1
|
Monfared MA, Sheridan K, Dixon SP, Gledhill M, Le Berre T. Coral spawning patterns of Acropora across two Maldivian reef ecosystems. PeerJ 2023; 11:e16315. [PMID: 37927798 PMCID: PMC10621594 DOI: 10.7717/peerj.16315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023] Open
Abstract
Understanding patterns in coral reproductive biology at local and regional scales is crucial to elucidate our knowledge of characteristics that regulate populations and communities. The lack of published data on coral spawning patterns in the Maldives hinders our understanding of coral reproductive biology and limits our ability to assess shifts in reproductive phenology over time. Here we document baseline environmental cues, spawning patterns, exact timings and oocyte development of restored and wild Acropora, inhabiting shallow water reefs, across two Maldivian atolls. A total of 1,200 colonies were recorded spawning across the two sites between October 2021 and April 2023. These colonies represent 22 species of Acropora, with coral spawning observed over an extended period of eight months. This research details exact spawning times of multi-specific spawning, asynchronous spawning and 'split spawning' of Acropora, across multiple lunar phases; and highlights the need to consider restored colonies when discussing the sexual reproductive patterns of Maldivian Acropora in the future. Overall, corals spawned earlier in North Male Atoll compared with Baa Atoll. Earlier spawning events were significantly correlated with lower tide depths, wind speeds, daily precipitation and higher sea surface temperatures which helped explain inter-atoll, inter-annual, and intra-annual variations in spawning day. This study contributes to understanding sexual reproductive cycles of Acropora in the Maldives; knowledge that is vital for effective management of a critically endangered ecosystem in a changing climate.
Collapse
|
2
|
Solar radiation, temperature and the reproductive biology of the coral Lobactis scutaria in a changing climate. Sci Rep 2023; 13:246. [PMID: 36604569 PMCID: PMC9816315 DOI: 10.1038/s41598-022-27207-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023] Open
Abstract
Coral reefs worldwide are at risk due to climate change. Coral bleaching is becoming increasingly common and corals that survive bleaching events can suffer from temporary reproductive failure for several years. While water temperature is a key driver in causing coral bleaching, other environmental factors are involved, such as solar radiation. We investigated the individual and combined effects of temperature, photosynthetically active radiation (PAR), and ultraviolet radiation (UVR) on the spawning patterns and reproductive physiology of the Hawaiian mushroom coral Lobactis scutaria, using long-term experiments in aquaria. We examined effects on spawning timing, fertilisation success, and gamete physiology. Both warmer temperatures and filtering UVR altered the timing of spawning. Warmer temperatures caused a drop in fertilisation success. Warmer temperatures and higher PAR both negatively affected sperm and egg physiology. These results are concerning for the mushroom coral L. scutaria and similar reproductive data are urgently needed to predict future reproductive trends in other species. Nonetheless, thermal stress from global climate change will need to be adequately addressed to ensure the survival of reef-building corals in their natural environment throughout the next century and beyond. Until then, reproduction is likely to be increasingly impaired in a growing number of coral species.
Collapse
|
3
|
Tidau S, Whittle J, Jenkins SR, Davies TW. Artificial light at night reverses monthly foraging pattern under simulated moonlight. Biol Lett 2022; 18:20220110. [PMID: 35892207 PMCID: PMC9326264 DOI: 10.1098/rsbl.2022.0110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mounting evidence shows that artificial light at night (ALAN) alters biological processes across levels of organization, from cells to communities. Yet, the combined impacts of ALAN and natural sources of night-time illumination remain little explored. This is in part due the lack of accurate simulations of the complex changes moonlight intensity, timing and spectra throughout a single night and lunar cycles in laboratory experiments. We custom-built a novel system to simulate natural patterns of moonlight to test how different ALAN intensities affect predator–prey relationships over the full lunar cycle. Exposure to high intensity ALAN (10 and 50 lx) reversed the natural lunar-guided foraging pattern by the gastropod mesopredator Nucella lapillus on its prey Semibalanus balanoides. Foraging decreased during brighter moonlight in naturally lit conditions. When exposed to high intensity ALAN, foraging increased with brighter moonlight. Low intensity ALAN (0.1 and 0.5 lx) had no impact on foraging. Our results show that ALAN alters the foraging pattern guided by changes in moonlight brightness. ALAN impacts on ecosystems can depend on lunar light cycles. Accurate simulations of night-time light cycle will warrant more realistic insights into ALAN impacts and also facilitate advances in fundamental night-time ecology and chronobiology.
Collapse
Affiliation(s)
- Svenja Tidau
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK.,School of Ocean Sciences, University of Bangor, Menai Bridge LL59 5AB, UK
| | - Jack Whittle
- School of Ocean Sciences, University of Bangor, Menai Bridge LL59 5AB, UK
| | - Stuart R Jenkins
- School of Ocean Sciences, University of Bangor, Menai Bridge LL59 5AB, UK
| | - Thomas W Davies
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| |
Collapse
|
4
|
Liberman R, Shlesinger T, Loya Y, Benayahu Y. Soft coral reproductive phenology along a depth gradient: Can "going deeper" provide a viable refuge? Ecology 2022; 103:e3760. [PMID: 35582927 PMCID: PMC9540190 DOI: 10.1002/ecy.3760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/22/2022] [Indexed: 12/03/2022]
Abstract
Many species across a wide range of taxa and habitats display phenological shifts and differences in response to both environmental gradients and climate change. Moreover, the wide‐scale decline of numerous ecosystems is leading to increasing efforts to identify zones that might serve as natural refuges from various disturbances, including ocean warming. One such refuge was suggested to be that of the deep coral reefs, but whether depth can provide coral populations with a viable and reproductive refuge remains unclear. Given the global coral‐reef degradation and the key role that corals play as ecosystem engineers, their reproductive ecology has been widely studied. A particular knowledge gap nonetheless exists regarding coral reproductive phenology along a depth gradient. Filling in this gap may uncover the environmental cues that regulate coral reproduction, leading to better predictions of population connectivity, and their possible responses to climate change and other environmental changes. Here, using long‐term in situ observations of the soft coral Rhytisma fulvum's reproductive activity along its entire depth range (0–45 m), we examined the relationship among several environmental factors and the coral's reproductive phenology and activity over five successive annual breeding seasons. Compared with the shallow depths, a lower number of reproducing colonies was found in habitats deeper than 30 m, highlighting possible constraints on coral reproduction at the deeper end of their range. Our results further revealed that an increase in seawater temperature over 1–2‐day intervals during the breeding season correlated with the onset of reproductive activity along the depth gradient, leading to different reproductive periodicities in different depths. These differences suggest that differential temperature regimes and reproductive timing across depth may create intraspecific temporal reproductive segregation, possibly reducing connectivity among populations along a depth gradient. Moreover, we found high variability among years in both the timing of breeding activities and in the level of reproductive synchrony among corals from different depths. Overall, our study questions whether depth can provide a long‐term and viable refuge for corals in the face of global environmental changes.
Collapse
Affiliation(s)
- Ronen Liberman
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel.,The Interuniversity Institute for Marine Sciences, Eilat, Israel
| | - Tom Shlesinger
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel.,Current address: Institute for Global Ecology, Florida Institute of Technology, Melbourne, FL, USA
| | - Yossi Loya
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Yehuda Benayahu
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
5
|
Fasick JI, Algrain H, Samuels C, Mahadevan P, Schweikert LE, Naffaa ZJ, Robinson PR. Spectral tuning and deactivation kinetics of marine mammal melanopsins. PLoS One 2021; 16:e0257436. [PMID: 34653198 PMCID: PMC8519484 DOI: 10.1371/journal.pone.0257436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/31/2021] [Indexed: 02/04/2023] Open
Abstract
In mammals, the photopigment melanopsin (Opn4) is found in a subset of retinal ganglion cells that serve light detection for circadian photoentrainment and pupil constriction (i.e., mydriasis). For a given species, the efficiency of photoentrainment and length of time that mydriasis occurs is determined by the spectral sensitivity and deactivation kinetics of melanopsin, respectively, and to date, neither of these properties have been described in marine mammals. Previous work has indicated that the absorbance maxima (λmax) of marine mammal rhodopsins (Rh1) have diversified to match the available light spectra at foraging depths. However, similar to the melanopsin λmax of terrestrial mammals (~480 nm), the melanopsins of marine mammals may be conserved, with λmax values tuned to the spectrum of solar irradiance at the water's surface. Here, we investigated the Opn4 pigments of 17 marine mammal species inhabiting diverse photic environments including the Infraorder Cetacea, as well as the Orders Sirenia and Carnivora. Both genomic and cDNA sequences were used to deduce amino acid sequences to identify substitutions most likely involved in spectral tuning and deactivation kinetics of the Opn4 pigments. Our results show that there appears to be no amino acid substitutions in marine mammal Opn4 opsins that would result in any significant change in λmax values relative to their terrestrial counterparts. We also found some marine mammal species to lack several phosphorylation sites in the carboxyl terminal domain of their Opn4 pigments that result in significantly slower deactivation kinetics, and thus longer mydriasis, compared to terrestrial controls. This finding was restricted to cetacean species previously found to lack cone photoreceptor opsins, a condition known as rod monochromacy. These results suggest that the rod monochromat whales rely on extended pupillary constriction to prevent photobleaching of the highly photosensitive all-rod retina when moving between photopic and scotopic conditions.
Collapse
Affiliation(s)
- Jeffry I. Fasick
- Department of Biological Sciences, The University of Tampa, Tampa, Florida, United States of America
| | - Haya Algrain
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| | - Courtland Samuels
- Department of Chemistry, University of South Florida, Tampa, Florida, United States of America
| | - Padmanabhan Mahadevan
- Department of Biological Sciences, The University of Tampa, Tampa, Florida, United States of America
| | - Lorian E. Schweikert
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, United States of America
| | - Zaid J. Naffaa
- Department of Biological Sciences, Kean University, Union, New Jersey, United States of America
| | - Phyllis R. Robinson
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| |
Collapse
|
6
|
Gornik SG, Bergheim BG, Morel B, Stamatakis A, Foulkes NS, Guse A. Photoreceptor Diversification Accompanies the Evolution of Anthozoa. Mol Biol Evol 2021; 38:1744-1760. [PMID: 33226083 PMCID: PMC8097283 DOI: 10.1093/molbev/msaa304] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Anthozoan corals are an ecologically important group of cnidarians, which power the productivity of reef ecosystems. They are sessile, inhabit shallow, tropical oceans and are highly dependent on sun- and moonlight to regulate sexual reproduction, phototaxis, and photosymbiosis. However, their exposure to high levels of sunlight also imposes an increased risk of UV-induced DNA damage. How have these challenging photic environments influenced photoreceptor evolution and function in these animals? To address this question, we initially screened the cnidarian photoreceptor repertoire for Anthozoa-specific signatures by a broad-scale evolutionary analysis. We compared transcriptomic data of more than 36 cnidarian species and revealed a more diverse photoreceptor repertoire in the anthozoan subphylum than in the subphylum Medusozoa. We classified the three principle opsin classes into distinct subtypes and showed that Anthozoa retained all three classes, which diversified into at least six subtypes. In contrast, in Medusozoa, only one class with a single subtype persists. Similarly, in Anthozoa, we documented three photolyase classes and two cryptochrome (CRY) classes, whereas CRYs are entirely absent in Medusozoa. Interestingly, we also identified one anthozoan CRY class, which exhibited unique tandem duplications of the core functional domains. We next explored the functionality of anthozoan photoreceptors in the model species Exaiptasia diaphana (Aiptasia), which recapitulates key photo-behaviors of corals. We show that the diverse opsin genes are differentially expressed in important life stages common to reef-building corals and Aiptasia and that CRY expression is light regulated. We thereby provide important clues linking coral evolution with photoreceptor diversification.
Collapse
Affiliation(s)
- Sebastian G Gornik
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | | | - Benoit Morel
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Alexandros Stamatakis
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany.,Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Nicholas S Foulkes
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany.,Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Annika Guse
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
7
|
Grinblat M, Cooke I, Shlesinger T, Ben-Zvi O, Loya Y, Miller DJ, Cowman PF. Biogeography, reproductive biology and phylogenetic divergence within the Fungiidae (mushroom corals). Mol Phylogenet Evol 2021; 164:107265. [PMID: 34274488 DOI: 10.1016/j.ympev.2021.107265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 11/15/2022]
Abstract
While the escalating impacts of climate change and other anthropogenic pressures on coral reefs are well documented at the coral community level, studies of species-specific trends are less common, owing mostly to the difficulties and uncertainties in delineating coral species. It has also become clear that traditional coral taxonomy based largely on skeletal macromorphology has underestimated the diversity of many coral families. Here, we use targeted enrichment methods to sequence 2476 ultraconserved elements (UCEs) and exonic loci to investigate the relationship between populations of Fungia fungites from Okinawa, Japan, where this species reproduces by brooding (i.e., internal fertilization), and Papua New Guinea and Australia, where it reproduces by broadcast-spawning (i.e., external fertilization). Moreover, we analyzed the relationships between populations of additional fungiid species (Herpolitha limax and Ctenactis spp.) that reproduce only by broadcast-spawning. Our phylogenetic and species delimitation analyses reveal strong biogeographic structuring in both F. fungites and Herpolitha limax, consistent with cryptic speciation in Okinawa in both species and additionally for H. limax in the Red Sea. By combining UCE/exon data and mitochondrial sequences captured in off-target reads, we reinforce earlier findings that Ctenactis, a genus consisting of three nominal morphospecies, is not a natural group. Our results highlight the need for taxonomic and systematic re-evaluations of some species and genera within the family Fungiidae. This work demonstrates that sequence data generated by the application of targeted capture methods can provide objective criteria by which we can test phylogenetic hypotheses based on morphological and/or life history traits.
Collapse
Affiliation(s)
- Mila Grinblat
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia; Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia.
| | - Ira Cooke
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia.
| | - Tom Shlesinger
- Institute for Global Ecology, Florida Institute of Technology, Melbourne, FL, USA
| | - Or Ben-Zvi
- School of Zoology, Tel-Aviv University, Tel-Aviv, Israel; The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| | - Yossi Loya
- School of Zoology, Tel-Aviv University, Tel-Aviv, Israel
| | - David J Miller
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia; Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia.
| | - Peter F Cowman
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia; Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia; Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum, Townsville, Queensland, Australia.
| |
Collapse
|
8
|
Ayalon I, Rosenberg Y, Benichou JIC, Campos CLD, Sayco SLG, Nada MAL, Baquiran JIP, Ligson CA, Avisar D, Conaco C, Kuechly HU, Kyba CCM, Cabaitan PC, Levy O. Coral Gametogenesis Collapse under Artificial Light Pollution. Curr Biol 2020; 31:413-419.e3. [PMID: 33157030 DOI: 10.1016/j.cub.2020.10.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/21/2020] [Accepted: 10/08/2020] [Indexed: 01/10/2023]
Abstract
Artificial light at night (ALAN) can have negative impacts on the health of humans and ecosystems.1-4 Marine organisms, including coral reefs in particular, rely on the natural light cycles of sunlight and moonlight to regulate various physiological, biological, and behavioral processes.5-8 Here, we demonstrate that light pollution caused delayed gametogenesis and unsynchronized gamete release in two coral species, Acropora millepora and Acropora digitifera, from the Indo-Pacific Ocean. Given the urbanization along major coasts, light pollution could thus further threaten coral communities' populations, which are already under severe degradation. A worldwide-modeled light pollution impact assessment is provided, which can help incorporate an important variable in coral reef conservation planning.
Collapse
Affiliation(s)
- Inbal Ayalon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel; The H. Steinitz Marine Biology Laboratory, The Interuniversity Institute for Marine Sciences of Eilat, PO Box 469, Eilat 88103, Israel; Porter School of the Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 39040, Israel
| | - Yaeli Rosenberg
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Jennifer I C Benichou
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Celine Luisa D Campos
- The Marine Science Institute, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Sherry Lyn G Sayco
- The Marine Science Institute, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Michael Angelou L Nada
- The Marine Science Institute, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Jake Ivan P Baquiran
- The Marine Science Institute, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Charlon A Ligson
- The Marine Science Institute, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Dror Avisar
- Porter School of the Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 39040, Israel
| | - Cecilia Conaco
- The Marine Science Institute, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Helga U Kuechly
- GFZ German Research Centre for Geosciences, 14473 Potsdam, Germany
| | - Christopher C M Kyba
- GFZ German Research Centre for Geosciences, 14473 Potsdam, Germany; Leibniz-Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany
| | - Patrick C Cabaitan
- The Marine Science Institute, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Oren Levy
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel.
| |
Collapse
|
9
|
Whitlock K. Evolutionarily conserved peptides coordinate lunar phase and metabolism. Proc Natl Acad Sci U S A 2020; 117:805-807. [PMID: 31888992 PMCID: PMC6969539 DOI: 10.1073/pnas.1920432117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Kathleen Whitlock
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Universidad de Valparaíso, 2340000 Valparaíso, Chile
| |
Collapse
|
10
|
Shlesinger T, Loya Y. Breakdown in spawning synchrony: A silent threat to coral persistence. Science 2019; 365:1002-1007. [PMID: 31488683 DOI: 10.1126/science.aax0110] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/16/2019] [Indexed: 01/14/2023]
Abstract
The impacts of human and natural disturbances on coral reefs are typically quantified through visible damage (e.g., reduced coral coverage as a result of bleaching events), but changes in environmental conditions may also cause damage in less visible ways. Despite the current paradigm, which suggests consistent, highly synchronized spawning events, corals that reproduce by broadcast spawning are particularly vulnerable because their reproductive phenology is governed by environmental cues. Here, we quantify coral spawning intensity during four annual reproductive seasons, alongside laboratory analyses at the polyp, colony, and population levels, and we demonstrate that, compared with historical data, several species from the Red Sea have lost their reproductive synchrony. Ultimately, such a synchrony breakdown reduces the probability of successful fertilization, leading to a dearth of new recruits, which may drive aging populations to extinction.
Collapse
Affiliation(s)
- Tom Shlesinger
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Yossi Loya
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
11
|
The retinal pigments of the whale shark ( Rhincodon typus) and their role in visual foraging ecology. Vis Neurosci 2019; 36:E011. [PMID: 31718726 DOI: 10.1017/s0952523819000105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The spectral tuning properties of the whale shark (Rhincodon typus) rod (rhodopsin or Rh1) and long-wavelength-sensitive (LWS) cone visual pigments were examined to determine whether these retinal pigments have adapted to the broadband light spectrum available for surface foraging or to the narrowband blue-shifted light spectrum available at depth. Recently published whale shark genomes have identified orthologous genes for both the whale shark Rh1 and LWS cone opsins suggesting a duplex retina. Here, the whale shark Rh1 and LWS cone opsin sequences were examined to identify amino acid residues critical for spectral tuning. Surprisingly, the predicted absorbance maximum (λmax) for both the whale shark Rh1 and LWS visual pigments is near 500 nm. Although Rh1 λmax values near 500 nm are typical of terrestrial vertebrates, as well as surface foraging fish, it is uncommon for a vertebrate LWS cone pigment to be so greatly blue-shifted. We propose that the spectral tuning properties of both the whale shark Rh1 and LWS cone pigments are most likely adaptations to the broadband light spectrum available at the surface. Whale shark melanopsin (Opn4) deactivation kinetics was examined to better understand the underlying molecular mechanisms of the pupillary light reflex. Results show that the deactivation rate of whale shark Opn4 is similar to the Opn4 deactivation rate from vertebrates possessing duplex retinae and is significantly faster than the Opn4 deactivation rate from an aquatic rod monochromat lacking functional cone photoreceptors. The rapid deactivation rate of whale shark Opn4 is consistent with a functional cone class and would provide the animal with an exponential increase in the number of photons required for photoreceptor signaling when transitioning from photopic to scotopic light conditions, as is the case when diving.
Collapse
|
12
|
|
13
|
Ziegler M, Roik A, Röthig T, Wild C, Rädecker N, Bouwmeester J, Voolstra CR. Ecophysiology of Reef-Building Corals in the Red Sea. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-05802-9_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Taubner I, Hu MY, Eisenhauer A, Bleich M. Electrophysiological evidence for light-activated cation transport in calcifying corals. Proc Biol Sci 2019; 286:20182444. [PMID: 30963934 PMCID: PMC6408601 DOI: 10.1098/rspb.2018.2444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/23/2019] [Indexed: 12/17/2022] Open
Abstract
Light has been demonstrated to enhance calcification rates in hermatypic coral species. To date, it remains unresolved whether calcifying epithelia change their ion transport activity during illumination, and whether such a process is mediated by the endosymbiotic algae or can be controlled by the coral host itself. Using a modified Ussing chamber in combination with H+ sensitive microelectrode measurements, the present work demonstrates that light triggers the generation of a skeleton positive potential of up to 0.9 mV in the hermatypic coral Stylophora pistillata. This potential is generated by a net flux of cations towards the skeleton and reaches its maximum at blue (450 nm) light. The effects of pharmacological inhibitors targeting photosynthesis 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and anion transport 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) were investigated by pH microelectrode measurements in coral tissues demonstrating a rapid decrease in tissue pH under illumination. However, these inhibitors showed no effect on the electrophysiological light response of the coral host. By contrast, metabolic inhibition by cyanide and deoxyglucose reversibly inhibited the light-induced cation flux towards the skeleton. These results suggest that ion transport across coral epithelia is directly triggered by blue light, independent of photosynthetic activity of algal endosymbionts. Measurements of this very specific and quantifiable physiological response can provide parameters to identify photoreception mechanisms and will help to broaden our understanding of the mechanistic link between light stimulation and epithelial ion transport, potentially relevant for calcification in hermatypic corals.
Collapse
Affiliation(s)
- Isabelle Taubner
- Christian-Albrechts-Universität, Institute of Physiology, Kiel, Germany
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Marian Y. Hu
- Christian-Albrechts-Universität, Institute of Physiology, Kiel, Germany
| | | | - Markus Bleich
- Christian-Albrechts-Universität, Institute of Physiology, Kiel, Germany
| |
Collapse
|
15
|
Sexual Reproduction of Scleractinian Corals in Mesophotic Coral Ecosystems vs. Shallow Reefs. CORAL REEFS OF THE WORLD 2019. [DOI: 10.1007/978-3-319-92735-0_35] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
16
|
Affiliation(s)
- Ujjwal Chakraborty
- Life Science Division, Moulasole R.B. High School, Moulasole, Bankura, West Bengal, India
| |
Collapse
|
17
|
Beattie GA, Hatfield BM, Dong H, McGrane RS. Seeing the Light: The Roles of Red- and Blue-Light Sensing in Plant Microbes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:41-66. [PMID: 29768135 DOI: 10.1146/annurev-phyto-080417-045931] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Plants collect, concentrate, and conduct light throughout their tissues, thus enhancing light availability to their resident microbes. This review explores the role of photosensing in the biology of plant-associated bacteria and fungi, including the molecular mechanisms of red-light sensing by phytochromes and blue-light sensing by LOV (light-oxygen-voltage) domain proteins in these microbes. Bacteriophytochromes function as major drivers of the bacterial transcriptome and mediate light-regulated suppression of virulence, motility, and conjugation in some phytopathogens and light-regulated induction of the photosynthetic apparatus in a stem-nodulating symbiont. Bacterial LOV proteins also influence light-mediated changes in both symbiotic and pathogenic phenotypes. Although red-light sensing by fungal phytopathogens is poorly understood, fungal LOV proteins contribute to blue-light regulation of traits, including asexual development and virulence. Collectively, these studies highlight that plant microbes have evolved to exploit light cues and that light sensing is often coupled with sensing other environmental signals.
Collapse
Affiliation(s)
- Gwyn A Beattie
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa 50011, USA;
| | - Bridget M Hatfield
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa 50011, USA;
| | - Haili Dong
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa 50011, USA;
| | - Regina S McGrane
- Department of Biological Sciences, Southwestern Oklahoma State University, Weatherford, Oklahoma 73096, USA
| |
Collapse
|
18
|
Wolstenholme J, Nozawa Y, Byrne M, Burke W. Timing of mass spawning in corals: potential influence of the coincidence of lunar factors and associated changes in atmospheric pressure from northern and southern hemisphere case studies. INVERTEBR REPROD DEV 2018. [DOI: 10.1080/07924259.2018.1434245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - Yoko Nozawa
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Maria Byrne
- School of Medical Sciences and School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - William Burke
- Discipline of Physiology, University of Sydney, Sydney, Australia
| |
Collapse
|
19
|
Shlesinger T, Grinblat M, Rapuano H, Amit T, Loya Y. Can mesophotic reefs replenish shallow reefs? Reduced coral reproductive performance casts a doubt. Ecology 2018; 99:421-437. [PMID: 29205289 DOI: 10.1002/ecy.2098] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/12/2017] [Accepted: 11/17/2017] [Indexed: 01/24/2023]
Abstract
Mesophotic coral ecosystems (i.e., deep coral reefs at 30-120 m depth) appear to be thriving while many shallow reefs in the world are declining. Amid efforts to understand and manage their decline, it was suggested that mesophotic reefs might serve as natural refuges and a possible source of propagules for the shallow reefs. However, our knowledge of how reproductive performance of corals alters with depth is sparse. Here, we present a comprehensive study of the reproductive phenology, fecundity, and abundance of seven reef-building conspecific corals in shallow and mesophotic habitats. Significant differences were found in the synchrony and timing of gametogenesis and spawning between shallow and mesophotic coral populations. Thus, mesophotic populations exhibited delayed or protracted spawning events, which led to spawning of the mesophotic colonies in large proportions at times where the shallow ones had long been depleted of reproductive material. All species investigated demonstrated a substantial reduction in fecundity and/or oocyte sizes at mesophotic depths (40-60 m). Two species (Seriatopora hystrix and Galaxea fascicularis) displayed a reduction in both fecundity and oocyte size at mesophotic depths. Turbinaria reniformis had only reduced fecundity and Acropora squarrosa and Acropora valida only reduced oocyte size. In Montipora verrucosa, reduced fecundity was found during one annual reproductive season while, in the following year, only reduced oocyte size was found. In contrast, reduced oocyte size in mesophotic populations of Acropora squarrosa was consistent along three studied years. One species, Acropora pharaonis, was found to be infertile at mesophotic depths along two studied years. This indicates that reproductive performance decreases with depth; and that although some species are capable of reproducing at mesophotic depths, their contribution to the replenishment of shallow reefs may be inconsequential. Reduced reproductive performance with depth, combined with the possible narrower tolerance to environmental factors, further suggests that mesophotic corals may in fact be more vulnerable than previously conceived. Furthermore, we posit that the observed temporal segregation in reproduction could lead to assortative mating, and this, in turn, may facilitate adaptive divergence across depth.
Collapse
Affiliation(s)
- Tom Shlesinger
- The George S. Wise Faculty of Life Sciences, School of Zoology, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Mila Grinblat
- The George S. Wise Faculty of Life Sciences, School of Zoology, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Hanna Rapuano
- The George S. Wise Faculty of Life Sciences, School of Zoology, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Tal Amit
- The George S. Wise Faculty of Life Sciences, School of Zoology, Tel-Aviv University, Tel-Aviv, 69978, Israel.,The School of Marine Sciences, Ruppin Academic Center, Michmoret, 40297, Israel
| | - Yossi Loya
- The George S. Wise Faculty of Life Sciences, School of Zoology, Tel-Aviv University, Tel-Aviv, 69978, Israel
| |
Collapse
|
20
|
Craggs J, Guest JR, Davis M, Simmons J, Dashti E, Sweet M. Inducing broadcast coral spawning ex situ: Closed system mesocosm design and husbandry protocol. Ecol Evol 2017; 7:11066-11078. [PMID: 29299282 PMCID: PMC5743687 DOI: 10.1002/ece3.3538] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/02/2017] [Accepted: 09/16/2017] [Indexed: 12/01/2022] Open
Abstract
For many corals, the timing of broadcast spawning correlates strongly with a number of environmental signals (seasonal temperature, lunar, and diel cycles). Robust experimental studies examining the role of these putative cues in triggering spawning have been lacking until recently because it has not been possible to predictably induce spawning in fully closed artificial mesocosms. Here, we present a closed system mesocosm aquarium design that utilizes microprocessor technology to accurately replicate environmental conditions, including photoperiod, seasonal insolation, lunar cycles, and seasonal temperature from Singapore and the Great Barrier Reef (GBR), Australia. Coupled with appropriate coral husbandry, these mesocosms were successful in inducing, for the first time, broadcast coral spawning in a fully closed artificial ex situ environment. Four Acropora species (A. hyacinthus, A. tenuis, A. millepora, and A. microclados) from two geographical locations, kept for over 1 year, completed full gametogenic cycles ex situ. The percentage of colonies developing oocytes varied from ~29% for A. hyacinthus to 100% for A. millepora and A. microclados. Within the Singapore mesocosm, A. hyacinthus exhibited the closest synchronization to wild spawning, with all four gravid colonies releasing gametes in the same lunar month as wild predicted dates. Spawning within the GBR mesocosm commenced at the predicted wild spawn date but extended over a period of 3 months. Gamete release in relation to the time postsunset for A. hyacinthus, A. millepora, and A. tenuis was consistent with time windows previously described in the wild. Spawn date in relation to full moon, however, was delayed in all species, possibly as a result of external light pollution. The system described here could broaden the number of institutions on a global scale, that can access material for broadcast coral spawning research, providing opportunities for institutions distant from coral reefs to produce large numbers of coral larvae and juveniles for research purposes and reef restoration efforts.
Collapse
Affiliation(s)
- Jamie Craggs
- Aquatic Research Facility Environmental Sustainability Research Centre College of Life and Natural Sciences University of Derby Derby UK.,Horniman Museum and Garden London UK
| | - James R Guest
- School of Natural & Environmental Sciences Newcastle University Newcastle upon Tyne UK.,SECORE International, Inc. Hilliard OH USA
| | | | | | | | - Michael Sweet
- Aquatic Research Facility Environmental Sustainability Research Centre College of Life and Natural Sciences University of Derby Derby UK
| |
Collapse
|
21
|
Gaston KJ, Davies TW, Nedelec SL, Holt LA. Impacts of Artificial Light at Night on Biological Timings. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2017. [DOI: 10.1146/annurev-ecolsys-110316-022745] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kevin J. Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, United Kingdom;, , ,
| | - Thomas W. Davies
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, United Kingdom;, , ,
| | - Sophie L. Nedelec
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, United Kingdom;, , ,
| | - Lauren A. Holt
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, United Kingdom;, , ,
| |
Collapse
|
22
|
de Busserolles F, Cortesi F, Helvik JV, Davies WIL, Templin RM, Sullivan RKP, Michell CT, Mountford JK, Collin SP, Irigoien X, Kaartvedt S, Marshall J. Pushing the limits of photoreception in twilight conditions: The rod-like cone retina of the deep-sea pearlsides. SCIENCE ADVANCES 2017; 3:eaao4709. [PMID: 29134201 PMCID: PMC5677336 DOI: 10.1126/sciadv.aao4709] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
Most vertebrates have a duplex retina comprising two photoreceptor types, rods for dim-light (scotopic) vision and cones for bright-light (photopic) and color vision. However, deep-sea fishes are only active in dim-light conditions; hence, most species have lost their cones in favor of a simplex retina composed exclusively of rods. Although the pearlsides, Maurolicus spp., have such a pure rod retina, their behavior is at odds with this simplex visual system. Contrary to other deep-sea fishes, pearlsides are mostly active during dusk and dawn close to the surface, where light levels are intermediate (twilight or mesopic) and require the use of both rod and cone photoreceptors. This study elucidates this paradox by demonstrating that the pearlside retina does not have rod photoreceptors only; instead, it is composed almost exclusively of transmuted cone photoreceptors. These transmuted cells combine the morphological characteristics of a rod photoreceptor with a cone opsin and a cone phototransduction cascade to form a unique photoreceptor type, a rod-like cone, specifically tuned to the light conditions of the pearlsides' habitat (blue-shifted light at mesopic intensities). Combining properties of both rods and cones into a single cell type, instead of using two photoreceptor types that do not function at their full potential under mesopic conditions, is likely to be the most efficient and economical solution to optimize visual performance. These results challenge the standing paradigm of the function and evolution of the vertebrate duplex retina and emphasize the need for a more comprehensive evaluation of visual systems in general.
Collapse
Affiliation(s)
- Fanny de Busserolles
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Fabio Cortesi
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jon Vidar Helvik
- Department of Biology, University of Bergen, Bergen 5020, Norway
| | - Wayne I. L. Davies
- The Oceans Institute, The University of Western Australia, Crawley, Western Australia 6009, Australia
- School of Biological Science, The University of Western Australia, Crawley, Western Australia 6009, Australia
- Lions Eye Institute, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Rachel M. Templin
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Robert K. P. Sullivan
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Craig T. Michell
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistokatu 7, FI-80101 Joensuu, Finland
| | - Jessica K. Mountford
- The Oceans Institute, The University of Western Australia, Crawley, Western Australia 6009, Australia
- School of Biological Science, The University of Western Australia, Crawley, Western Australia 6009, Australia
- Lions Eye Institute, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Shaun P. Collin
- The Oceans Institute, The University of Western Australia, Crawley, Western Australia 6009, Australia
- School of Biological Science, The University of Western Australia, Crawley, Western Australia 6009, Australia
- Lions Eye Institute, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Xabier Irigoien
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Marine Research, AZTI - Tecnalia, Herrera Kaia, Portualdea z/g, 20110 Pasaia (Gipuzkoa), Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Stein Kaartvedt
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Department of Biosciences, University of Oslo, Oslo 0316, Norway
| | - Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
23
|
Keith SA, Maynard JA, Edwards AJ, Guest JR, Bauman AG, van Hooidonk R, Heron SF, Berumen ML, Bouwmeester J, Piromvaragorn S, Rahbek C, Baird AH. Coral mass spawning predicted by rapid seasonal rise in ocean temperature. Proc Biol Sci 2017; 283:rspb.2016.0011. [PMID: 27170709 DOI: 10.1098/rspb.2016.0011] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/18/2016] [Indexed: 12/26/2022] Open
Abstract
Coral spawning times have been linked to multiple environmental factors; however, to what extent these factors act as generalized cues across multiple species and large spatial scales is unknown. We used a unique dataset of coral spawning from 34 reefs in the Indian and Pacific Oceans to test if month of spawning and peak spawning month in assemblages of Acropora spp. can be predicted by sea surface temperature (SST), photosynthetically available radiation, wind speed, current speed, rainfall or sunset time. Contrary to the classic view that high mean SST initiates coral spawning, we found rapid increases in SST to be the best predictor in both cases (month of spawning: R(2) = 0.73, peak: R(2) = 0.62). Our findings suggest that a rapid increase in SST provides the dominant proximate cue for coral mass spawning over large geographical scales. We hypothesize that coral spawning is ultimately timed to ensure optimal fertilization success.
Collapse
Affiliation(s)
- Sally A Keith
- Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Copenhagen 2100, Denmark ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| | - Jeffrey A Maynard
- SymbioSeas and the Marine Applied Research Center, Wilmington, NC 28411, USA Laboratoire d'Excellence «CORAIL» USR 3278 CNRS - EPHE, CRIOBE, Papetoai, Moorea, French Polynesia
| | - Alasdair J Edwards
- School of Biology, Newcastle University, Ridley Building, Newcastle upon Tyne NE1 7RU, UK
| | - James R Guest
- SECORE International, 40 Jalan Anjung 5, Horizon Hills, Nusajaya 79100, Johor, Malaysia
| | - Andrew G Bauman
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Republic of Singapore
| | - Ruben van Hooidonk
- Atlantic Oceanographic and Meteorological Laboratory, NOAA, 4301 Rickenbacker Causeway, Miami, FL 33149, USA Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
| | - Scott F Heron
- NOAA Coral Reef Watch, 675 Ross River Road, Townsville, Queensland 4817, Australia Marine Geophysical Laboratory, Physics Department, College of Science, Technology and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - Michael L Berumen
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23599-6900, Saudi Arabia
| | - Jessica Bouwmeester
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23599-6900, Saudi Arabia Department of Geology and Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Srisakul Piromvaragorn
- Center of Excellence for Biodiversity of Peninsular Thailand, Biology Department, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Carsten Rahbek
- Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Copenhagen 2100, Denmark Imperial College London, Silwood Park, Buckhurst Road, Ascot, Berkshire SL5 7PY, UK
| | - Andrew H Baird
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
24
|
Melott AL, Thomas BC, Kachelrieß M, Semikoz DV, Overholt AC. A Supernova at 50 pc: Effects on the Earth's Atmosphere and Biota. THE ASTROPHYSICAL JOURNAL 2017; 840:105. [PMID: 30034016 PMCID: PMC6052450 DOI: 10.3847/1538-4357/aa6c57] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent 60Fe results have suggested that the estimated distances of supernovae in the last few million years should be reduced from ∼100 to ∼50 pc. Two events or series of events are suggested, one about 2.7 million years to 1.7 million years ago, and another about 6.5-8.7 million years ago. We ask what effects such supernovae are expected to have on the terrestrial atmosphere and biota. Assuming that the Local Bubble was formed before the event being considered, and that the supernova and the Earth were both inside a weak, disordered magnetic field at that time, TeV-PeV cosmic rays (CRs) at Earth will increase by a factor of a few hundred. Tropospheric ionization will increase proportionately, and the overall muon radiation load on terrestrial organisms will increase by a factor of ∼150. All return to pre-burst levels within 10 kyr. In the case of an ordered magnetic field, effects depend strongly on the field orientation. The upper bound in this case is with a largely coherent field aligned along the line of sight to the supernova, in which case, TeV-PeV CR flux increases are ∼104; in the case of a transverse field they are below current levels. We suggest a substantial increase in the extended effects of supernovae on Earth and in the "lethal distance" estimate; though more work is needed. This paper is an explicit follow-up to Thomas et al. We also provide more detail on the computational procedures used in both works.
Collapse
Affiliation(s)
- A L Melott
- Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045, USA
| | - B C Thomas
- Department of Physics and Astronomy, Washburn University, Topeka, KS 66621, USA
| | | | - D V Semikoz
- APC, Universite Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite, 119 F-75205 Paris, France
- National Research Nuclear University "MEPHI" (Moscow Engineering Physics Institute), Kashirskoe Highway 31, M4, 115409, Russia
| | - A C Overholt
- Department of Science and Mathematics, MidAmerica Nazarene University, Olathe, KS 66062, USA
| |
Collapse
|
25
|
Spitschan M, Lucas RJ, Brown TM. Chromatic clocks: Color opponency in non-image-forming visual function. Neurosci Biobehav Rev 2017; 78:24-33. [PMID: 28442402 DOI: 10.1016/j.neubiorev.2017.04.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/30/2017] [Accepted: 04/15/2017] [Indexed: 12/25/2022]
Abstract
During dusk and dawn, the ambient illumination undergoes drastic changes in irradiance (or intensity) and spectrum (or color). While the former is a well-studied factor in synchronizing behavior and physiology to the earth's 24-h rotation, color sensitivity in the regulation of circadian rhythms has not been systematically studied. Drawing on the concept of color opponency, a well-known property of image-forming vision in many vertebrates (including humans), we consider how the spectral shifts during twilight are encoded by a color-opponent sensory system for non-image-forming (NIF) visual functions, including phase shifting and melatonin suppression. We review electrophysiological evidence for color sensitivity in the pineal/parietal organs of fish, amphibians and reptiles, color coding in neurons in the circadian pacemaker in mice as well as sporadic evidence for color sensitivity in NIF visual functions in birds and mammals. Together, these studies suggest that color opponency may be an important modulator of light-driven physiological and behavioral responses.
Collapse
Affiliation(s)
- Manuel Spitschan
- Stanford University, Department of Psychiatry & Behavioral Sciences, Stanford, CA, USA; VA Palo Alto Health Care System, Mental Illness Research Education and Clinical Center, Palo Alto, CA, USA.
| | - Robert J Lucas
- University of Manchester, Faculty of Life Sciences, Manchester, United Kingdom
| | - Timothy M Brown
- University of Manchester, Faculty of Life Sciences, Manchester, United Kingdom
| |
Collapse
|
26
|
The spectral and spatial distribution of light pollution in the waters of the northern Gulf of Aqaba (Eilat). Sci Rep 2017; 7:42329. [PMID: 28186138 PMCID: PMC5301253 DOI: 10.1038/srep42329] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 01/10/2017] [Indexed: 01/04/2023] Open
Abstract
The urbanization of the shores of the Gulf of Aqaba has exposed the marine environment there, including unique fringing coral reefs, to strong anthropogenic light sources. Here we present the first in situ measurements of artificial nighttime light under water in such an ecosystem, with irradiance measured in 12 wavelength bands, at 19 measurement stations spread over 44 square km, and at 30 depths down to 30-m depth. At 1-m depth, we find downwelling irradiance values that vary from 4.6 × 10-4 μW cm-2 nm-1 500 m from the city to 1 × 10-6 μW cm-2 nm-1 in the center of the gulf (9.5 km from the city) in the yellow channel (589-nm wavelength) and from 1.3 × 10-4 μW cm-2 nm-1 to 4.3 × 10-5 μW cm-2 nm-1 in the blue channel (443-nm wavelength). Down to 10-m depth, we find downwelling irradiance values that vary from 1 × 10-6 μW cm-2 nm-1 to 4.6 × 10-4 μW cm-2 nm-1 in the yellow channel and from 2.6 × 10-5 μW cm-2 nm-1 to 1.3 × 10-4 μW cm-2 nm-1 in the blue channel, and we even detected a signal at 30-m depth. This irradiance could influence such biological processes as the tuning of circadian clocks, the synchronization of coral spawning, recruitment and competition, vertical migration of demersal plankton, feeding patterns, and prey/predator visual interactions.
Collapse
|
27
|
Rosser NL, Thomas L, Stankowski S, Richards ZT, Kennington WJ, Johnson MS. Phylogenomics provides new insight into evolutionary relationships and genealogical discordance in the reef-building coral genus Acropora. Proc Biol Sci 2017; 284:20162182. [PMID: 28077772 PMCID: PMC5247495 DOI: 10.1098/rspb.2016.2182] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/12/2016] [Indexed: 01/08/2023] Open
Abstract
Understanding the genetic basis of reproductive isolation is a long-standing goal of speciation research. In recently diverged populations, genealogical discordance may reveal genes and genomic regions that contribute to the speciation process. Previous work has shown that conspecific colonies of Acropora that spawn in different seasons (spring and autumn) are associated with highly diverged lineages of the phylogenetic marker PaxC Here, we used 10 034 single-nucleotide polymorphisms to generate a genome-wide phylogeny and compared it with gene genealogies from the PaxC intron and the mtDNA Control Region in 20 species of Acropora, including three species with spring- and autumn-spawning cohorts. The PaxC phylogeny separated conspecific autumn and spring spawners into different genetic clusters in all three species; however, this pattern was not supported in two of the three species at the genome level, suggesting a selective connection between PaxC and reproductive timing in Acropora corals. This genome-wide phylogeny provides an improved foundation for resolving phylogenetic relationships in Acropora and, combined with PaxC, provides a fascinating platform for future research into regions of the genome that influence reproductive isolation and speciation in corals.
Collapse
Affiliation(s)
- Natalie L Rosser
- School of Animal Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Luke Thomas
- School of Plant Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Sean Stankowski
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Zoe T Richards
- Department of Aquatic Zoology, Western Australian Museum, 49 Kew Street, Welshpool, Western Australia 6106, Australia
| | - W Jason Kennington
- School of Animal Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Michael S Johnson
- School of Animal Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
28
|
Variation of outdoor illumination as a function of solar elevation and light pollution. Sci Rep 2016; 6:26756. [PMID: 27272736 PMCID: PMC4895134 DOI: 10.1038/srep26756] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/03/2016] [Indexed: 12/29/2022] Open
Abstract
The illumination of the environment undergoes both intensity and spectral changes during the 24 h cycle of a day. Daylight spectral power distributions are well described by low-dimensional models such as the CIE (Commission Internationale de l’Éclairage) daylight model, but the performance of this model in non-daylight regimes is not characterised. We measured downwelling spectral irradiance across multiple days in two locations in North America: One rural location (Cherry Springs State Park, PA) with minimal anthropogenic light sources, and one city location (Philadelphia, PA). We characterise the spectral, intensity and colour changes and extend the existing CIE model for daylight to capture twilight components and the spectrum of the night sky.
Collapse
|
29
|
Brady AK, Willis BL, Harder LD, Vize PD. Lunar Phase Modulates Circadian Gene Expression Cycles in the Broadcast Spawning Coral Acropora millepora. THE BIOLOGICAL BULLETIN 2016; 230:130-142. [PMID: 27132135 DOI: 10.1086/bblv230n2p130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Many broadcast spawning corals in multiple reef regions release their gametes with incredible temporal precision just once per year, using the lunar cycle to set the night of spawning. Moonlight, rather than tides or other lunar-regulated processes, is thought to be the proximate factor responsible for linking the night of spawning to the phase of the Moon. We compared patterns of gene expression among colonies of the broadcast spawning coral Acropora millepora at different phases of the lunar cycle, and when they were maintained under one of three experimentally simulated lunar lighting treatments: i) lunar lighting conditions matching those on the reef, or lunar patterns mimicking either ii) constant full Moon conditions, or iii) constant new Moon conditions. Normal lunar illumination was found to shift both the level and timing of clock gene transcription cycles between new and full moons, with the peak hour of expression for a number of genes occurring earlier in the evening under a new Moon when compared to a full Moon. When the normal lunar cycle is replaced with nighttime patterns equivalent to either a full Moon or a new Moon every evening, the normal monthlong changes in the level of expression are destroyed for most genes. In combination, these results indicate that daily changes in moonlight that occur over the lunar cycle are essential for maintaining normal lunar periodicity of clock gene transcription, and this may play a role in regulating spawn timing. These data also show that low levels of light pollution may have an impact on coral biological clocks.
Collapse
Affiliation(s)
- Aisling K Brady
- Department of Biological Science, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada; and
| | - Bette L Willis
- College of Marine and Environmental Sciences, and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| | - Lawrence D Harder
- Department of Biological Science, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada; and
| | - Peter D Vize
- Department of Biological Science, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada; and
| |
Collapse
|
30
|
Kaniewska P, Alon S, Karako-Lampert S, Hoegh-Guldberg O, Levy O. Signaling cascades and the importance of moonlight in coral broadcast mass spawning. eLife 2015; 4. [PMID: 26668113 PMCID: PMC4721961 DOI: 10.7554/elife.09991] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/04/2015] [Indexed: 12/17/2022] Open
Abstract
Many reef-building corals participate in a mass-spawning event that occurs yearly on the Great Barrier Reef. This coral reproductive event is one of earth's most prominent examples of synchronised behavior, and coral reproductive success is vital to the persistence of coral reef ecosystems. Although several environmental cues have been implicated in the timing of mass spawning, the specific sensory cues that function together with endogenous clock mechanisms to ensure accurate timing of gamete release are largely unknown. Here, we show that moonlight is an important external stimulus for mass spawning synchrony and describe the potential mechanisms underlying the ability of corals to detect environmental triggers for the signaling cascades that ultimately result in gamete release. Our study increases the understanding of reproductive chronobiology in corals and strongly supports the hypothesis that coral gamete release is achieved by a complex array of potential neurohormones and light-sensing molecules. DOI:http://dx.doi.org/10.7554/eLife.09991.001 Sexual reproduction in corals is possibly the most important process for replenishing degraded coral reefs. Most corals are “broadcast spawners” that reproduce by releasing their egg cells and sperm cells into the sea water surface. To maximize their chances of reproductive success, most coral in the Great Barrier Reef – over 130 species – spawn on the same night, during a time window that is approximately 30-60 minutes long. This is the largest-scale mass spawning event of coral in the world, and is triggered by changes in sea water temperature, tides, sunrise and sunset and by the intensity of the moonlight. How corals tune their spawning behavior with the phases of the moonlight was an unanswered question for decades. Now, Kaniewska, Alon et al. have exposed the coral Acropora millepora – which makes up part of the Great Barrier Reef – to different light treatments and sampled the corals before, during and after their spawning periods. This revealed that light causes changes to gene expression and signaling processes inside cells. These changes are specifically related to the release of egg and sperm cells, and occur only on the night of spawning. Furthermore, by exposing corals to light conditions that mimic artificial urban “light pollution”, Kaniewska, Alon et al. caused a mismatch in certain cellular signaling processes that prevented the corals from spawning. Reducing the exposure of corals to artificial lighting could therefore help to protect and regenerate coral reefs. Future work will involve comparing these results with information about a coral species from another part of the world to investigate whether there is a universal mechanism used by corals to control when they spawn. DOI:http://dx.doi.org/10.7554/eLife.09991.002
Collapse
Affiliation(s)
- Paulina Kaniewska
- Australian Institute of Marine Science, Queensland, Australia.,School of Biological Sciences, The University of Queensland, St Lucia, Australia
| | - Shahar Alon
- George S Wise Faculty of Life Sciences, Department of Neurobiology, Tel Aviv University, Tel Aviv, Israel
| | - Sarit Karako-Lampert
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Ove Hoegh-Guldberg
- Global Change Institute and ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Australia
| | - Oren Levy
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
31
|
Kaniewska P, Alon S, Karako-Lampert S, Hoegh-Guldberg O, Levy O. Signaling cascades and the importance of moonlight in coral broadcast mass spawning. eLife 2015. [PMID: 26668113 DOI: 10.7554/elife.09991.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many reef-building corals participate in a mass-spawning event that occurs yearly on the Great Barrier Reef. This coral reproductive event is one of earth's most prominent examples of synchronised behavior, and coral reproductive success is vital to the persistence of coral reef ecosystems. Although several environmental cues have been implicated in the timing of mass spawning, the specific sensory cues that function together with endogenous clock mechanisms to ensure accurate timing of gamete release are largely unknown. Here, we show that moonlight is an important external stimulus for mass spawning synchrony and describe the potential mechanisms underlying the ability of corals to detect environmental triggers for the signaling cascades that ultimately result in gamete release. Our study increases the understanding of reproductive chronobiology in corals and strongly supports the hypothesis that coral gamete release is achieved by a complex array of potential neurohormones and light-sensing molecules.
Collapse
Affiliation(s)
- Paulina Kaniewska
- Australian Institute of Marine Science, Queensland, Australia.,School of Biological Sciences, The University of Queensland, St Lucia, Australia
| | - Shahar Alon
- George S Wise Faculty of Life Sciences, Department of Neurobiology, Tel Aviv University, Tel Aviv, Israel
| | - Sarit Karako-Lampert
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Ove Hoegh-Guldberg
- Global Change Institute and ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Australia
| | - Oren Levy
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
32
|
Bevington M. Lunar biological effects and the magnetosphere. PATHOPHYSIOLOGY 2015; 22:211-22. [DOI: 10.1016/j.pathophys.2015.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/12/2015] [Accepted: 08/28/2015] [Indexed: 12/24/2022] Open
|
33
|
Jones R, Ricardo GF, Negri AP. Effects of sediments on the reproductive cycle of corals. MARINE POLLUTION BULLETIN 2015; 100:13-33. [PMID: 26384866 DOI: 10.1016/j.marpolbul.2015.08.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/29/2015] [Accepted: 08/02/2015] [Indexed: 05/07/2023]
Abstract
Dredging, river plumes and natural resuspension events can release sediments into the water column where they exert a range of effects on underlying communities. In this review we examine possible cause-effect pathways whereby light reduction, elevated suspended sediments and sediment deposition could affect the reproductive cycle and early life histories of corals. The majority of reported or likely effects (30+) were negative, including a suite of previously unrecognized effects on gametes. The length of each phase of the life-cycle was also examined together with analysis of water quality conditions that can occur during a dredging project over equivalent durations, providing a range of environmentally relevant exposure scenarios for future testing. The review emphasizes the need to: (a) accurately quantify exposure conditions, (b) identify the mechanism of any effects in future studies, and (c) recognize the close interlinking of proximate factors which could confound interpretation of studies.
Collapse
Affiliation(s)
- R Jones
- Australian Institute of Marine Science (AIMS), Perth, Australia; Western Australian Marine Science Institution (WAMSI), Perth, Australia; Oceans Institute, University of Western Australia, Perth, Australia.
| | - G F Ricardo
- Australian Institute of Marine Science (AIMS), Perth, Australia; Western Australian Marine Science Institution (WAMSI), Perth, Australia; Centre of Microscopy, Charaterisation and Analysis, The University of Western Australia, Perth, Australia.
| | - A P Negri
- Australian Institute of Marine Science (AIMS), Perth, Australia; Western Australian Marine Science Institution (WAMSI), Perth, Australia.
| |
Collapse
|
34
|
Palmer G, Johnsen S. Downwelling spectral irradiance during evening twilight as a function of the lunar phase. APPLIED OPTICS 2015; 54:B85-B92. [PMID: 25967843 DOI: 10.1364/ao.54.000b85] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/14/2014] [Indexed: 06/04/2023]
Abstract
We measured downwelling spectral vector irradiance (from 350 to 800 nm) during evening civil and nautical twilight (solar elevation down to -12°). Nine sets of measurements were taken to cover the first half of the lunar cycle (from the new to full moon) and were also used to calculate chromaticity (CIE 1976 u'v'). The lunar phase had no consistent effect on downwelling irradiance until solar elevation was less than -8°. For lower solar elevations, the effect of the moon increased with the fraction of the illuminated lunar disk until the fraction was approximately 50%. For fractions greater than 50%, the brightness and chromaticity of the downwelling irradiance were approximately independent of the fraction illuminated, likely because the greater brightness of a fuller moon was offset by its lower elevation during twilight. Given the importance of crepuscular periods to animal activity, including predation, reproductive cycles, and color vision in dim light, these results may have significant implications for animal ecology.
Collapse
|
35
|
Kamat S, Maniaci V, Linares MYR, Lozano JM. Pediatric psychiatric emergency department visits during a full moon. Pediatr Emerg Care 2014; 30:875-8. [PMID: 25407032 DOI: 10.1097/pec.0000000000000291] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE This study aimed to verify the hypothesis that the lunar cycle influences the number of pediatric psychiatric emergency department (ED) visits. METHODS Pediatric psychiatric ED visits between 2009 and 2011 were obtained retrospectively. Patients aged between 4 and 21 years presenting to Miami Children's Hospital ED with a primary psychiatric complaint were included in the study. Patients with a concomitant psychiatric problem and a secondary medical condition were excluded. The number of psychiatric visits was retrieved for the full moon dates, control dates as well as the day before and after the full moon when the moon appears full to the naked eye (full moon effect). A comparison was made using the 2-sample independent t test. RESULTS Between 2009 and 2011, 36 dates were considered as the true full moon dates and 108 dates as the "full moon effect." A total of 559 patients were included in the study. The 2-sample independent t tests were performed between the actual full moon date and control dates, as well as between the "full moon effect" dates and control dates. Our results failed to show a statistical significance when comparing the number of pediatric psychiatric patients presenting to a children's hospital ED during a full moon and a non-full moon date. CONCLUSIONS Our study's results are in agreement with those involving adult patients. The full moon does not affect psychiatric visits in a children's hospital.
Collapse
Affiliation(s)
- Shyama Kamat
- From the *Miami Children's Hospital and †Herbert Wertheim College of Medicine, Florida International University, Miami, FL
| | | | | | | |
Collapse
|
36
|
Circadian clocks in symbiotic corals: The duet between Symbiodinium algae and their coral host. Mar Genomics 2014; 14:47-57. [DOI: 10.1016/j.margen.2014.01.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 11/11/2013] [Accepted: 01/13/2014] [Indexed: 12/15/2022]
|
37
|
Nansen C, Coelho A, Vieira JM, Parra JRP. Reflectance-based identification of parasitized host eggs and adult Trichogramma specimens. ACTA ACUST UNITED AC 2013; 217:1187-92. [PMID: 24363420 DOI: 10.1242/jeb.095661] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A wide range of imaging and spectroscopy technologies is used in medical diagnostics, quality control in production systems, military applications, stress detection in agriculture, and ecological studies of both terrestrial and aquatic organisms. In this study, we hypothesized that reflectance profiling can be used to successfully classify animals that are otherwise very challenging to classify. We acquired hyperspectral images from adult specimens of the egg parasitoid genus Trichogramma (T. galloi, T. pretiosum and T. atopovirilia), which are ~1.0 mm in length. We also acquired hyperspectral images from host eggs containing developing Trichogramma instar and pupae. These obligate egg endoparasitoid species are commercially available as natural enemies of lepidopteran pests in food production systems. Because of their minute size and physical resemblance, classification is time consuming and requires a high level of technical experience. The classification of reflectance profiles was based on a combination of average reflectance and variogram parameters (describing the spatial structure of reflectance data) of reflectance values in individual spectral bands. Although variogram parameters (variogram analysis) are commonly used in large-scale spatial research (i.e. geoscience and landscape ecology), they have only recently been used in classification of high-resolution hyperspectral imaging data. The classification model of parasitized host eggs was equally successful for each of the three species and was successfully validated with independent data sets (>90% classification accuracy). The classification model of adult specimens accurately separated T. atopovirilia from the other two species, but specimens of T. galloi and T. pretiosum could not be accurately separated. Interestingly, molecular-based classification (using the DNA sequence of the internally transcribed spacer ITS2) of Trichogramma species published elsewhere corroborates the classification, as T. galloi and T. pretiosum are closely related and comparatively distant from T. atopovirilia. Our results emphasize the importance of using high-spectral and high-spatial resolution data in the classification of organism relatedness, and hyperspectral imaging may be of relevance to a wide range of commercial (i.e. producers of biocontrol agents), taxonomic and evolutionary research applications.
Collapse
Affiliation(s)
- Christian Nansen
- The University of Western Australia, School of Animal Biology, The UWA Institute of Agriculture, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
| | | | | | | |
Collapse
|
38
|
Shoguchi E, Tanaka M, Shinzato C, Kawashima T, Satoh N. A genome-wide survey of photoreceptor and circadian genes in the coral, Acropora digitifera. Gene 2012; 515:426-31. [PMID: 23266624 DOI: 10.1016/j.gene.2012.12.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 11/29/2012] [Accepted: 12/06/2012] [Indexed: 12/30/2022]
Abstract
Corals exhibit circadian behaviors, but little is known about the molecular mechanisms underlying the regulation of these behaviors. We surveyed the recently decoded genome of the coral, Acropora digitifera, for photoreceptor and circadian genes, using molecular phylogenetic analyses. Our search for photoreceptor genes yielded seven opsin and three cryptochrome genes. Two genes from each family likely underwent tandem duplication in the coral lineage. We also found the following A. digitifera orthologs to Drosophila and mammalian circadian clock genes: four clock, one bmal/cycle, three pdp1-like, one creb/atf, one sgg/zw3, two ck2alpha, one dco (csnk1d/cnsk1e), one slim/BTRC, and one grinl. No vrille, rev-ervα/nr1d1, bhlh2, vpac2, adcyap1, or adcyaplr1 orthologs were found. Intriguingly, in spite of an extensive survey, we also failed to find homologs of period and timeless, although we did find one timeout gene. In addition, the coral genes were compared to orthologous genes in the sea anemone, Nematostella vectensis. Thus, the coral and sea anemone genomes share a similar repertoire of circadian clock genes, although A. digitifera contains more clock genes and fewer photoreceptor genes than N. vectensis. This suggests that the circadian clock system was established in a common ancestor of corals and sea anemones, and was diversified by tandem gene duplications and the loss of paralogous genes in each lineage. It will be interesting to determine how the coral circadian clock functions without period.
Collapse
Affiliation(s)
- Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology, Onna, Okinawa 904-0495, Japan.
| | | | | | | | | |
Collapse
|
39
|
Mason B, Schmale M, Gibbs P, Miller MW, Wang Q, Levay K, Shestopalov V, Slepak VZ. Evidence for multiple phototransduction pathways in a reef-building coral. PLoS One 2012; 7:e50371. [PMID: 23227169 PMCID: PMC3515558 DOI: 10.1371/journal.pone.0050371] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 10/19/2012] [Indexed: 12/31/2022] Open
Abstract
Photosensitive behaviors and circadian rhythms are well documented in reef-building corals and their larvae, but the mechanisms responsible for photoreception have not been described in these organisms. Here we report the cloning, immunolocalization, and partial biochemical characterization of three opsins and four G proteins expressed in planulae of the Caribbean elkhorn coral, Acropora palmata. All three opsins (acropsins 1-3) possess conserved seven-pass transmembrane structure, and localize to distinct regions of coral planulae. Acropsin 1 was localized in the larval endoderm, while acropsin 2 was localized in solitary cells of the ectoderm. These rod-like cells displayed a remarkably polarized distribution, concentrated in the aboral end. We also cloned four A. palmata G protein alpha subunits. Three were homologs of vertebrate Gi, Go, and Gq. The fourth is presumably a novel G protein, which displays only 40% identity with the nearest known G protein, and we termed it Gc for "cnidarian". We show that Gc and Gq can be activated by acropsins in a light-dependent manner in vitro. This indicates that at least acropsins 1 and 3 can form functional photoreceptors and potentially may play a role in color preference during settlement, vertical positioning and other light-guided behaviors observed in coral larvae.
Collapse
Affiliation(s)
- Benjamin Mason
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, United States of America
- * E-mail: (BM); (VZS)
| | - Michael Schmale
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, United States of America
| | - Patrick Gibbs
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, United States of America
| | - Margaret W. Miller
- National Marine Fisheries Service, Southeast Fisheries Science Center, Miami, Florida, United States of America
| | - Qiang Wang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Konstantin Levay
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Valery Shestopalov
- Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Vladlen Z. Slepak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- * E-mail: (BM); (VZS)
| |
Collapse
|
40
|
Veilleux CC, Cummings ME. Nocturnal light environments and species ecology: implications for nocturnal color vision in forests. ACTA ACUST UNITED AC 2012; 215:4085-96. [PMID: 22899522 DOI: 10.1242/jeb.071415] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Although variation in the color of light in terrestrial diurnal and twilight environments has been well documented, relatively little work has examined the color of light in nocturnal habitats. Understanding the range and sources of variation in nocturnal light environments has important implications for nocturnal vision, particularly following recent discoveries of nocturnal color vision. In this study, we measured nocturnal irradiance in a dry forest/woodland and a rainforest in Madagascar over 34 nights. We found that a simple linear model including the additive effects of lunar altitude, lunar phase and canopy openness successfully predicted total irradiance flux measurements across 242 clear sky measurements (r=0.85, P<0.0001). However, the relationship between these variables and spectral irradiance was more complex, as interactions between lunar altitude, lunar phase and canopy openness were also important predictors of spectral variation. Further, in contrast to diurnal conditions, nocturnal forests and woodlands share a yellow-green-dominant light environment with peak flux at 560 nm. To explore how nocturnal light environments influence nocturnal vision, we compared photoreceptor spectral tuning, habitat preference and diet in 32 nocturnal mammals. In many species, long-wavelength-sensitive cone spectral sensitivity matched the peak flux present in nocturnal forests and woodlands, suggesting a possible adaptation to maximize photon absorption at night. Further, controlling for phylogeny, we found that fruit/flower consumption significantly predicted short-wavelength-sensitive cone spectral tuning in nocturnal mammals (P=0.002). These results suggest that variation in nocturnal light environments and species ecology together influence cone spectral tuning and color vision in nocturnal mammals.
Collapse
Affiliation(s)
- Carrie C Veilleux
- Department of Anthropology, University of Texas at Austin, Austin, TX 78712, USA.
| | | |
Collapse
|
41
|
Mason BM, Cohen JH. Long-wavelength photosensitivity in coral planula larvae. THE BIOLOGICAL BULLETIN 2012; 222:88-92. [PMID: 22589399 DOI: 10.1086/bblv222n2p88] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Light influences the swimming behavior and settlement of the planktonic planula larvae of coral, but little is known regarding the photosensory biology of coral at this or any life-history stage. Here we used changes in the electrical activity of coral planula tissue upon light flashes to investigate the photosensitivity of the larvae. Recordings were made from five species: two whose larvae are brooded and contain algal symbionts (Porites astreoides and Agaricia agaricites), and three whose larvae are spawned and lack algal symbionts (Acropora cervicornis, Acropora palmata,and Montastrea faveolata). Photosensitivity originated from the coral larva rather than from, or in addition to, its algal symbionts as species with and without symbionts displayed similar tissue-level electrical responses to light. All species exhibited as much (or more) sensitivity to red stimuli as to blue/green stimuli, which is consistent with a role for long-wavelength visible light in the preference for substrata observed during settlement and in facilitating vertical positioning of larvae in the water column.
Collapse
Affiliation(s)
- Benjamin M Mason
- University of Miami, Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Causeway, Miami, FL 33149, USA.
| | | |
Collapse
|
42
|
Boch CA, Ananthasubramaniam B, Sweeney AM, Doyle FJ, Morse DE. Effects of light dynamics on coral spawning synchrony. THE BIOLOGICAL BULLETIN 2011; 220:161-173. [PMID: 21712225 DOI: 10.1086/bblv220n3p161] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Synchrony of spawning in many hermatypic corals, typically a few nights after the full moon, is putatively dependent on solar and lunar light cycles in conjunction with other possible cues such as tides and temperature. We analyze here the contributions of separate components of light dynamics, because the effects of twilight and lunar skylight on coral spawning synchrony have previously been conflated and the alternative hypothesis that these components have differential contributions as proximate cues has not been tested. Moonlight-dependent changes in spectra during twilight, rates of decreasing twilight intensities, and changes in lunar photoperiod were experimentally decoupled using programmed light-emitting diodes and compared for their separate effects on spawning synchrony in Acropora humilis. Effects on synchrony under the control of synthetic lunar cues were greatest in response to changes in lunar photoperiod; changes in light intensities and spectra had lesser influence. No significant differences among treatment responses were found at the circa-diel time scale. We conclude that spawning synchrony on a particular lunar night and specific time of night is a threshold response to differential periods of darkness after twilight that is primarily influenced by lunar photoperiod and secondarily by discrete optical components of early nocturnal illumination.
Collapse
Affiliation(s)
- Charles A Boch
- Interdepartmental Graduate Program in Marine Science, University of California, Santa Barbara, California 93106-9620, USA
| | | | | | | | | |
Collapse
|
43
|
Knight K. MASS REEF SPAWNING COULD BE TRIGGERED BY TWILIGHT. J Exp Biol 2011. [DOI: 10.1242/jeb.056382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|