1
|
Gagliardo A, Pollonara E, Casini G, Bingman VP. Unilateral hippocampal lesions and the navigational performance of homing pigeons as revealed by GPS-tracking. ETHOL ECOL EVOL 2022. [DOI: 10.1080/03949370.2022.2152105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Anna Gagliardo
- Department of Biology, University of Pisa, Pisa 56126, Italy
| | | | - Giovanni Casini
- Department of Biology, University of Pisa, Pisa 56126, Italy
| | - Verner P. Bingman
- Department of Psychology, Bowling Green State University, Bowling Green, OH 43403, USA
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green, OH 43403, USA
| |
Collapse
|
2
|
Adámková J, Benediktová K, Svoboda J, Bartoš L, Vynikalová L, Nováková P, Hart V, Painter MS, Burda H. Turning preference in dogs: North attracts while south repels. PLoS One 2021; 16:e0245940. [PMID: 33507979 PMCID: PMC7842976 DOI: 10.1371/journal.pone.0245940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/08/2021] [Indexed: 11/19/2022] Open
Abstract
It was shown earlier that dogs, when selecting between two dishes with snacks placed in front of them, left and right, prefer to turn either clockwise or counterclockwise or randomly in either direction. This preference (or non-preference) is individually consistent in all trials but it is biased in favor of north if they choose between dishes positioned north and east or north and west, a phenomenon denoted as "pull of the north". Here, we replicated these experiments indoors, in magnetic coils, under natural magnetic field and under magnetic field shifted 90° clockwise. We demonstrate that "pull of the north" was present also in an environment without any outdoor cues and that the magnetic (and not topographic) north exerted the effect. The detailed analysis shows that the phenomenon involves also "repulsion of the south". The clockwise turning preference in the right-preferring dogs is more pronounced in the S-W combination, while the counterclockwise turning preference in the left-preferring dogs is pronounced in the S-E combination. In this way, south-placed dishes are less frequently chosen than would be expected, while the north-placed dishes are apparently more preferred. Turning preference did not correlate with the motoric paw laterality (Kong test). Given that the choice of a dish is visually guided, we postulate that the turning preference was determined by the dominant eye, so that a dominant right eye resulted in clockwise, and a dominant left eye in counterclockwise turning. Assuming further that magnetoreception in canines is based on the radical-pair mechanism, a "conflict of interests" may be expected, if the dominant eye guides turning away from north, yet the contralateral eye "sees the north", which generally acts attractive, provoking body alignment along the north-south axis.
Collapse
Affiliation(s)
- Jana Adámková
- Faculty of Forestry and Wood Sciences, Department of Game Management and Wildlife Biology, Czech University of Life Sciences, Praha, Czech Republic
| | - Kateřina Benediktová
- Faculty of Forestry and Wood Sciences, Department of Game Management and Wildlife Biology, Czech University of Life Sciences, Praha, Czech Republic
| | - Jan Svoboda
- Faculty of Forestry and Wood Sciences, Department of Game Management and Wildlife Biology, Czech University of Life Sciences, Praha, Czech Republic
| | - Luděk Bartoš
- Department of Ethology, Institute of Animal Science, Praha, Czech Republic
- Faculty of Agrobiology, Food and Natural Resources, Department of Ethology and Companion Animal Science, University of Life Sciences, Praha, Czech Republic
| | - Lucie Vynikalová
- Faculty of Agrobiology, Food and Natural Resources, Department of Zoology and Fisheries, Czech University of Life Sciences, Praha, Czech Republic
| | - Petra Nováková
- Faculty of Forestry and Wood Sciences, Department of Game Management and Wildlife Biology, Czech University of Life Sciences, Praha, Czech Republic
| | - Vlastimil Hart
- Faculty of Forestry and Wood Sciences, Department of Game Management and Wildlife Biology, Czech University of Life Sciences, Praha, Czech Republic
| | - Michael S. Painter
- Faculty of Forestry and Wood Sciences, Department of Game Management and Wildlife Biology, Czech University of Life Sciences, Praha, Czech Republic
| | - Hynek Burda
- Faculty of Forestry and Wood Sciences, Department of Game Management and Wildlife Biology, Czech University of Life Sciences, Praha, Czech Republic
- * E-mail:
| |
Collapse
|
3
|
Identifying volatile organic compounds used for olfactory navigation by homing pigeons. Sci Rep 2020; 10:15879. [PMID: 32985543 PMCID: PMC7523013 DOI: 10.1038/s41598-020-72525-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/02/2020] [Indexed: 11/09/2022] Open
Abstract
Many bird species have the ability to navigate home after being brought to a remote, even unfamiliar location. Environmental odours have been demonstrated to be critical to homeward navigation in over 40 years of experiments, yet the chemical identity of the odours has remained unknown. In this study, we investigate potential chemical navigational cues by measuring volatile organic compounds (VOCs): at the birds' home-loft; in selected regional forest environments; and from an aircraft at 180 m. The measurements showed clear regional, horizontal and vertical spatial gradients that can form the basis of an olfactory map for marine emissions (dimethyl sulphide, DMS), biogenic compounds (terpenoids) and anthropogenic mixed air (aromatic compounds), and temporal changes consistent with a sea-breeze system. Air masses trajectories are used to examine GPS tracks from released birds, suggesting that local DMS concentrations alter their flight directions in predictable ways. This dataset reveals multiple regional-scale real-world chemical gradients that can form the basis of an olfactory map suitable for homing pigeons.
Collapse
|
4
|
|
5
|
Lateralized expression of left-right axis formation genes is shared by adult brains of lefty and righty scale-eating cichlids. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 28:99-106. [DOI: 10.1016/j.cbd.2018.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 01/16/2023]
|
6
|
Bingman VP. Requiem for a heavyweight – can anything more be learned from homing pigeons about the sensory and spatial-representational basis of avian navigation? J Exp Biol 2018; 221:221/20/jeb163089. [DOI: 10.1242/jeb.163089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The homing pigeon (Columba livia) has long served as a study species to exhaustively investigate the sensory and spatial (map)-representational mechanisms that guide avian navigation. However, several factors have contributed to recent questioning of whether homing pigeons are as valuable as they once were as a general model for the study of the sensory and map-like, spatial-representational mechanisms of avian navigation. These reservations include: the success of this research program in unveiling navigational mechanisms; the burgeoning of new tracking technologies making navigational experiments on long-distance migratory and other wild birds much more accessible; the almost complete loss of the historically dominant, large-scale pigeon loft/research facilities; and prohibitive university per diem costs as well as animal care and use restrictions. Nevertheless, I propose here that there remain good prospects for homing pigeon research that could still profoundly influence how one understands aspects of avian navigation beyond sensory mechanisms and spatial-representational strategies. Indeed, research into neural mechanisms and brain organization, social/personality influences and genetics of navigation all offer opportunities to take advantage of the rich spatial behavior repertoire and experimental convenience of homing pigeons. Importantly, research in these areas would not necessarily require the large number of birds typically used in the past to study the sensory guidance of navigation. For those of us who have had the opportunity to work with this remarkable animal, one research door may be closing, but a window into exciting future opportunities lies ajar.
Collapse
Affiliation(s)
- Verner P. Bingman
- Department of Psychology and J. P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403, USA
| |
Collapse
|
7
|
Kano F, Walker J, Sasaki T, Biro D. Head-mounted sensors reveal visual attention of free-flying homing pigeons. ACTA ACUST UNITED AC 2018; 221:221/17/jeb183475. [PMID: 30190414 DOI: 10.1242/jeb.183475] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/19/2018] [Indexed: 01/08/2023]
Abstract
Gaze behavior offers valuable insights into attention and cognition. However, technological limitations have prevented the examination of animals' gaze behavior in natural, information-rich contexts; for example, during navigation through complex environments. Therefore, we developed a lightweight custom-made logger equipped with an inertial measurement unit (IMU) and GPS to simultaneously track the head movements and flight trajectories of free-flying homing pigeons. Pigeons have a limited range of eye movement, and their eye moves in coordination with their head in a saccadic manner (similar to primate eye saccades). This allows head movement to act as a proxy for visual scanning behavior. Our IMU sensor recorded the 3D movement of the birds' heads in high resolution, allowing us to reliably detect distinct saccade signals. The birds moved their head far more than necessary for maneuvering flight, suggesting that they actively scanned the environment. This movement was predominantly horizontal (yaw) and sideways (roll), allowing them to scan the environment with their lateral visual field. They decreased their head movement when they flew solo over prominent landmarks (major roads and a railway line) and also when they flew in pairs (especially when flying side by side, with the partner maintained in their lateral visual field). Thus, a decrease in head movement indicates a change in birds' focus of attention. We conclude that pigeons use their head gaze in a task-related manner and that tracking flying birds' head movement is a promising method for examining their visual attention during natural tasks.
Collapse
Affiliation(s)
- Fumihiro Kano
- Kumamoto Sanctuary, Wildlife Research Center, Kyoto University, Uki, Kumamoto, Japan .,Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - James Walker
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Takao Sasaki
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Dora Biro
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| |
Collapse
|
8
|
Silva NFDS, Fowler-Finn K, Ribeiro Mortara S, Hirata Willemart R. A Neotropical armored harvestman (Arachnida, Opiliones) uses proprioception and vision for homing. BEHAVIOUR 2018. [DOI: 10.1163/1568539x-00003503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Animals use external and/or internal cues to navigate and can show flexibility in cue use if one type of cue is unavailable. We studied the homing ability of the harvestman Heteromitobates discolor (Arachnida, Opiliones) by moving egg-guarding females from their clutches. We tested the importance of vision, proprioception, and olfaction. We predicted that homing would be negatively affected in the absence of these cues, with success being measured by the return of females to their clutches. We restricted proprioception by not allowing females to walk, removed vision by painting the eyes, and removed the odours by removing the clutch and cleaning its surroundings. We found that vision is important for homing, and in the absence of visual cues, proprioception is important. Finally, we found increased homing when eggs were present, and that the time of the day also influenced homing. We highlight vision as a previously overlooked sensory modality in Opiliones.
Collapse
Affiliation(s)
- Norton Felipe dos Santos Silva
- aLaboratório de Ecologia Sensorial e Comportamento de Artrópodes, Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Avenida Arlindo Béttio 1000, Ermelino Matarazzo, São Paulo, SP 03828-000, Brazil
- bPrograma de Pós-Graduação em Ecologia e Evolução, Universidade Federal de São Paulo, Campus Diadema, Rua Professor Artur Riedel. 275, Jardim Eldorado, Diadema, SP 09972-270, Brazil
| | - Kasey Fowler-Finn
- cDepartment of Biology, Saint Louis University, 3507 Laclede Avenue, Saint Louis, MO, USA
| | - Sara Ribeiro Mortara
- dPrograma de Pós-Graduação em Ecologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 321, Travessa 14, São Paulo, SP 05508-090, Brazil
| | - Rodrigo Hirata Willemart
- aLaboratório de Ecologia Sensorial e Comportamento de Artrópodes, Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Avenida Arlindo Béttio 1000, Ermelino Matarazzo, São Paulo, SP 03828-000, Brazil
- bPrograma de Pós-Graduação em Ecologia e Evolução, Universidade Federal de São Paulo, Campus Diadema, Rua Professor Artur Riedel. 275, Jardim Eldorado, Diadema, SP 09972-270, Brazil
- ePrograma de Pós-Graduação em Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 101, Travessa 14, São Paulo, SP 05508-090, Brazil
| |
Collapse
|
9
|
Krause ET, Bischof HJ, Engel K, Golüke S, Maraci Ö, Mayer U, Sauer J, Caspers BA. Olfaction in the Zebra Finch ( Taeniopygia guttata ): What Is Known and Further Perspectives. ADVANCES IN THE STUDY OF BEHAVIOR 2018. [DOI: 10.1016/bs.asb.2017.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Jorge PE, Pinto BV. Olfactory information from the path is relevant to the homing process of adult pigeons. Behav Ecol Sociobiol 2017. [DOI: 10.1007/s00265-017-2421-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Safi K, Gagliardo A, Wikelski M, Kranstauber B. How Displaced Migratory Birds Could Use Volatile Atmospheric Compounds to Find Their Migratory Corridor: A Test Using a Particle Dispersion Model. Front Behav Neurosci 2016; 10:175. [PMID: 27799899 PMCID: PMC5065961 DOI: 10.3389/fnbeh.2016.00175] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 08/31/2016] [Indexed: 11/23/2022] Open
Abstract
Olfaction represents an important sensory modality for navigation of both homing pigeons and wild birds. Experimental evidence in homing pigeons showed that airborne volatile compounds carried by the winds at the home area are learned in association with wind directions. When displaced, pigeons obtain information on the direction of their displacement using local odors at the release site. Recently, the role of olfactory cues in navigation has been reported also for wild birds during migration. However, the question whether wild birds develop an olfactory navigational map similar to that described in homing pigeons or, alternatively, exploit the distribution of volatile compounds in different manner for reaching the goal is still an open question. Using an interdisciplinary approach, we evaluate the possibilities of reconstructing spatio-temporally explicit aerosol dispersion at large spatial scales using the particle dispersion model FLEXPART. By combining atmospheric information with particle dispersion models, atmospheric scientists predict the dispersion of pollutants for example, after nuclear fallouts or volcanic eruptions or wildfires, or in retrospect reconstruct the origin of emissions such as aerosols. Using simple assumptions, we reconstructed the putative origin of aerosols traveling to the location of migrating birds. We use the model to test whether the putative odor plume could have originated from an important stopover site. If the migrating birds knew this site and the associated plume from previous journeys, the odor could contribute to the reorientation towards the migratory corridor, as suggested for the model scenario in displaced Lesser black-backed gulls migrating from Northern Europe into Africa.
Collapse
Affiliation(s)
- Kamran Safi
- Department of Migration and Immuno-Ecology, Max Planck Institute for OrnithologyRadolfzell, Germany
- Department of Biology, University of KonstanzKonstanz, Germany
| | | | - Martin Wikelski
- Department of Migration and Immuno-Ecology, Max Planck Institute for OrnithologyRadolfzell, Germany
- Department of Biology, University of KonstanzKonstanz, Germany
| | - Bart Kranstauber
- Department of Migration and Immuno-Ecology, Max Planck Institute for OrnithologyRadolfzell, Germany
- Department of Biology, University of KonstanzKonstanz, Germany
| |
Collapse
|
12
|
Gagliardo A, Pollonara E, Wikelski M. Pigeon navigation: exposure to environmental odours prior to release is sufficient for homeward orientation, but not for homing. ACTA ACUST UNITED AC 2016; 219:2475-80. [PMID: 27284069 DOI: 10.1242/jeb.140889] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/01/2016] [Indexed: 11/20/2022]
Abstract
The role of environmental olfactory information in pigeon navigation has been extensively studied by analysing vanishing bearing distributions and homing performances of homing pigeons subjected to manipulation of their olfactory perception and/or the olfactory information they were exposed to during transportation and at the release site. However, their behaviour during the homing flight remains undocumented. In this experiment we report the analysis of tracks of birds made anosmic at the release site by washing their olfactory mucosa with zinc sulfate. We thus can assess the role of local odours at the release site as well as the role of environmental odours perceived on the way, far from the release site. We observed that pigeons transported and kept at the release site in purified air and made anosmic at the release site were unable to orient towards home and were impaired at homing. By contrast, pigeons allowed to smell environmental odours during transportation and at the release site, although made anosmic prior to release, displayed unimpaired homeward orientation, but nevertheless showed impaired homing performance. These results are consistent with the view that local odours at the release site are critical for determining the direction of displacement (olfactory map) and suggest that pigeons consult the olfactory map also during their homing flight in order to be able to find their way home.
Collapse
Affiliation(s)
- Anna Gagliardo
- Department of Biology, University of Pisa, Via Volta 6, Pisa 56126, Italy
| | - Enrica Pollonara
- Department of Biology, University of Pisa, Via Volta 6, Pisa 56126, Italy
| | - Martin Wikelski
- Max Planck Institute for Ornithology, Department for Migration and Immuno-Ecology, Schlossallee 2, Radolfzell 78315, Germany Chair of Ornithology, Konstanz University, Konstanz 78457, Germany
| |
Collapse
|
13
|
Caro SP, Balthazart J, Bonadonna F. The perfume of reproduction in birds: chemosignaling in avian social life. Horm Behav 2015; 68:25-42. [PMID: 24928570 PMCID: PMC4263688 DOI: 10.1016/j.yhbeh.2014.06.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/02/2014] [Accepted: 06/03/2014] [Indexed: 11/23/2022]
Abstract
This article is part of a Special Issue "Chemosignals and Reproduction". Chemical cues were probably the first cues ever used to communicate and are still ubiquitous among living organisms. Birds have long been considered an exception: it was believed that birds were anosmic and relied on their acute visual and acoustic capabilities. Birds are however excellent smellers and use odors in various contexts including food searching, orientation, and also breeding. Successful reproduction in most vertebrates involves the exchange of complex social signals between partners. The first evidence for a role of olfaction in reproductive contexts in birds only dates back to the seventies, when ducks were shown to require a functional sense of smell to express normal sexual behaviors. Nowadays, even if the interest for olfaction in birds has largely increased, the role that bodily odors play in reproduction still remains largely understudied. The few available studies suggest that olfaction is involved in many reproductive stages. Odors have been shown to influence the choice and synchronization of partners, the choice of nest-building material or the care for the eggs and offspring. How this chemical information is translated at the physiological level mostly remains to be described, although available evidence suggests that, as in mammals, key reproductive brain areas like the medial preoptic nucleus are activated by relevant olfactory signals. Olfaction in birds receives increasing attention and novel findings are continuously published, but many exciting discoveries are still ahead of us, and could make birds one of the animal classes with the largest panel of developed senses ever described.
Collapse
Affiliation(s)
- Samuel P Caro
- Research Group in Behavioural Ecology, Department of Evolutionary Ecology, CEFE-CNRS (UMR 5175), Montpellier, France; Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.
| | - Jacques Balthazart
- Research Group in Behavioral Neuroendocrinology, Center for Cellular and Molecular Neurobiology, University of Liège, Belgium
| | - Francesco Bonadonna
- Research Group in Behavioural Ecology, Department of Evolutionary Ecology, CEFE-CNRS (UMR 5175), Montpellier, France
| |
Collapse
|
14
|
Atoji Y, Wild JM. Efferent and afferent connections of the olfactory bulb and prepiriform cortex in the pigeon (Columba livia). J Comp Neurol 2014; 522:1728-52. [PMID: 24222632 DOI: 10.1002/cne.23504] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 11/04/2013] [Accepted: 11/07/2013] [Indexed: 11/07/2022]
Abstract
Although olfaction in birds is known to be involved in a variety of behaviors, there is comparatively little detailed information on the olfactory brain. In the pigeon brain, the olfactory bulb (OB) is known to project to the prepiriform cortex (CPP), piriform cortex (CPi), and dorsolateral corticoid area (CDL), which together are called the olfactory pallium, but centrifugal pathways to the OB have not been fully explored. Fiber connections of CPi and CDL have been reported, but those of other olfactory pallial nuclei remain unknown. The present study examines the fiber connections of OB and CPP in pigeons to provide a more detailed picture of their connections using tract-tracing methods. When anterograde and retrograde tracers were injected in OB, projections to a more extensive olfactory pallium were revealed, including the anterior olfactory nucleus, CPP, densocellular part of the hyperpallium, tenia tecta, hippocampal continuation, CPi, and CDL. OB projected commissural fibers to the contralateral OB but did not receive afferents from the contralateral olfactory pallium. When tracers were injected in CPP, reciprocal ipsilateral connections with OB and nuclei of the olfactory pallium were observed, and CPP projected to the caudolateral nidopallium and the limbic system, including the hippocampal formation, septum, lateral hypothalamic nucleus, and lateral mammillary nucleus. These results show that the connections of OB have a wider distribution throughout the olfactory pallium than previously thought and that CPP provides a centrifugal projection to the OB and acts as a relay station to the limbic system.
Collapse
Affiliation(s)
- Yasuro Atoji
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan
| | | |
Collapse
|
15
|
Gagliardo A, Pollonara E, Coppola VJ, Santos CD, Wikelski M, Bingman VP. Evidence for perceptual neglect of environmental features in hippocampal-lesioned pigeons during homing. Eur J Neurosci 2014; 40:3102-10. [DOI: 10.1111/ejn.12680] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/11/2014] [Accepted: 06/20/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Anna Gagliardo
- Department of Biology; University of Pisa; Via Volta 6 56126 Pisa Italy
| | - Enrica Pollonara
- Department of Biology; University of Pisa; Via Volta 6 56126 Pisa Italy
| | - Vincent J. Coppola
- Department of Psychology and J. P. Scott Center for Neuroscience, Mind and Behavior; Bowling Green State University; Bowling Green OH USA
| | - Carlos D. Santos
- Department of Migration and Immuno-Ecology; Max Planck Institute for Ornithology; Radolfzell Germany
- Departamento de Biologia; Centro de Ciências Biológicas e da Saúde; Universidade Federal do Maranhão; São Luís MA Brazil
| | - Martin Wikelski
- Department of Migration and Immuno-Ecology; Max Planck Institute for Ornithology; Radolfzell Germany
- Department of Biology; University of Konstanz; Konstanz Germany
| | - Verner P. Bingman
- Department of Psychology and J. P. Scott Center for Neuroscience, Mind and Behavior; Bowling Green State University; Bowling Green OH USA
| |
Collapse
|
16
|
Jacobs LF, Menzel R. Navigation outside of the box: what the lab can learn from the field and what the field can learn from the lab. MOVEMENT ECOLOGY 2014; 2:3. [PMID: 25520814 PMCID: PMC4267593 DOI: 10.1186/2051-3933-2-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 12/30/2013] [Indexed: 06/04/2023]
Abstract
Space is continuous. But the communities of researchers that study the cognitive map in non-humans are strangely divided, with debate over its existence found among behaviorists but not neuroscientists. To reconcile this and other debates within the field of navigation, we return to the concept of the parallel map theory, derived from data on hippocampal function in laboratory rodents. Here the cognitive map is redefined as the integrated map, which is a construction of dual mechanisms, one based on directional cues (bearing map) and the other on positional cues (sketch map). We propose that the dual navigational mechanisms of pigeons, the navigational map and the familiar area map, could be homologous to these mammalian parallel maps; this has implications for both research paradigms. Moreover, this has implications for the lab. To create a bearing map (and hence integrated map) from extended cues requires self-movement over a large enough space to sample and model these cues at a high resolution. Thus a navigator must be able to move freely to map extended cues; only then should the weighted hierarchy of available navigation mechanisms shift in favor of the integrated map. Because of the paucity of extended cues in the lab, the flexible solutions allowed by the integrated map should be rare, despite abundant neurophysiological evidence for the existence of the machinery needed to encode and map extended cues through voluntary movement. Not only do animals need to map extended cues but they must also have sufficient information processing capacity. This may require a specific ontogeny, in which the navigator's nervous system is exposed to naturally complex spatial contingencies, a circumstance that occurs rarely, if ever, in the lab. For example, free-ranging, flying animals must process more extended cues than walking animals and for this reason alone, the integrated map strategy may be found more reliably in some species. By taking concepts from ethology and the parallel map theory, we propose a path to directly integrating the three great experimental paradigms of navigation: the honeybee, the homing pigeon and the laboratory rodent, towards the goal of a robust, unified theory of animal navigation.
Collapse
Affiliation(s)
- Lucia F Jacobs
- />Department of Psychology, University of California, Mailcode 1650, Berkeley, CA 94520-1650 USA
| | - Randolf Menzel
- />Institut für Biologie, Freie Universität, Königin-Luise-Strasse 28/30, 14195 Berlin, Germany
| |
Collapse
|
17
|
de Jong C, Field H, Tagtag A, Hughes T, Dechmann D, Jayme S, Epstein J, Smith C, Santos I, Catbagan D, Lim M, Benigno C, Daszak P, Newman S. Foraging behaviour and landscape utilisation by the endangered golden-crowned flying fox (Acerodon jubatus), the Philippines. PLoS One 2013; 8:e79665. [PMID: 24278154 PMCID: PMC3836874 DOI: 10.1371/journal.pone.0079665] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 09/24/2013] [Indexed: 11/19/2022] Open
Abstract
Species of Old World fruit-bats (family Pteropodidae) have been identified as the natural hosts of a number of novel and highly pathogenic viruses threatening livestock and human health. We used GPS data loggers to record the nocturnal foraging movements of Acerodon jubatus, the Golden-crowned flying fox in the Philippines to better understand the landscape utilisation of this iconic species, with the dual objectives of pre-empting disease emergence and supporting conservation management. Data loggers were deployed on eight of 54 A. jubatus (two males and six females) captured near Subic Bay on the Philippine island of Luzon between 22 November and 2 December 2010. Bodyweight ranged from 730 g to 1002 g, translating to a weight burden of 3–4% of bodyweight. Six of the eight loggers yielded useful data over 2–10 days, showing variability in the nature and range of individual bat movements. The majority of foraging locations were in closed forest and most were remote from evident human activity. Forty-six discrete foraging locations and five previously unrecorded roost locations were identified. Our findings indicate that foraging is not a random event, with the majority of bats exhibiting repetitious foraging movements night-to-night, that apparently intact forest provides the primary foraging resource, and that known roost locations substantially underestimate the true number (and location) of roosts. Our initial findings support policy and decision-making across perspectives including landscape management, species conservation, and potentially disease emergence.
Collapse
Affiliation(s)
- Carol de Jong
- Queensland Centre for Emerging Infectious Diseases, Department of Agriculture, Fisheries and Forestry, Coopers Plains, Queensland, Australia
- * E-mail:
| | - Hume Field
- Queensland Centre for Emerging Infectious Diseases, Department of Agriculture, Fisheries and Forestry, Coopers Plains, Queensland, Australia
- EcoHealth Alliance, New York, New York, United States of America
| | - Anson Tagtag
- Protected Areas and Wildlife Bureau, Department of Environment and Natural Resources, Quezon City, Philippines
| | - Tom Hughes
- EcoHealth Alliance, New York, New York, United States of America
| | - Dina Dechmann
- Max Planck Institute of Ornithology, Radolfzell, Germany
| | - Sarah Jayme
- Food and Agriculture Organization of the United Nations (FAO), Makati City, Philippines
| | - Jonathan Epstein
- EcoHealth Alliance, New York, New York, United States of America
| | - Craig Smith
- Queensland Centre for Emerging Infectious Diseases, Department of Agriculture, Fisheries and Forestry, Coopers Plains, Queensland, Australia
| | - Imelda Santos
- Food and Agriculture Organization of the United Nations (FAO), Makati City, Philippines
| | | | - Mundita Lim
- Protected Areas and Wildlife Bureau, Department of Environment and Natural Resources, Quezon City, Philippines
| | - Carolyn Benigno
- Food and Agriculture Organization of the United Nations (FAO) Regional Office for Asia and the Pacific (FAO RAP), Bangkok, Thailand
| | - Peter Daszak
- EcoHealth Alliance, New York, New York, United States of America
| | - Scott Newman
- Food and Agriculture Organization of the United Nations (FAO), Hanoi, Vietnam
| |
Collapse
|
18
|
Shanahan M, Bingman VP, Shimizu T, Wild M, Güntürkün O. Large-scale network organization in the avian forebrain: a connectivity matrix and theoretical analysis. Front Comput Neurosci 2013; 7:89. [PMID: 23847525 PMCID: PMC3701877 DOI: 10.3389/fncom.2013.00089] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/17/2013] [Indexed: 01/08/2023] Open
Abstract
Many species of birds, including pigeons, possess demonstrable cognitive capacities, and some are capable of cognitive feats matching those of apes. Since mammalian cortex is laminar while the avian telencephalon is nucleated, it is natural to ask whether the brains of these two cognitively capable taxa, despite their apparent anatomical dissimilarities, might exhibit common principles of organization on some level. Complementing recent investigations of macro-scale brain connectivity in mammals, including humans and macaques, we here present the first large-scale "wiring diagram" for the forebrain of a bird. Using graph theory, we show that the pigeon telencephalon is organized along similar lines to that of a mammal. Both are modular, small-world networks with a connective core of hub nodes that includes prefrontal-like and hippocampal structures. These hub nodes are, topologically speaking, the most central regions of the pigeon's brain, as well as being the most richly connected, implying a crucial role in information flow. Overall, our analysis suggests that indeed, despite the absence of cortical layers and close to 300 million years of separate evolution, the connectivity of the avian brain conforms to the same organizational principles as the mammalian brain.
Collapse
|
19
|
Hicks RE, Larned A, Borgia G. Bower paint removal leads to reduced female visits, suggesting bower paint functions as a chemical signal. Anim Behav 2013. [DOI: 10.1016/j.anbehav.2013.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Abstract
Olfaction is an essential chemosensory system in the living world. Although less appreciated in humans, smell impairment significantly affects many aspects of quality of life. Smell disorders may be caused by an impaired nasal airway or by lesions in the olfactory system, leading to reduced or distorted smell perception. The most common causes of smell disorders are aging, upper respiratory tract infection, sinonasal disease, and head trauma. Recovery is rarely complete. Counseling is important in progressive or severe smell loss. In patients with distorted smell perception, antidepressant medication is sometimes necessary. Best response to treatment is achieved for nasal obstruction and sinonasal inflammatory disease. Treatment of olfactory impairment caused by sinonasal disease includes medication with topical and systemic steroids, or surgery for refractory cases. Although there are reports that surgical resection of olfactory neurons may lead to reinnervation and recovery of smell, adequate treatment of the smell loss remains an unmet need.
Collapse
Affiliation(s)
- Livije Kalogjera
- Zagreb School of Medicine, Department of Otorhinolaryngology/Head and Neck Surgery, University Hospital Centre, "Sestre Milosrdnice", Vinogradska 29, 10000, Zagreb, Croatia,
| | | |
Collapse
|
21
|
Patzke N, Manns M, Güntürkün O. Telencephalic organization of the olfactory system in homing pigeons (Columba livia). Neuroscience 2011; 194:53-61. [PMID: 21846495 DOI: 10.1016/j.neuroscience.2011.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 07/26/2011] [Accepted: 08/01/2011] [Indexed: 10/17/2022]
Abstract
Pigeons use olfactory cues to navigate over unfamiliar areas, and any impairment of the olfactory system generates remarkable reduction of homing performance. Lesion and deprivation studies suggest a critical involvement of the right nostril and thus, the right olfactory bulb (OB) and the left piriform cortex (CPi) for initial orientation. This functional pattern suggests that OB and CPi are asymmetrically connected with a stronger projection from the right OB to the left CPi. However, the structural organization of the olfactory system is not unequivocally clarified yet. Thus, we re-analyzed the system by antero- and retrograde tract tracing with biotinylated dextran amine and choleratoxin subunit B, and we especially evaluated quantitative differences in the number of cells in the OB innervating the left and right CPi. Our anterograde tracing data verified a strong bilateral input to the CPi, and the prepiriform cortex (CPP), as well as small projections to the ipsilateral medial septum and the dorsolateral corticoid area and the nucleus taeniae of the amygdala in both hemispheres. Apart from the bilateral bulbar afferents, CPi in turn receives unequivocal input from the ipsilateral CPP, hyperpallium densocellulare, dorsal arcopallium, and from a cluster of cells located within the frontolateral nidopallium. Thus, an indirect connection between OB and CPi is only mediated by the CPP. For quantitative analysis of bulbar input to the CPi, we counted the number of ipsi- and contralaterally projecting neurons located in the OB after injections into the left or right CPi. Retrogradely labeled cells were found bilaterally in the OB with a higher number of ipsilaterally located cells. The bilaterality index did not differ after left- or right-sided CPi injections indicating that the functional lateralization of the olfactory system is not simply based on differences in the number of projecting axons of the major processing stream.
Collapse
Affiliation(s)
- N Patzke
- Biopsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr-University Bochum, Universitätsstr 150, 44780 Bochum, Germany.
| | | | | |
Collapse
|
22
|
Gagliardo A, Ioalè P, Filannino C, Wikelski M. Homing pigeons only navigate in air with intact environmental odours: a test of the olfactory activation hypothesis with GPS data loggers. PLoS One 2011; 6:e22385. [PMID: 21857925 PMCID: PMC3152288 DOI: 10.1371/journal.pone.0022385] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Accepted: 06/20/2011] [Indexed: 11/22/2022] Open
Abstract
A large body of evidence has shown that anosmic pigeons are impaired in their navigation. However, the role of odours in navigation is still subject to debate. While according to the olfactory navigation hypothesis homing pigeons possess a navigational map based on the distribution of environmental odours, the olfactory activation hypothesis proposes that odour perception is only needed to activate a navigational mechanism based on cues of another nature. Here we tested experimentally whether the perception of artificial odours is sufficient to allow pigeons to navigate, as expected from the olfactory activation hypothesis. We transported three groups of pigeons in air-tight containers to release sites 53 and 61 km from home in three different olfactory conditions. The Control group received natural environmental air; both the Pure Air and the Artificial Odour groups received pure air filtered through an active charcoal filter. Only the Artificial Odour group received additional puffs of artificial odours until release. We then released pigeons while recording their tracks with 1 Hz GPS data loggers. We also followed non-homing pigeons using an aerial data readout to a Cessna plane, allowing, for the first time, the tracking of non-homing homing pigeons. Within the first hour after release, the pigeons in both the Artificial Odour and the Pure Air group (receiving no environmental odours) showed impaired navigational performances at each release site. Our data provide evidence against an activation role of odours in navigation, and document that pigeons only navigate well when they perceive environmental odours.
Collapse
|
23
|
Campagna S, Mardon J, Celerier A, Bonadonna F. Potential semiochemical molecules from birds: a practical and comprehensive compilation of the last 20 years studies. Chem Senses 2011; 37:3-25. [PMID: 21798850 DOI: 10.1093/chemse/bjr067] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
During the past 2 decades, considerable progress has been made in the study of bird semiochemistry, and our goal was to review and evaluate this literature with particular emphasis on the volatile organic constituents. Indeed, since the importance of social chemosignaling in birds is becoming more and more apparent, the search for molecules involved in chemical communication is of critical interest. These molecules can be found in different sources that include uropygial gland secretions, feather-surface compounds, and molecules from feces and skin. Although many studies have examined the chemical substances secreted by birds, research on bird chemical communication is still at the start, so new strategies for collecting samples and development of new methods of analysis are urgently required. As a first step, we built a database that brings together potential semiochemicals, using a unique chemical nomenclature for comparing different bird species and also for referencing the different classes of substances that can be found in order to adapt future parameters of analysis. The most important patterns of the wax fraction of preen secretions are highlighted and organized in an ordered table. We also draw up a list of various combinations of sampling and analytical techniques, so that each method can be compared at a glance.
Collapse
Affiliation(s)
- Sylvie Campagna
- Behavioral Ecology Group, Centre d'Ecologie Fonctionnelle et Evolutive-CNRS UMR 5175, Montpellier, France.
| | | | | | | |
Collapse
|
24
|
Knight K. PIGEONS USE RIGHT NOSTRIL TO SNIFF WAY HOME. J Exp Biol 2011. [DOI: 10.1242/jeb.055681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|