03/30/2014] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
Abstract
Since the demonstration of color vision in honey bees 100 years ago by Karl von Frisch, appetitive conditioning to color targets has been used as the principal way to access behavioral aspects of bee color vision. Yet, analyses on how conditioning parameters affect color perception remained scarce. Conclusions on bee color vision have often been made without referring them to the experimental context in which they were obtained, and thus presented as absolute facts instead of realizing that subtle variations in conditioning procedures might yield different results. Here, we review evidence showing that color learning and discrimination in bees are not governed by immutable properties of their visual system, but depend on how the insects are trained and thus learn a task. The use of absolute or differential conditioning protocols, the presence of aversive reinforcement in differential conditioning and the degrees of freedom of motor components determine dramatic variations in color discrimination. We, thus, suggest top-down attentional modulation of color vision to explain the changes in color learning and discrimination reviewed here. We discuss the possible neural mechanisms of this modulation and conclude that color vision experiments require a careful consideration of how training parameters shape behavioral responses.
Collapse
Affiliation(s)
- Aurore Avarguès-Weber
- Research Centre for Animal Cognition, UPS, Université de Toulouse, 118 route de Narbonne, 31062, Toulouse Cedex 9, France
| | | |
Collapse
|
48
|
Bee reverse-learning behavior and intra-colony differences: Simulations based on behavioral experiments reveal benefits of diversity. Ecol Modell 2014. [DOI: 10.1016/j.ecolmodel.2014.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
How images may or may not represent flowers: picture–object correspondence in bumblebees (Bombus impatiens)? Anim Cogn 2014; 17:1031-43. [DOI: 10.1007/s10071-014-0733-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 02/01/2014] [Accepted: 02/04/2014] [Indexed: 10/25/2022]
|
50
|
Sheehan MJ, Straub MA, Tibbetts EA. How Does Individual Recognition Evolve? Comparing Responses to Identity Information inPolistesSpecies with and Without Individual Recognition. Ethology 2013. [DOI: 10.1111/eth.12191] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael J. Sheehan
- Ecology and Evolutionary Biology; University of Michigan; Ann Arbor MI USA
| | - Michael A. Straub
- Ecology and Evolutionary Biology; University of Michigan; Ann Arbor MI USA
| | | |
Collapse
|