1
|
Šimo L. 50 Years since Kaufman and Phillips’ Groundbreaking Trilogy Elucidating Ion and Water Homeostasis in Ixodid Ticks. Pathogens 2023; 12:pathogens12030385. [PMID: 36986307 PMCID: PMC10052448 DOI: 10.3390/pathogens12030385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
The enormous volume of blood ingested by hard ticks during their long attachment period is without a doubt the hallmark of their biology. Maintaining a homeostatic balance between ion and water intake and loss during their feeding is critical to preventing osmotic stress and death. Exactly 50 years ago, Kaufman and Phillips published a series of three consecutive papers on “Ion and water balance in the ixodid tick Dermacentor andersoni”, Journal of Experimental Biology (1973): I. Routes of ion and water excretion, 58: 523–36; II. Mechanism and control of salivary secretion 58: 537–547; and III. Influence of monovalent ions and osmotic pressure on salivary secretion 58: 549–564. This classic series significantly expanded our knowledge of the unique regulatory processes governing ion and water balance in fed ixodid ticks, highlighting its uniqueness among the blood-feeding arthropods. Their pioneer work had an enormous impact on understanding the vital role of salivary glands in these actions, and ultimately provided a consequential stepping stone for a new era of hard tick salivary gland physiological research.
Collapse
Affiliation(s)
- Ladislav Šimo
- Laboratoire de Santé Animale, UMR BIPAR, Ecole Nationale Vétérinaire d'Alfort, INRAE, ANSES, F-94700 Maisons-Alfort, France
| |
Collapse
|
2
|
Price KJ, Witmier BJ, Eckert RA, Boyer CN. Recovery of Partially Engorged Haemaphysalis longicornis (Acari: Ixodidae) Ticks from Active Surveillance. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1842-1846. [PMID: 35851919 PMCID: PMC9473650 DOI: 10.1093/jme/tjac099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Indexed: 06/15/2023]
Abstract
The invasive Asian longhorned tick, Haemaphysalis longicornis, has rapidly spread across the northeastern United States and is associated with pathogens of public health and veterinary concern. Despite its importance in pathogen dynamics, H. longicornis blood-feeding behavior in nature, specifically the likelihood of interrupted feeding, remains poorly documented. Here, we report the recovery of partially engorged, questing H. longicornis from active tick surveillance in Pennsylvania. Significantly more engorged H. longicornis nymphs (1.54%) and adults (3.07%) were recovered compared to Ixodes scapularis nymphs (0.22%) and adults (zero). Mean Scutal Index difference between unengorged and engorged nymph specimens was 0.65 and 0.42 for I. scapularis and H. longicornis, respectively, suggesting the questing, engorged H. longicornis also engorged to a comparatively lesser extent. These data are among the first to document recovery of engorged, host-seeking H. longicornis ticks and provide initial evidence for interrupted feeding and repeated successful questing events bearing implications for pathogen transmission and warranting consideration in vector dynamics models.
Collapse
Affiliation(s)
- Keith J Price
- Division of Vector Management, Pennsylvania Department of Environmental Protection, Harrisburg, PA 17110, USA
| | | | - Rebecca A Eckert
- Department of Environmental Studies, Gettysburg College, Gettysburg, PA 17325, USA
| | - Christian N Boyer
- Division of Vector Management, Pennsylvania Department of Environmental Protection, Harrisburg, PA 17110, USA
| |
Collapse
|
3
|
Flynn PC, Forth JH, Kaufman WR. A comparison of the cuticular properties of argasid and ixodid ticks: Ornithodoros moubata (Argasidae) vs. Amblyomma hebraeum and Ixodes pacificus (Ixodidae). EXPERIMENTAL & APPLIED ACAROLOGY 2020; 82:515-527. [PMID: 33206311 DOI: 10.1007/s10493-020-00566-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
Ticks (Chelicerata, Ixodida) are blood-feeding ectoparasites believed to have evolved at least about 120 millions of years ago and found worldwide. However, many aspects of their unique life cycle and anatomy, including their mechanical properties, remain to be understood. Here, we compared the mechanical properties of the cuticle of the argasid tick Ornithodoros moubata to those of two species of ixodid tick, Amblyomma hebraeum and Ixodes pacificus that we explored in our earlier studies of the tick exoskeleton. Significant differences were expected given the substantial difference in life cycle, including a five-fold increase during the repeated adult blood meal for female O. moubata vs. 70- to 120-fold during the single feeding of the adult female A. hebraeum and I. pacificus. We demonstrate here that the layered structure and mechanical properties (stiffness and viscosity) of the cuticle show minor differences, but the difference in cuticle thickness is substantial. Ductility is lost during feeding; reduced pH restores ductility. Previous work suggests that this occurs in vivo in engorged ixodid ticks; there is no evidence of this occurring in vivo in O. moubata. Thinning of cuticle in O. moubata fed females is consistent with the predicted stretch of cuticle due to the blood meal; there is no evidence of cuticle synthesis during the short feeding period. Dimensional analysis suggests that the soft feel of argasid ticks is related to cuticle thickness, not cuticle stiffness. Relative to argasid ticks, the hard ixodid ticks accommodate a ca. 20-fold higher size of blood meal by starting with a thicker cuticle and growing much additional cuticle during engorgement.
Collapse
Affiliation(s)
- Peter C Flynn
- Department of Mechanical Engineering, University of Alberta, Edmonton, T6G 2E9, Canada.
| | - Jan Hendrik Forth
- Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - W Reuben Kaufman
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2E9, Canada
- Gulf Island Veterinary Clinic, Salt Spring Island, BC, Canada
| |
Collapse
|
4
|
Kaufman WR, Flynn PC. A comparison of the cuticular properties of the female ticks Ixodes pacificus and Amblyomma hebraeum (Acari: Ixodidae) throughout the feeding period. EXPERIMENTAL & APPLIED ACAROLOGY 2018; 76:365-380. [PMID: 30306503 DOI: 10.1007/s10493-018-0306-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/27/2018] [Indexed: 06/08/2023]
Abstract
The mechanical properties of the cuticle of Ixodes pacificus (Ip) are compared to those of Amblyomma hebraeum (Ah) from our earlier work. The 10-fold size difference between the species is expected to lead to significant differences in mechanical properties, because cuticular stretch depends on high internal hydrostatic pressure during the rapid phase of engorgement. We demonstrate here: (1) The cuticle of partially fed Ip is less stiff and viscous than that of Ah. (2) A stretch-recoil cycle in both ticks consists of recoverable deformation (ESv) and permanent deformation (ESp); ESp is higher in Ip, and increases sharply during the slow phase of engorgement, but not in Ah. (3) Injected dopamine (DA) increases ESp and reduces all measures of stiffness and viscosity, suggesting that a catecholaminergic neurotransmitter plays a fundamental role in modulating mechanical properties of the cuticle. However, unlike Ah, DA's effect was not different from that of the control (1.2% NaCl). Mere insertion of the needle may have punctured the gut, causing the release of perhaps a catecholamine that increases ESp, an hypothesis supported by the fact that inserting a needle without any injection also caused an increase in ESp. (4) Stretch reduces ESp, but subjecting loops to pH 6.5 in vitro restores it. (5) Despite the smaller size of Ip, later onset of the rapid phase of engorgement, a thinner cuticle and different mechanical properties all reduce the internal pressure needed for stretch.
Collapse
Affiliation(s)
- W Reuben Kaufman
- Department of Biological Sciences, University of Alberta, Edmonton, Canada.
- Gulf Island Veterinary Clinic, Salt Spring Island, BC, Canada.
| | - Peter C Flynn
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| |
Collapse
|
5
|
Starck JM, Mehnert L, Biging A, Bjarsch J, Franz-Guess S, Kleeberger D, Hörnig M. Morphological responses to feeding in ticks (Ixodes ricinus). ZOOLOGICAL LETTERS 2018; 4:20. [PMID: 30123529 PMCID: PMC6091150 DOI: 10.1186/s40851-018-0104-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Ticks can survive long periods without feeding but, when feeding, ingest large quantities of blood, resulting in a more than 100-fold increase of body volume. We study morphological adaptations to changes in opisthosoma volume during feeding in the castor bean tick, Ixodes ricinus. We aim to understand the functional morphological features that accommodate enormous changes in volume changes. METHODS Using light and electron microscopy, we compare the cuticle and epidermis of the alloscutum, the epithelium of the midgut diverticula, and the tracheae of adult female ticks when fasting, semi-engorged, and fully engorged. RESULTS Our results add to an existing body of knowledge that the area of the epidermis increases by cellular differentiation, cellular hypertrophy, and changes in the shape of epithelial cells from pseudostratified to single layered prismatic in semi-engorged ticks, and to thin squamous epithelium in fully engorged ticks. We did not find evidence for cell proliferation. The midgut diverticula accommodate the volume increase by cellular hypertrophy and changes in cell shape. In fully engorged ticks, the epithelial cells of the midgut diverticula are stretched to an extremely thin, squamous epithelium. Changes in size and shape (and cell divisions) contribute to the accommodation of volume changes. Tracheae do not increase in size, but extend in length, thus following the volume changes of the opisthosoma in feeding ticks to secure oxygen supply to the internal organs. CONCLUSIONS Changes of epithelial tissue configuration in the epidermis and the midgut diverticula are described as important components of the morphological response to feeding in ticks. We provide evidence for a previously unknown mechanism hosted in the endocuticle of the tracheae that allows the tracheae of castor bean ticks to expand when the body volume increases and the distance between the respiratory spiracle and the oxygen demanding tissue enlarges. This is the first report of expandable tracheae in arthropods.
Collapse
Affiliation(s)
- J. Matthias Starck
- Functional Morphology Group, Department of Biology 2, University of Munich (LMU), Biocenter Martinsried, Großhadernerstr. 2, D-82152 Planegg-, Martinsried, Germany
| | - Lisa Mehnert
- Functional Morphology Group, Department of Biology 2, University of Munich (LMU), Biocenter Martinsried, Großhadernerstr. 2, D-82152 Planegg-, Martinsried, Germany
| | - Anja Biging
- Functional Morphology Group, Department of Biology 2, University of Munich (LMU), Biocenter Martinsried, Großhadernerstr. 2, D-82152 Planegg-, Martinsried, Germany
| | - Juliana Bjarsch
- Functional Morphology Group, Department of Biology 2, University of Munich (LMU), Biocenter Martinsried, Großhadernerstr. 2, D-82152 Planegg-, Martinsried, Germany
| | - Sandra Franz-Guess
- Functional Morphology Group, Department of Biology 2, University of Munich (LMU), Biocenter Martinsried, Großhadernerstr. 2, D-82152 Planegg-, Martinsried, Germany
| | - Daniel Kleeberger
- Functional Morphology Group, Department of Biology 2, University of Munich (LMU), Biocenter Martinsried, Großhadernerstr. 2, D-82152 Planegg-, Martinsried, Germany
| | - Marie Hörnig
- Zoological Institute and Museum, Cytology and Evolutionary Biology, Soldmannstr 23, D17487 Greifswald, Germany
| |
Collapse
|
6
|
Egekwu N, Sonenshine DE, Garman H, Barshis DJ, Cox N, Bissinger BW, Zhu J, M Roe R. Comparison of synganglion neuropeptides, neuropeptide receptors and neurotransmitter receptors and their gene expression in response to feeding in Ixodes scapularis (Ixodidae) vs. Ornithodoros turicata (Argasidae). INSECT MOLECULAR BIOLOGY 2016; 25:72-92. [PMID: 26783017 DOI: 10.1111/imb.12202] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Illumina GAII high-throughput sequencing was used to compare expressed genes for female synganglion neuropeptides, neuropeptide receptors and neurotransmitter receptors of the soft tick Ornithodoros turicata with the hard tick Ixodes scapularis. Gene ontology molecular level three mapping revealed no significant differences amongst the same categories represented in O. turicata and I. scapularis. Transcripts predicting 22 neuropeptides or their receptors in the O. turicata synganglion were similar to annotations for 23 neuropeptides or receptors previously identified from I scapularis, with minor exceptions. A transcript predicting ecdysis triggering hormone receptor was identified in O. turicata; transcripts encoding for proprotein convertase and glycoprotein B were identified in both species. Transcripts predicting the same neurotransmitter receptors were found in the synganglion of both species. Gene expression of the transcripts showed numerous differences in response to feeding. Major differences were observed in expression of genes believed important in regulating slow vs. rapid feeding, blood water elimination, cuticle synthesis plasticity and in signalling reproductive activity. Although the glutamate receptor was strongly upregulated in both species, the gamma aminobutyric acid receptor, which inhibits glutamate, was upregulated significantly only in I. scapularis. These differences are consistent with the slow vs. rapid action of the pharyngeal pump in the two species.
Collapse
Affiliation(s)
- N Egekwu
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - D E Sonenshine
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - H Garman
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - D J Barshis
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - N Cox
- Eastern Virginia Medical School, Norfolk, VA, USA
| | - B W Bissinger
- Tyra Tech, R&D, Repellents & Animal Health, Morrisville, NC, USA
| | - J Zhu
- Department of Entomology, North Carolina State University, Raleigh, NC, USA
| | - R M Roe
- Department of Entomology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
7
|
Flynn PC, Kaufman WR. Mechanical properties of the cuticle of the tick Amblyomma hebraeum (Acari: Ixodidae). ACTA ACUST UNITED AC 2015; 218:2806-14. [PMID: 26163583 DOI: 10.1242/jeb.123919] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/04/2015] [Indexed: 11/20/2022]
Abstract
Female ticks of the family Ixodidae increase their mass up to 100-fold during the 7-10 day feeding period. We determined the material properties of the alloscutal cuticle of female Amblyomma hebraeum from the time of moulting through to full engorgement. The material properties of the cuticle were evaluated by a Kelvin-Voigt analysis of compliance determined from the stretch of loops of cuticle under stress. There was a 3-fold increase in cuticle dry mass during the first 3 weeks post-moult, during which the ductility and stiffness of the cuticle increased substantially. Under stress, the cuticle displayed time-dependent stretch, with a plastic (non-recoverable) and viscoelastic (recoverable) component. Plastic deformation was reasonably constant in the range 10-15% over a wide range of induced stress above ∼ 0.6 MPa. The plastic component of tick alloscutal cuticle was about 5-10 times higher than that of unsclerotized insect cuticle. Tick cuticle is far more ductile than unsclerotized insect cuticle. Material properties of the cuticle did not change significantly as a function of cuticular water content over the normal range throughout the feeding cycle (13-37% wet mass). Injected dopamine (DA) reduced one measure of the viscosity of the cuticle by 38%. Plastic deformability of the cuticle was reduced by 70% after an in vitro stretch, but restored in fully engorged ticks, and in in vitro stretched loops by treatment with DA and reduced pH. Thinning of the cuticle by half during the rapid phase of engorgement requires plastic deformation (irreversible strain) in two orthogonal dimensions in excess of 40%. Treatment with DA increased plastic deformation and enabled extensibility (strain at the point of rupture) above 40%.
Collapse
Affiliation(s)
- Peter C Flynn
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 2G8
| | - W Reuben Kaufman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| |
Collapse
|
8
|
Egekwu N, Sonenshine DE, Bissinger BW, Roe RM. Transcriptome of the female synganglion of the black-legged tick Ixodes scapularis (Acari: Ixodidae) with comparison between Illumina and 454 systems. PLoS One 2014; 9:e102667. [PMID: 25075967 PMCID: PMC4116169 DOI: 10.1371/journal.pone.0102667] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 06/23/2014] [Indexed: 11/26/2022] Open
Abstract
Illumina and 454 pyrosequencing were used to characterize genes from the synganglion of female Ixodes scapularis. GO term searching success for biological processes was similar for samples sequenced by both methods. However, for molecular processes, it was more successful for the Illumina samples than for 454 samples. Functional assignments of transcripts predicting neuropeptides, neuropeptide receptors, neurotransmitter receptors and other genes of interest was done, supported by strong e-values (<-6), and high consensus sequence alignments. Transcripts predicting 15 putative neuropeptide prepropeptides ((allatostatin, allatotropin, bursicon α, corticotropin releasing factor (CRF), CRF-binding protein, eclosion hormone, FMRFamide, glycoprotein A, insulin-like peptide, ion transport peptide, myoinhibitory peptide, inotocin ( = neurophysin-oxytocin), Neuropeptide F, sulfakinin and SIFamide)) and transcripts predicting receptors for 14 neuropeptides (allatostatin, calcitonin, cardioacceleratory peptide, corazonin, CRF, eclosion hormone, gonadotropin-releasing hormone/AKH-like, insulin-like peptide, neuropeptide F, proctolin, pyrokinin, SIFamide, sulfakinin and tachykinin) are reported. Similar to Dermacentor variabilis, we found transcripts matching pro-protein convertase, essential for converting neuropeptide hormones to their mature form. Additionally, transcripts predicting 6 neurotransmitter/neuromodulator receptors (acetylcholine, GABA, dopamine, glutamate, octopamine and serotonin) and 3 neurotransmitter transporters (GABA transporter, noradrenalin-norepinephrine transporter and Na+-neurotransmitter/symporter) are described. Further, we found transcripts predicting genes for pheromone odorant receptor, gustatory receptor, novel GPCR messages, ecdysone nuclear receptor, JH esterase binding protein, steroidogenic activating protein, chitin synthase, chitinase, and other genes of interest. Also found were transcripts predicting genes for spermatogenesis-associated protein, major sperm protein, spermidine oxidase and spermidine synthase, genes not normally expressed in the female CNS of other invertebrates. The diversity of messages predicting important genes identified in this study offers a valuable resource useful for understanding how the tick synganglion regulates important physiological functions.
Collapse
Affiliation(s)
- Noble Egekwu
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, United States of America
| | - Daniel E. Sonenshine
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, United States of America
| | | | - R. Michael Roe
- Department of Entomology, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
9
|
Koči J, Simo L, Park Y. Autocrine/paracrine dopamine in the salivary glands of the blacklegged tick Ixodes scapularis. JOURNAL OF INSECT PHYSIOLOGY 2014; 62:39-45. [PMID: 24503219 PMCID: PMC4006075 DOI: 10.1016/j.jinsphys.2014.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/16/2014] [Accepted: 01/21/2014] [Indexed: 05/08/2023]
Abstract
Dopamine (DA) is known to be the most potent activator of tick salivary secretion, which is an essential component of successful tick feeding. We examined the quantitative changes of catecholamines using a method coupling high-pressure liquid chromatography with electrochemical detection (HPLC-ECD). We also investigated the levels of catecholamines conjugated to other molecules utilising appropriate methods to hydrolyse the conjugates. Three different biological samples, salivary glands, synganglia, ovaries and haemolymph were compared, and the largest quantity of DA was detected in salivary gland extracts (up to ∼100pg/tick), supporting the hypothesis that autocrine/paracrine dopamine activates salivary secretion. Quantitative changes of catecholamines in the salivary glands over the entire blood feeding duration were examined. The amount of dopamine in the salivary glands increased until the day 5 of feeding, at which the rapid engorgement phase began. We also detected a small but significant amount of norepinephrine in the salivary glands. Interestingly, saliva collected after induction of salivary secretion by the cholinergic agonist pilocarpine contained a large amount of DA sulphate with a trace amount of DA, suggesting a potential biological role of DA sulphate in tick saliva.
Collapse
Affiliation(s)
- Juraj Koči
- Department of Entomology, Kansas State University, 123 Waters Hall, Manhattan, KS 66506, USA.
| | - Ladislav Simo
- Department of Entomology, Kansas State University, 123 Waters Hall, Manhattan, KS 66506, USA.
| | - Yoonseong Park
- Department of Entomology, Kansas State University, 123 Waters Hall, Manhattan, KS 66506, USA.
| |
Collapse
|
10
|
Vannini L, Augustine Dunn W, Reed TW, Willis JH. Changes in transcript abundance for cuticular proteins and other genes three hours after a blood meal in Anopheles gambiae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 44:33-43. [PMID: 24269292 PMCID: PMC3970321 DOI: 10.1016/j.ibmb.2013.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/24/2013] [Accepted: 11/05/2013] [Indexed: 05/03/2023]
Abstract
Numerous studies have examined changes in transcript levels after Anopheles gambiae takes a blood meal. Marinotti et al. (2006) used microarrays and reported massive changes in transcript levels 3 h after feeding (BF3h) compared to non-blood fed (NBF). We were intrigued by the number of transcripts for structural cuticular proteins (CPs) that showed such major differences in levels and employed paired-end (50 bp) RNA-seq technology to compare whole body transcriptomes from 5-day-old females NBF and BF3h. We detected transcripts for the majority of CPs (164/243) but levels of only 12 were significantly altered by the blood meal. While relative transcript levels of NBF females were somewhat similar to the microarray data, there were major differences in BF3h animals, resulting in levels of many transcripts, both for CPs and other genes changing in the opposite direction. We compared our data also to other studies done with both microarrays and RNA-seq. Findings were consistent that a small number of CP genes have transcripts that persist even in 5-day-old adults. Some of these transcripts showed diurnal rhythms (Rund et al., 2013; Rinker et al., 2013). In situ hybridization revealed that transcripts for several of these CP genes were found exclusively or predominantly in the eye. Transcripts other than for CPs that changed in response to blood-feeding were predominantly expressed in midgut and Malpighian tubules. Even in these tissues, genes responsible for proteins with similar functions, such as immunity or digestion, responded differently, with transcript levels for some rising and others falling. These data demonstrate that genes coding for some CPs are dynamic in expression even in adults and that the response to a blood meal is rapid and precisely orchestrated.
Collapse
Affiliation(s)
- Laura Vannini
- University of Georgia, Cellular Biology, Athens, GA 30602, USA.
| | - W Augustine Dunn
- University of California Irvine, Molecular Biology and Biochemistry, Irvine, CA 92697, USA.
| | - Tyler W Reed
- University of Georgia, Cellular Biology, Athens, GA 30602, USA.
| | - Judith H Willis
- University of Georgia, Cellular Biology, Athens, GA 30602, USA.
| |
Collapse
|
11
|
Lam F, McNeil JN, Donly C. Octopamine receptor gene expression in three lepidopteran species of insect. Peptides 2013; 41:66-73. [PMID: 22504014 DOI: 10.1016/j.peptides.2012.03.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 03/28/2012] [Accepted: 03/29/2012] [Indexed: 11/24/2022]
Abstract
The invertebrate octopaminergic system affects many diverse processes and represents the counterpart to the vertebrate adrenergic/noradrenergic system with the classes of octopamine receptor (OAR) being homologous to those of vertebrate adrenergic receptors. However, there is still little information on the OARs present in different insect species, and the levels and distribution of these receptors throughout the body. cDNAs sharing high similarity with known insect OARs were cloned in three lepidopteran species: the cabbage looper, Trichoplusia ni; the true armyworm, Pseudaletia unipuncta; and the cabbage white, Pieris rapae. Seven major larval tissues and one adult tissue were examined in T. ni using quantitative real-time PCR to determine the relative expression levels of each receptor transcript across different tissues, as well as of all receptor transcripts within individual tissues. A subset of these tissues was also examined in P. unipuncta and P. rapae. All receptor transcripts were expressed in the nervous system of all three species, however, the distribution of the different receptor types varied between species. In all tissues, the OARbeta2 transcript was the most highly expressed, except in the Malpighian tubules where OARbeta1 was highest, and the midgut where there was no significant difference in receptor transcript levels.
Collapse
Affiliation(s)
- Felix Lam
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | | | | |
Collapse
|
12
|
Flynn PC, Kaufman WR. Female ixodid ticks grow endocuticle during the rapid phase of engorgement. EXPERIMENTAL & APPLIED ACAROLOGY 2011; 53:167-178. [PMID: 20711799 DOI: 10.1007/s10493-010-9393-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Accepted: 07/23/2010] [Indexed: 05/29/2023]
Abstract
Lees (Proc Zool Soc Lond 121:759-772, 1952) concluded that the ixodid tick Ixodes ricinus grows endocuticle during the slow but not during the rapid, phase of engorgement, a conclusion supported by Andersen and Roepstorff (Insect Biochem Mol Biol 35:1181-1188, 2005) for the same species. In this study analysis of dimensional data and cuticle weight measurements from female ixodid ticks (Amblyomma hebraeum) were used to test this hypothesis. Both approaches showed that endocuticle growth continues during the rapid phase, tapering to zero at a fed/unfed weight ratio of ~60. Of the total mass of cuticle in the engorged tick 32-43% was formed during the rapid phase. We demonstrate that if cuticle growth stopped at the end of the slow phase, there would not be sufficient cuticle to account for the thickness of cuticle observed at the end of engorgement. This finding is consistent with prior studies of Rhipicephalus (Boophilus) microplus, and with a dimensional analysis of the cuticle thickness data of Lees for I. ricinus, in contradiction to his conclusion from an analysis of tick cuticle weight measurements. An examination of cuticle weight measurements for I. ricinus by Andersen and Roepstorff similarly supports the finding of cuticle growth during the rapid phase. All ixodid ticks undergo major body expansion, typically tenfold or more, during a rapid phase of engorgement and require sufficient cuticle at the end of that process to contain their body. The fact that cuticle grows during the rapid phase of engorgement in three species suggests that this is a general characteristic of the family Ixodidae.
Collapse
Affiliation(s)
- Peter C Flynn
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G2G8, Canada
| | | |
Collapse
|
13
|
Lomakin J, Huber PA, Eichler C, Arakane Y, Kramer KJ, Beeman RW, Kanost MR, Gehrke SH. Mechanical properties of the beetle elytron, a biological composite material. Biomacromolecules 2010; 12:321-35. [PMID: 21189044 DOI: 10.1021/bm1009156] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We determined the relationship between composition and mechanical properties of elytra (modified forewings that are composed primarily of highly sclerotized dorsal and less sclerotized ventral cuticles) from the beetles Tribolium castaneum (red flour beetle) and Tenebrio molitor (yellow mealworm). Elytra of both species have similar mechanical properties at comparable stages of maturation (tanning). Shortly after adult eclosion, the elytron of Tenebrio is ductile and soft with a Young's modulus (E) of 44 ± 8 MPa, but it becomes brittle and stiff with an E of 2400 ± 1100 MPa when fully tanned. With increasing tanning, dynamic elastic moduli (E') increase nearly 20-fold, whereas the frequency dependence of E' diminishes. These results support the hypothesis that cuticle tanning involves cross-linking of components, while drying to minimize plasticization has a lesser impact on cuticular stiffening and frequency dependence. Suppression of the tanning enzymes laccase-2 (TcLac2) or aspartate 1-decarboxylase (TcADC) in Tribolium altered mechanical characteristics consistent with hypotheses that (1) ADC suppression favors formation of melanic pigment with a decrease in protein cross-linking and (2) Lac2 suppression reduces both cuticular pigmentation and protein cross-linking.
Collapse
Affiliation(s)
- Joseph Lomakin
- Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, USA
| | | | | | | | | | | | | | | |
Collapse
|