1
|
Martinez-Rivera N, Serrano-Velez JL, Torres-Vazquez II, Langerhans RB, Rosa-Molinar E. Are superficial neuromasts proprioceptors underlying fast copulatory behavior? Front Neural Circuits 2022; 16:921568. [PMID: 36082109 PMCID: PMC9446510 DOI: 10.3389/fncir.2022.921568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
In male Poeciliid fishes, the modified anal fin (i.e., gonopodium) and its axial and appendicular support are repositioned within the axial skeleton, creating a novel sexually dimorphic ano-urogenital region. During copulation, the relative location of the gonopodium is crucial for successful insemination. Therefore, the repositioning of these structures and organ relied on the reorganization of the efferent circuitry that controls spinal motor neurons innervating appendicular muscles critical for the movement of the gonopodium, including the fast and synchronous torque-trust motion during insemination attempts. Copulation occurs when a male positions himself largely outside a female's field of view, circumducts his gonopodium, and performs a rapid, complex maneuver to properly contact the female urogenital sinus with the distal tip of the gonopodium and transfers sperm. Although understanding of the efferent circuitry has significantly increased in the last 24 years, nothing is known about the cutaneous receptors involved in gonopodium movement, or how the afferent signals are processed to determine the location of this organ during copulation. Using Western mosquitofish, Gambusia affinis, as our model, we attempt to fill this gap in knowledge. Preliminary data showed cutaneous nerves and sensory neurons innervating superficial neuromasts surrounding the base of adult male gonopodium; those cutaneous nerves projected ventrally from the spinal cord through the 14th dorsal root ganglion and its corresponding ventral root towards the base and fin rays of the gonopodium. We asked what role the cutaneous superficial neuromasts play in controlling the positioning and timing of the gonopodium's fast and synchronous movements for effective sperm transfer. First, we found a greater number of superficial neuromasts surrounding the base of the male's gonopodium compared to the base of the female's anal fin. Second, we systemically removed superficial neuromasts surrounding the gonopodium base and observed significant impairment of the positioning and timing of gonopodial movements. Our findings provide a first step to supporting the following hypothesis: during radical reorganization of the Poeciliid body plan, superficial neuromasts have been partially co-opted as proprioceptors that allow the gonopodium to control precise positioning and timing during copulatory attempts.
Collapse
Affiliation(s)
- Noraida Martinez-Rivera
- Biological Imaging Group, Department of Pharmacology and Toxicology, The University of Kansas, Lawrence, KS, United States
- Biology Department, University of Puerto Rico-Rio Piedras, San Juan, Puerto Rico
- Puerto Rico Center for Environmental Neuroscience, Institute of Neurobiology, University of Puerto Rico-Medical Sciences, Old San Juan, Puerto Rico
| | | | - Irma I. Torres-Vazquez
- Biology Department, University of Puerto Rico-Rio Piedras, San Juan, Puerto Rico
- Bi-campus Neuroscience Graduate Program, The University of Kansas, Lawrence, KS, United States
| | - R. Brian Langerhans
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Eduardo Rosa-Molinar
- Biological Imaging Group, Department of Pharmacology and Toxicology, The University of Kansas, Lawrence, KS, United States
- Biology Department, University of Puerto Rico-Rio Piedras, San Juan, Puerto Rico
- Puerto Rico Center for Environmental Neuroscience, Institute of Neurobiology, University of Puerto Rico-Medical Sciences, Old San Juan, Puerto Rico
- Bi-campus Neuroscience Graduate Program, The University of Kansas, Lawrence, KS, United States
| |
Collapse
|
2
|
Skandalis DA, Lunsford ET, Liao JC. Corollary discharge enables proprioception from lateral line sensory feedback. PLoS Biol 2021; 19:e3001420. [PMID: 34634044 PMCID: PMC8530527 DOI: 10.1371/journal.pbio.3001420] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 10/21/2021] [Accepted: 09/21/2021] [Indexed: 11/26/2022] Open
Abstract
Animals modulate sensory processing in concert with motor actions. Parallel copies of motor signals, called corollary discharge (CD), prepare the nervous system to process the mixture of externally and self-generated (reafferent) feedback that arises during locomotion. Commonly, CD in the peripheral nervous system cancels reafference to protect sensors and the central nervous system from being fatigued and overwhelmed by self-generated feedback. However, cancellation also limits the feedback that contributes to an animal's awareness of its body position and motion within the environment, the sense of proprioception. We propose that, rather than cancellation, CD to the fish lateral line organ restructures reafference to maximize proprioceptive information content. Fishes' undulatory body motions induce reafferent feedback that can encode the body's instantaneous configuration with respect to fluid flows. We combined experimental and computational analyses of swimming biomechanics and hair cell physiology to develop a neuromechanical model of how fish can track peak body curvature, a key signature of axial undulatory locomotion. Without CD, this computation would be challenged by sensory adaptation, typified by decaying sensitivity and phase distortions with respect to an input stimulus. We find that CD interacts synergistically with sensor polarization to sharpen sensitivity along sensors' preferred axes. The sharpening of sensitivity regulates spiking to a narrow interval coinciding with peak reafferent stimulation, which prevents adaptation and homogenizes the otherwise variable sensor output. Our integrative model reveals a vital role of CD for ensuring precise proprioceptive feedback during undulatory locomotion, which we term external proprioception.
Collapse
Affiliation(s)
- Dimitri A. Skandalis
- Department of Biology & Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida, United States of America
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Elias T. Lunsford
- Department of Biology & Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida, United States of America
| | - James C. Liao
- Department of Biology & Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida, United States of America
| |
Collapse
|
3
|
Pichler P, Lagnado L. Motor Behavior Selectively Inhibits Hair Cells Activated by Forward Motion in the Lateral Line of Zebrafish. Curr Biol 2019; 30:150-157.e3. [PMID: 31866371 PMCID: PMC6947483 DOI: 10.1016/j.cub.2019.11.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 12/29/2022]
Abstract
How do sensory systems disambiguate events in the external world from signals generated by the animal's own motor actions? One strategy is to use an "efference copy" of the motor command to inhibit the sensory input caused by active behavior [1]. But does inhibition of self-generated inputs also block transmission of external stimuli? We investigated this question in the lateral line, a sensory system that allows fish and amphibians to detect water currents and that contributes to behaviors such as rheotaxis [2] and predator avoidance [3, 4]. This mechanical sense begins in hair cells grouped into neuromasts dotted along the animal's body [5]. Each neuromast contains two populations of hair cells, activated by deflection in either the anterior or posterior direction [6], as well as efferent fibers that are active during motor behavior to suppress afferents projecting to the brain [7-12]. To test how far the efference copy signal modulates responses to external stimuli, we imaged neural and synaptic activity in larval zebrafish during fictive swimming. We find that efferents transmit a precise copy of the motor signal and a single spike in the motor nerve can be associated with ∼50% inhibition of glutamate release. The efference copy signal acted with high selectivity on hair cells polarized to be activated by posterior deflections, as would occur during forward motion. During swimming, therefore, "push-pull" encoding of stimulus direction by afferents of opposite polarity is disrupted while still allowing a subset of hair cells to detect stimuli originating in the external world.
Collapse
Affiliation(s)
- Paul Pichler
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Leon Lagnado
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK.
| |
Collapse
|
4
|
Lunsford ET, Skandalis DA, Liao JC. Efferent modulation of spontaneous lateral line activity during and after zebrafish motor commands. J Neurophysiol 2019; 122:2438-2448. [PMID: 31642405 PMCID: PMC6966311 DOI: 10.1152/jn.00594.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/18/2019] [Accepted: 10/18/2019] [Indexed: 01/27/2023] Open
Abstract
Accurate sensory processing during movement requires the animal to distinguish between external (exafferent) and self-generated (reafferent) stimuli to maintain sensitivity to biologically relevant cues. The lateral line system in fishes is a mechanosensory organ that experiences reafferent sensory feedback, via detection of fluid motion relative to the body generated during behaviors such as swimming. For the first time in larval zebrafish (Danio rerio), we employed simultaneous recordings of lateral line and motor activity to reveal the activity of afferent neurons arising from endogenous feedback from hindbrain efferent neurons during locomotion. Frequency of spontaneous spiking in posterior lateral line afferent neurons decreased during motor activity and was absent for more than half of swimming trials. Targeted photoablation of efferent neurons abolished the afferent inhibition that was correlated to swimming, indicating that inhibitory efferent neurons are necessary for modulating lateral line sensitivity during locomotion. We monitored calcium activity with Tg(elav13:GCaMP6s) fish and found synchronous activity between putative cholinergic efferent neurons and motor neurons. We examined correlates of motor activity to determine which may best predict the attenuation of afferent activity and therefore what components of the motor signal are translated through the corollary discharge. Swim duration was most strongly correlated to the change in afferent spike frequency. Attenuated spike frequency persisted past the end of the fictive swim bout, suggesting that corollary discharge also affects the glide phase of burst and glide locomotion. The duration of the glide in which spike frequency was attenuated increased with swim duration but decreased with motor frequency. Our results detail a neuromodulatory mechanism in larval zebrafish that adaptively filters self-generated flow stimuli during both the active and passive phases of locomotion.NEW & NOTEWORTHY For the first time in vivo, we quantify the endogenous effect of efferent activity on afferent gain control in a vertebrate hair cell system during and after locomotion. We believe that this pervasive effect has been underestimated when afferent activity of octavolateralis systems is characterized in the current literature. We further identify a refractory period out of phase with efferent control and place this gain mechanism in the context of gliding behavior of freely moving animals.
Collapse
Affiliation(s)
- Elias T Lunsford
- The Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida, Saint Augustine, Florida
| | - Dimitri A Skandalis
- The Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida, Saint Augustine, Florida
| | - James C Liao
- The Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida, Saint Augustine, Florida
| |
Collapse
|
5
|
de Abreu MS, Giacomini AC, dos Santos BE, Genario R, Marchiori NI, Rosa LGD, Kalueff AV. Effects of lidocaine on adult zebrafish behavior and brain acetylcholinesterase following peripheral and systemic administration. Neurosci Lett 2019; 692:181-186. [DOI: 10.1016/j.neulet.2018.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 10/28/2018] [Accepted: 11/02/2018] [Indexed: 10/27/2022]
|
6
|
Haehnel-Taguchi M, Akanyeti O, Liao JC. Behavior, Electrophysiology, and Robotics Experiments to Study Lateral Line Sensing in Fishes. Integr Comp Biol 2018; 58:874-883. [PMID: 29982706 PMCID: PMC6204992 DOI: 10.1093/icb/icy066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The lateral line system is a sensory system unique to fishes and amphibians. It is composed of distributed mechanosensory hair cell organs on the head and body (neuromasts), which are sensitive to pressure gradients and water movements. Over the last decade, we have pursued an interdisciplinary approach by combining behavioral, electrophysiology, and robotics experiments to study this fascinating sensory system. In behavioral and electrophysiology experiments, we have studied the larval lateral line system in the model genetic organism, zebrafish (Danio rerio). We found that the lateral line system, even in 5-day-old larvae, is involved in an array of behaviors that are critical to survival, and the deflection of a single neuromast can elicit a swimming response. In robotics experiments, we used a range of physical models with distributed pressure sensors to better understand the hydrodynamic environments from the local perspective of a fish or robot. So far, our efforts have focused on extracting control-related information for a range of application scenarios including characterizing unsteady flows such as Kármán vortex streets for station holding. We also used robot models to test biological hypotheses on how morphology and movement of fishes affect lateral line sensing. Overall, with this review we aim to increase the visibility and accessibility of this multi-disciplinary research approach.
Collapse
Affiliation(s)
- Melanie Haehnel-Taguchi
- Faculty of Biology, Albert-Ludwigs Universität Freiburg, Hauptstraße 1, Freiburg D-79104, Germany
| | - Otar Akanyeti
- Department of Computer Science, Aberystwyth University, Penglais Campus, Aberystwyth SY23 3FL, UK
| | - James C Liao
- The Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida, St. Augustine, FL 32080, USA
| |
Collapse
|
7
|
Nadler LE, Killen SS, Domenici P, McCormick MI. Role of water flow regime in the swimming behaviour and escape performance of a schooling fish. Biol Open 2018; 7:bio.031997. [PMID: 30237289 PMCID: PMC6215405 DOI: 10.1242/bio.031997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Animals are exposed to variable and rapidly changing environmental flow conditions, such as wind in terrestrial habitats and currents in aquatic systems. For fishes, previous work suggests that individuals exhibit flow-induced changes in aerobic swimming performance. Yet, no one has examined whether similar plasticity is found in fast-start escape responses, which are modulated by anaerobic swimming performance, sensory stimuli and neural control. In this study, we used fish from wild schools of the tropical damselfish Chromis viridis from shallow reefs surrounding Lizard Island in the Great Barrier Reef, Australia. The flow regime at each site was measured to ascertain differences in mean water flow speed and its temporal variability. Swimming and escape behaviour in fish schools were video-recorded in a laminar-flow swim tunnel. Though each school's swimming behaviour (i.e. alignment and cohesion) was not associated with local flow conditions, traits linked with fast-start performance (particularly turning rate and the distance travelled with the response) were significantly greater in individuals from high-flow habitats. This stronger performance may occur due to a number of mechanisms, such as an i n s itu training effect or greater selection pressure for faster performance phenotypes in areas with high flow speed.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Lauren E Nadler
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia .,Department of Marine Biology and Aquaculture, James Cook University, Townsville, Queensland 4811, Australia
| | - Shaun S Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Paolo Domenici
- CNR-IAMC, Istituto per l'Ambiente Marino Costiero, Localita Sa Mardini, Torregrande, 09170, Oristano, Italy
| | - Mark I McCormick
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia.,Department of Marine Biology and Aquaculture, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
8
|
Haehnel-Taguchi M, Fernandes AM, Böhler M, Schmitt I, Tittel L, Driever W. Projections of the Diencephalospinal Dopaminergic System to Peripheral Sense Organs in Larval Zebrafish ( Danio rerio). Front Neuroanat 2018; 12:20. [PMID: 29615872 PMCID: PMC5868122 DOI: 10.3389/fnana.2018.00020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/05/2018] [Indexed: 01/04/2023] Open
Abstract
Dopaminergic neurons of the descending diencephalospinal system are located in the posterior tuberculum (PT) in zebrafish (Danio rerio), and correspond in mammals to the A11 group in hypothalamus and thalamus. In the larval zebrafish, they are likely the only source of central dopaminergic projections to the periphery. Here, we characterized posterior tubercular dopaminergic fibers projecting to peripheral sense organs, with a focus on the lateral line neuromasts. We labeled and identified catecholaminergic neurons and their projections by combining two immunofluorescence techniques, (i) using an antibody against Tyrosine hydroxylase, and (ii) using an antibody against GFP in transgenic zebrafish expressing in catecholaminergic neurons either membrane-anchored GFP to track fibers, or a Synaptophysin-GFP fusion to visualize putative synapses. We applied the CLARITY method to 6 days old whole zebrafish larvae to stain and analyze dopaminergic projections by confocal microscopy. We found that all lateral line neuromasts receive direct innervation by posterior tubercular dopaminergic neurons, and tracked these projections in detail. In addition, we found dopaminergic fibers projecting to the anterior and posterior lateral line ganglia, and extensive central dopaminergic arborizations around the terminal projection field of the lateral line afferent neurons in the hindbrain medial octavolateralis nucleus (MON). Therefore, dopaminergic innervation may affect lateral line sense information at different processing stages. Additional dopaminergic fibers innervate the trigeminal ganglion, and we observed fine catecholaminergic fibers in the skin with arborization patterns similar to free sensory nerve endings. We also detected potentially dopaminergic fibers innervating inner ear sensory epithelia. Therefore, the diencephalospinal A11-type dopaminergic system may broadly modulate peripheral senses. We also briefly report peripheral sympathetic catecholaminergic projections labeled in our experiments, and their innervation of the developing intestine, swim bladder and abdominal organs.
Collapse
Affiliation(s)
- Melanie Haehnel-Taguchi
- Developmental Biology, Faculty of Biology, Institute Biology I, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - António M Fernandes
- Developmental Biology, Faculty of Biology, Institute Biology I, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Margit Böhler
- Developmental Biology, Faculty of Biology, Institute Biology I, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Ina Schmitt
- Developmental Biology, Faculty of Biology, Institute Biology I, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Lena Tittel
- Developmental Biology, Faculty of Biology, Institute Biology I, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Wolfgang Driever
- Developmental Biology, Faculty of Biology, Institute Biology I, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,BIOSS-Centre for Biological Signaling Studies, Freiburg, Germany
| |
Collapse
|
9
|
Zheng X, Wang C, Fan R, Xie G. Artificial lateral line based local sensing between two adjacent robotic fish. BIOINSPIRATION & BIOMIMETICS 2017; 13:016002. [PMID: 28949301 DOI: 10.1088/1748-3190/aa8f2e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The lateral line system (LLS) is a mechanoreceptive organ system with which fish and aquatic amphibians can effectively sense the surrounding flow field. The reverse Kármán vortex street (KVS), known to be a typical thrust-producing wake, is commonly observed in fish-like locomotion and is known to be generated by fish's tails. The vortex street generally reflects the motion information of the fish. A fish can use LLS to detect such vortex streets generated by its neighboring fish, thus sensing its own state and the states of its neighbors in a school of fish. Inspired by this typical biological phenomenon, we design a robotic fish with an onboard artificial lateral line system (ALLS) composed of pressure sensor arrays and use it to detect the reverse KVS-like vortex wake generated by its adjacent robotic fish. Specifically, the vortex wake results in hydrodynamic pressure variations (HPVs) in the flow field. By measuring the HPV using the ALLS and extracting meaningful information from the pressure sensor readings, the oscillating frequency/amplitude/offset of the adjacent robotic fish, the relative vertical distance and the relative yaw/pitch/roll angle between the robotic fish and its neighbor are sensed efficiently. This work investigates the hydrodynamic characteristics of the reverse KVS-like vortex wake using an ALLS. Furthermore, this work demonstrates the effectiveness and practicability of an artificial lateral line in local sensing for adjacent underwater robots, indicating the potential to improve close-range interaction and cooperation within a group of underwater vehicles through the application of ALLSs in the near future.
Collapse
Affiliation(s)
- Xingwen Zheng
- State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing, 100871, People's Republic of China
| | | | | | | |
Collapse
|
10
|
Mihalitsis M, Bellwood DR. A morphological and functional basis for maximum prey size in piscivorous fishes. PLoS One 2017; 12:e0184679. [PMID: 28886161 PMCID: PMC5590994 DOI: 10.1371/journal.pone.0184679] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/29/2017] [Indexed: 11/18/2022] Open
Abstract
Fish predation is important in shaping populations and community structure in aquatic systems. These predator-prey interactions can be influenced by environmental, behavioural and morphological factors. Morphological constraints influence the feeding performance of species, and interspecific differences can thus affect patterns of resource use. For piscivorous fishes that swallow prey whole, feeding performance has traditionally been linked to three key morphological constraints: oral gape, pharyngeal gape, and the cleithral gape. However, other constraints may be important. We therefore examine 18 potential morphological constraints related to prey capture and processing, on four predatory species (Cephalopholis urodeta, Paracirrhites forsteri, Pterois volitans, Lates calcarifer). Aquarium-based experiments were then carried out to determine capture and processing behaviour and maximum prey size in two focal species, C. urodeta and P. forsteri. All four species showed a progressive decrease in gape measurements from anterior to posterior with oral gape ≥ buccal ≥ pharyngeal ≥ pectoral girdle ≥ esophagus ≥ stomach. C. urodeta was able to process prey with a maximum depth of 27% of the predators' standard length; for P. forsteri it was 20%. C. urodeta captured prey head-first in 79% of successful strikes. In P. forsteri head-first was 16.6%, mid-body 44.4%, and tail-first 38.8%. Regardless of capture mode, prey were almost always swallowed head first and horizontally in both focal species. Most internal measurements appeared too small for prey to pass through. This may reflect the compressibility of prey, i.e. their ability to be dorsoventrally compressed during swallowing movements. Despite examining all known potential morphological constraints on prey size, horizontal maxillary oral gape in a mechanically stretched position appears to be the main morphological variable that is likely to affect maximum prey size and resource use by these predatory species.
Collapse
Affiliation(s)
- Michalis Mihalitsis
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
- * E-mail:
| | - David R. Bellwood
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
11
|
York CA, Bartol IK, Krueger PS. Multiple sensory modalities used by squid in successful predator evasion throughout ontogeny. ACTA ACUST UNITED AC 2016; 219:2870-2879. [PMID: 27401756 DOI: 10.1242/jeb.140780] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/28/2016] [Indexed: 11/20/2022]
Abstract
Squid rely on multiple sensory systems for predator detection. In this study we examine the role of two sensory systems, the lateral line analogue and vision, in successful predator evasion throughout ontogeny. Squid Doryteuthis pealeii and Lolliguncula brevis were recorded using high-speed videography in the presence of natural predators under light and dark conditions with their lateral line analogue intact or ablated via a pharmacological technique. Paralarval squid showed reduced escape responses when ablated; however, no differences were found between light and dark conditions in non-ablated paralarvae, as was previously shown in juveniles and adults, indicating that the lateral line analogue is integral for predator detection early in life. However, vision does play a role in survival because ablated squid in dark conditions had lower levels of survival than all other treatments. Throughout ontogeny, squid oriented themselves anteriorly towards the oncoming predator, maximizing sensory input to the lateral line analogue system and providing better positioning for tail-first escape jetting, the preferred escape mode. Ablated juveniles and adults had lower response times, escape velocities and peak acceleration than non-ablated individuals, indicating that the lateral line analogue enables squid to respond quicker and with more powerful jets to a predator and maximize escape success. Our findings reveal that the lateral line analogue plays a role in predator detection and successful escape response at the earliest life stages, and continues to contribute to successful evasion by aiding visual cues in juvenile and adult squid.
Collapse
Affiliation(s)
- Carly A York
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Ian K Bartol
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Paul S Krueger
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX 75275, USA
| |
Collapse
|
12
|
Diamond KM, Schoenfuss HL, Walker JA, Blob RW. Flowing water affects fish fast-starts: escape performance of the Hawaiian stream goby, Sicyopterus stimpsoni. J Exp Biol 2016; 219:3100-3105. [DOI: 10.1242/jeb.137554] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 07/22/2016] [Indexed: 11/20/2022]
Abstract
Experimental measurements of escape performance in fishes have typically been conducted in still water; however, many fishes inhabit environments with flow that could impact escape behavior. We examined the influences of flow and predator attack direction on the escape behavior of fish, using juveniles of the amphidromous Hawaiian goby Sicyopterus stimpsoni. In nature, these fish must escape ambush predation while moving through streams with high-velocity flow. We measured the escape performance of juvenile gobies while exposing them to a range of water velocities encountered in natural streams and stimulating fish from three different directions. Frequency of response failure across treatments indicated strong effects of flow conditions and attack direction. Juvenile S. stimpsoni had uniformly high response rates for attacks from a caudal direction (opposite flow); however, response rates for attacks from a cranial direction (matching flow) decreased dramatically as flow speed increased. Mechanical stimuli produced by predators attacking in the same direction as flow might be masked by the flow environment, impairing the ability of prey to detect attacks. Thus, the likelihood of successful escape performance in fishes can depend critically on environmental context.
Collapse
Affiliation(s)
- Kelly M. Diamond
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Heiko L. Schoenfuss
- Aquatic Toxicology Laboratory, Saint Cloud State University, Saint Cloud, MN 56301, USA
| | - Jeffrey A. Walker
- Department of Biological Sciences, University of Southern Maine, Portland, ME, 04103, USA
| | - Richard W. Blob
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
13
|
Higham TE, Stewart WJ, Wainwright PC. Turbulence, Temperature, and Turbidity: The Ecomechanics of Predator-Prey Interactions in Fishes. Integr Comp Biol 2015; 55:6-20. [DOI: 10.1093/icb/icv052] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
14
|
Groneberg AH, Herget U, Ryu S, De Marco RJ. Positive taxis and sustained responsiveness to water motions in larval zebrafish. Front Neural Circuits 2015; 9:9. [PMID: 25798089 PMCID: PMC4351627 DOI: 10.3389/fncir.2015.00009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/16/2015] [Indexed: 01/08/2023] Open
Abstract
Larval zebrafish (Danio rerio) have become favored subjects for studying the neural bases of behavior. Here, we report a highly stereotyped response of zebrafish larvae to hydrodynamic stimuli. It involves positive taxis, motion damping and sustained responsiveness to flows derived from local, non-stressful water motions. The response depends on the lateral line and has a high sensitivity to stimulus frequency and strength, sensory background and rearing conditions—also encompassing increased threshold levels of response to parallel input. The results show that zebrafish larvae can use near-field detection to locate sources of minute water motions, and offer a unique handle for analyses of hydrodynamic sensing, sensory responsiveness and arousal with accurate control of stimulus properties.
Collapse
Affiliation(s)
- Antonia H Groneberg
- Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research Heidelberg, Germany
| | - Ulrich Herget
- Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research Heidelberg, Germany
| | - Soojin Ryu
- Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research Heidelberg, Germany
| | - Rodrigo J De Marco
- Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research Heidelberg, Germany
| |
Collapse
|
15
|
Firing dynamics and modulatory actions of supraspinal dopaminergic neurons during zebrafish locomotor behavior. Curr Biol 2015; 25:435-44. [PMID: 25639243 PMCID: PMC4331284 DOI: 10.1016/j.cub.2014.12.033] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 10/21/2014] [Accepted: 12/10/2014] [Indexed: 01/10/2023]
Abstract
Background Dopamine (DA) has long been known to have modulatory effects on vertebrate motor circuits. However, the types of information encoded by supraspinal DAergic neurons and their relationship to motor behavior remain unknown. Results By conducting electrophysiological recordings from awake, paralyzed zebrafish larvae that can produce behaviorally relevant activity patterns, we show that supraspinal DAergic neurons generate two forms of output: tonic spiking and phasic bursting. Using paired supraspinal DA neuron and motoneuron recordings, we further show that these firing modes are associated with specific behavioral states. Tonic spiking is prevalent during periods of inactivity while bursting strongly correlates with locomotor output. Targeted laser ablation of supraspinal DA neurons reduces motor episode frequency without affecting basic parameters of motor output, strongly suggesting that these cells regulate spinal network excitability. Conclusions Our findings reveal how vertebrate motor circuit flexibility is temporally controlled by supraspinal DAergic pathways and provide important insights into the functional significance of this evolutionarily conserved cell population. Supraspinal DAergic neurons generate tonic spiking and phasic bursting Tonic spiking correlates with periods of locomotor inactivity Phasic bursting correlates with periods of locomotor activity Targeted ablation of supraspinal DAergic neurons depresses locomotor output
Collapse
|
16
|
Larsson M. Self-generated sounds of locomotion and ventilation and the evolution of human rhythmic abilities. Anim Cogn 2013; 17:1-14. [PMID: 23990063 PMCID: PMC3889703 DOI: 10.1007/s10071-013-0678-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 08/07/2013] [Accepted: 08/20/2013] [Indexed: 01/20/2023]
Abstract
It has been suggested that the basic building blocks of music mimic sounds of moving humans, and because the brain was primed to exploit such sounds, they eventually became incorporated in human culture. However, that raises further questions. Why do genetically close, culturally well-developed apes lack musical abilities? Did our switch to bipedalism influence the origins of music? Four hypotheses are raised: (1) Human locomotion and ventilation can mask critical sounds in the environment. (2) Synchronization of locomotion reduces that problem. (3) Predictable sounds of locomotion may stimulate the evolution of synchronized behavior. (4) Bipedal gait and the associated sounds of locomotion influenced the evolution of human rhythmic abilities. Theoretical models and research data suggest that noise of locomotion and ventilation may mask critical auditory information. People often synchronize steps subconsciously. Human locomotion is likely to produce more predictable sounds than those of non-human primates. Predictable locomotion sounds may have improved our capacity of entrainment to external rhythms and to feel the beat in music. A sense of rhythm could aid the brain in distinguishing among sounds arising from discrete sources and also help individuals to synchronize their movements with one another. Synchronization of group movement may improve perception by providing periods of relative silence and by facilitating auditory processing. The adaptive value of such skills to early ancestors may have been keener detection of prey or stalkers and enhanced communication. Bipedal walking may have influenced the development of entrainment in humans and thereby the evolution of rhythmic abilities.
Collapse
Affiliation(s)
- Matz Larsson
- The Cardiology Clinic, Örebro University Hospital, 701 85, Örebro, Sweden,
| |
Collapse
|
17
|
Akanyeti O, Chambers LD, Ježov J, Brown J, Venturelli R, Kruusmaa M, Megill WM, Fiorini P. Self-motion effects on hydrodynamic pressure sensing: part I. forward-backward motion. BIOINSPIRATION & BIOMIMETICS 2013; 8:026001. [PMID: 23462257 DOI: 10.1088/1748-3182/8/2/026001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In underwater locomotion, extracting meaningful information from local flows is as desirable as it is challenging, due to complex fluid-structure interaction. Sensing and motion are tightly interconnected; hydrodynamic signals generated by the external stimuli are modified by the self-generated flow signals. Given that very little is known about self-generated signals, we used onboard pressure sensors to measure the pressure profiles over the head of a fusiform-shape craft while moving forward and backward harmonically. From these measurements we obtained a second-order polynomial model which incorporates the velocity and acceleration of the craft to estimate the surface pressure within the swimming range up to one body length/second (L s(-1)). The analysis of the model reveals valuable insights into the temporal and spatial changes of the pressure intensity as a function of craft's velocity. At low swimming velocities (<0.2 L s(-1)) the pressure signals are more sensitive to the acceleration of the craft than its velocity. However, the inertial effects gradually become less important as the velocity increases. The sensors on the front part of the craft are more sensitive to its movements than the sensors on the sides. With respect to the hydrostatic pressure measured in still water, the pressure detected by the foremost sensor reaches values up to 300 Pa at 1 L s(-1) swimming velocity, whereas the pressure difference between the foremost sensor and the next one is less than 50 Pa. Our results suggest that distributed pressure sensing can be used in a bimodal sensing strategy. The first mode detects external hydrodynamic events taking place around the craft, which requires minimal sensitivity to the self-motion of the craft. This can be accomplished by moving slowly with a constant velocity and by analyzing the pressure gradient as opposed to absolute pressure recordings. The second mode monitors the self-motion of the craft. It is shown here that distributed pressure sensing can be used as a speedometer to measure the craft's velocity.
Collapse
Affiliation(s)
- Otar Akanyeti
- The Whitney Laboratory for Marine Science, University of Florida, FL 32080, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Ramcharitar J, Ibrahim RM. Ethanol modifies zebrafish responses to abrupt changes in light intensity. J Clin Neurosci 2013; 20:476-7. [DOI: 10.1016/j.jocn.2012.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 09/08/2012] [Indexed: 12/16/2022]
|
19
|
Stewart WJ, Cardenas GS, McHenry MJ. Zebrafish larvae evade predators by sensing water flow. J Exp Biol 2013; 216:388-98. [DOI: 10.1242/jeb.072751] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SUMMARY
The ability of fish to evade predators is central to the ecology and evolution of a diversity of species. However, it is largely unclear how prey fish detect predators in order to initiate their escape. We tested whether larval zebrafish (Danio rerio) sense the flow created by adult predators of the same species. When placed together in a cylindrical arena, we found that larvae were able to escape 70% of predator strikes (mean escape probability Pescape=0.7, N=13). However, when we pharmacologically ablated the flow-sensitive lateral line system, larvae were rarely capable of escape (mean Pescape=0.05, N=11). In order to explore the rapid events that facilitate a successful escape, we recorded freely swimming predators and prey using a custom-built camera dolly. This device permitted two-dimensional camera motion to manually track prey and record their escape response with high temporal and spatial resolution. These recordings demonstrated that prey were more than 3 times more likely to evade a suction-feeding predator if they responded before (Pescape=0.53, N=43), rather than after (Pescape=0.15, N=13), a predator's mouth opened, which is a highly significant difference. Therefore, flow sensing plays an essential role in predator evasion by facilitating a response prior to a predator's strike.
Collapse
Affiliation(s)
- William J. Stewart
- Department of Ecology and Evolution, 321 Steinhaus Hall, University of California, Irvine, CA 92697-2525, USA
| | - Gilberto S. Cardenas
- Department of Ecology and Evolution, 321 Steinhaus Hall, University of California, Irvine, CA 92697-2525, USA
| | - Matthew J. McHenry
- Department of Ecology and Evolution, 321 Steinhaus Hall, University of California, Irvine, CA 92697-2525, USA
| |
Collapse
|
20
|
van Netten SM, McHenry MJ. The Biophysics of the Fish Lateral Line. SPRINGER HANDBOOK OF AUDITORY RESEARCH 2013. [DOI: 10.1007/2506_2013_14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
21
|
Montgomery J, Bleckmann H, Coombs S. Sensory Ecology and Neuroethology of the Lateral Line. SPRINGER HANDBOOK OF AUDITORY RESEARCH 2013. [DOI: 10.1007/2506_2013_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Lopez U, Gautrais J, Couzin ID, Theraulaz G. From behavioural analyses to models of collective motion in fish schools. Interface Focus 2012; 2:693-707. [PMID: 24312723 DOI: 10.1098/rsfs.2012.0033] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 09/11/2012] [Indexed: 11/12/2022] Open
Abstract
Fish schooling is a phenomenon of long-lasting interest in ethology and ecology, widely spread across taxa and ecological contexts, and has attracted much interest from statistical physics and theoretical biology as a case of self-organized behaviour. One topic of intense interest is the search of specific behavioural mechanisms at stake at the individual level and from which the school properties emerges. This is fundamental for understanding how selective pressure acting at the individual level promotes adaptive properties of schools and in trying to disambiguate functional properties from non-adaptive epiphenomena. Decades of studies on collective motion by means of individual-based modelling have allowed a qualitative understanding of the self-organization processes leading to collective properties at school level, and provided an insight into the behavioural mechanisms that result in coordinated motion. Here, we emphasize a set of paradigmatic modelling assumptions whose validity remains unclear, both from a behavioural point of view and in terms of quantitative agreement between model outcome and empirical data. We advocate for a specific and biologically oriented re-examination of these assumptions through experimental-based behavioural analysis and modelling.
Collapse
Affiliation(s)
- Ugo Lopez
- Centre de Recherches sur la Cognition Animale, UMR-CNRS 5169 , Université Paul Sabatier , Bât 4R3, 118 Route de Narbonne, 31062 Toulouse Cedex 9 , France ; CNRS, Centre de Recherches sur la Cognition Animale , 31062 Toulouse , France ; Université de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d'Energie) , 118 route de Narbonne, 31062 Toulouse Cedex 9 , France ; CNRS, LAPLACE , 31062 Toulouse Cedex 9 , France
| | | | | | | |
Collapse
|
23
|
Suli A, Watson GM, Rubel EW, Raible DW. Rheotaxis in larval zebrafish is mediated by lateral line mechanosensory hair cells. PLoS One 2012; 7:e29727. [PMID: 22359538 PMCID: PMC3281009 DOI: 10.1371/journal.pone.0029727] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 12/02/2011] [Indexed: 11/19/2022] Open
Abstract
The lateral line sensory system, found in fish and amphibians, is used in prey detection, predator avoidance and schooling behavior. This system includes cell clusters, called superficial neuromasts, located on the surface of head and trunk of developing larvae. Mechanosensory hair cells in the center of each neuromast respond to disturbances in the water and convey information to the brain via the lateral line ganglia. The convenient location of mechanosensory hair cells on the body surface has made the lateral line a valuable system in which to study hair cell damage and regeneration. One way to measure hair cell survival and recovery is to assay behaviors that depend on their function. We built a system in which orientation against constant water flow, positive rheotaxis, can be quantitatively assessed. We found that zebrafish larvae perform positive rheotaxis and that, similar to adult fish, larvae use both visual and lateral line input to perform this behavior. Disruption or damage of hair cells in the absence of vision leads to a marked decrease in rheotaxis that recovers upon hair cell repair or regeneration.
Collapse
Affiliation(s)
- Arminda Suli
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
| | - Glen M. Watson
- Department of Biology, University of Louisiana Lafayette, Lafayette, Louisiana, United States of America
| | - Edwin W. Rubel
- V. M. Bloedel Hearing Research Center, University of Washington, Seattle, Washington, United States of America
| | - David W. Raible
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
- V. M. Bloedel Hearing Research Center, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
24
|
|
25
|
Stewart WJ, McHenry MJ. Sensing the strike of a predator fish depends on the specific gravity of a prey fish. ACTA ACUST UNITED AC 2011; 213:3769-77. [PMID: 21037055 DOI: 10.1242/jeb.046946] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ability of a predator fish to capture a prey fish depends on the hydrodynamics of the prey and its behavioral response to the predator's strike. Despite the importance of this predator-prey interaction to the ecology and evolution of a diversity of fish, it is unclear what factors dictate a fish's ability to evade capture. The present study evaluated how the specific gravity of a prey fish's body affects the kinematics of prey capture and the signals detected by the lateral line system of the prey during the strike of a suction-feeding predator. The specific gravity of zebrafish (Danio rerio) larvae was measured with high precision from recordings of terminal velocity in solutions of varying density. This novel method found that specific gravity decreased by ∼5% (from 1.063, N=8, to 1.011, N=35) when the swim bladder inflates. To examine the functional consequences of this change, we developed a mathematical model of the hydrodynamics of prey in the flow field created by a suction-feeding predator. This model found that the observed decrease in specific gravity due to swim bladder inflation causes an 80% reduction of the flow velocity around the prey's body. Therefore, swim bladder inflation causes a substantial reduction in the flow signal that may be sensed by the lateral line system to evade capture. These findings demonstrate that the ability of a prey fish to sense a predator depends crucially on the specific gravity of the prey.
Collapse
Affiliation(s)
- William J Stewart
- Department of Ecology and Evolution, University of California, Irvine, CA 92697-2525, USA.
| | | |
Collapse
|
26
|
Knight K. STATIONARY FISH MORE SLURP SENSITIVE THAN MOVING FISH. J Exp Biol 2010. [DOI: 10.1242/jeb.050773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|