1
|
Sirman AE, Schmidt JE, Clark ME, Kittilson JD, Reed WL, Heidinger BJ. Compensatory Growth Is Accompanied by Changes in Insulin-Like Growth Factor 1 but Not Markers of Cellular Aging in a Long-Lived Seabird. Am Nat 2023; 202:78-91. [PMID: 37384761 DOI: 10.1086/724599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
AbstractDeveloping organisms often plastically modify growth in response to environmental circumstances, which may be adaptive but is expected to entail long-term costs. However, the mechanisms that mediate these growth adjustments and any associated costs are less well understood. In vertebrates, one mechanism that may be important in this context is the highly conserved signaling factor insulin-like growth factor 1 (IGF-1), which is frequently positively related to postnatal growth and negatively related to longevity. To test this idea, we exposed captive Franklin's gulls (Leucophaeus pipixcan) to a physiologically relevant nutritional stressor by restricting food availability during postnatal development and examined the effects on growth, IGF-1, and two potential biomarkers of cellular and organismal aging (oxidative stress and telomeres). During food restriction, experimental chicks gained body mass more slowly and had lower IGF-1 levels than controls. Following food restriction, experimental chicks underwent compensatory growth, which was accompanied by an increase in IGF-1 levels. Interestingly, however, there were no significant effects of the experimental treatment or of variation in IGF-1 levels on oxidative stress or telomeres. These findings suggest that IGF-1 is responsive to changes in resource availability but is not associated with increased markers of cellular aging during development in this relatively long-lived species.
Collapse
|
2
|
Lu G, Zhang X, Li X, Zhang S. Immunity and Growth Plasticity of Asian Short-Toed Lark Nestlings in Response to Changes in Food Conditions: Can It Buffer the Challenge of Climate Change-Induced Trophic Mismatch? Animals (Basel) 2023; 13:ani13050860. [PMID: 36899717 PMCID: PMC10000144 DOI: 10.3390/ani13050860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/03/2023] Open
Abstract
Passerine nestlings frequently suffer from sub-optimal food conditions due to climate change-induced trophic mismatch between the nestlings and their optimal food resources. The ability of nestlings to buffer this challenge is less well understood. We hypothesized that poor food conditions might induce a higher immune response and lower growth rate of nestlings, and such physiological plasticity is conducive to nestling survival. To test this, we examined how food (grasshopper nymphs) abundance affects the expression of interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), interleukin-1 β (IL-1β) genes, plasma IGF-1 levels, body mass, and fledging rates in wild Asian short-toed lark (Alaudala cheleensis) nestlings. Linear mixed models revealed that nymph biomass significantly influenced the expression of IFN-γ, TNF-α, and IL-1β genes, and the level of plasma IGF-1. The expressions of IFN-γ, TNF-α, and IL-1β genes were negatively correlated with nymph biomass and plasma IGF-1 level. Plasma IGF-1 level, nestling body mass growth rate, was positively correlated with nymph biomass. Despite a positive correlation between the nestling fledge rate and nymph biomass, more than 60% of nestlings fledged when nymph biomass was at the lowest level. These results suggest that immunity and growth plasticity of nestlings may be an adaptation for birds to buffer the negative effects of trophic mismatch.
Collapse
Affiliation(s)
- Guang Lu
- Key Laboratory of Ecology and Environment in Minority Areas (National Ethnic Affairs Commission), Minzu University of China, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xinjie Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xinyu Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Shuping Zhang
- Key Laboratory of Ecology and Environment in Minority Areas (National Ethnic Affairs Commission), Minzu University of China, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Correspondence:
| |
Collapse
|
3
|
Allen JM, Hodinka BL, Hall HM, Leonard KM, Williams TD. Flexible growth and body mass predict physiological condition at fledging in the synchronously breeding European starling, Sturnus vulgaris. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220583. [PMID: 35706664 PMCID: PMC9174708 DOI: 10.1098/rsos.220583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/19/2022] [Indexed: 05/03/2023]
Abstract
Recent studies have reported beneficial carryover effects of juvenile development that predict interspecific survival differences at independence. Yet, traits relating to body size (i.e. morphological traits) have proven to be unreliable predictors of juvenile survival within species. Exploring individual variation of growth trajectories and how they covary with physiology could reveal species-specific developmental modes which have implications for our assessments of juvenile quality. Here, we investigated morphological development of European starlings (Sturnus vulgaris) approaching fledging in relation to three components of physiological condition at independence: aerobic capacity, energy state and oxidative status. We found evidence of flexible mass and wing growth which independently covaried with fledgling energy state and aerobic capacity, respectively. By comparison, tarsus and wing length at fledging were unrelated to any physiological trait, while mass was positively associated with principal component scores that comprised aerobic capacity and energy state. Thus, flexible growth trajectories were consistent with 'developmental plasticity': adaptive pre-fledging mass recession and compensatory wing growth, which seemingly came at a physiological cost, while fledgling body mass positively reflected overall physiological condition. This highlights how patterns of growth and absolute size may differently reflect fledgling physiology, potentially leading to variable relationships between morphological traits and juvenile fitness.
Collapse
Affiliation(s)
- Joshua M. Allen
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Brett L. Hodinka
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Hannah M. Hall
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Kathryn M. Leonard
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Tony D. Williams
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
4
|
Hope SF, Schmitt L, Lourdais O, Angelier F. Nature vs. Nurture: Disentangling the Influence of Inheritance, Incubation Temperature, and Post-Natal Care on Offspring Heart Rate and Metabolism in Zebra Finches. Front Physiol 2022; 13:892154. [PMID: 35620597 PMCID: PMC9127084 DOI: 10.3389/fphys.2022.892154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
A historic debate in biology is the question of nature vs. nurture. Although it is now known that most traits are a product of both heredity (“nature”) and the environment (“nurture”), these two driving forces of trait development are rarely examined together. In birds, one important aspect of the early developmental environment is egg incubation temperature. Small changes (<1°C) in incubation temperature can have large effects on a wide-array of offspring traits. One important trait is metabolism, because it is related to life-history traits and strategies, organismal performance, and energetic and behavioral strategies. Although it has been shown that embryonic and post-hatch metabolism are related to egg incubation temperature, little is known about how this may vary as a function of genetic differences or post-hatching environmental conditions. Here, we investigated this question in zebra finches (Taeniopygia guttata). We experimentally incubated eggs at two different temperatures: 37.5°C (control), which is optimal for this species and 36.3°C (low), which is suboptimal. We first measured embryonic heart rate as a proxy of embryonic metabolic rate. Then, at hatch, we cross-fostered nestlings to differentiate genetic and pre-hatching factors from post-hatching environmental conditions. When offspring were 30 days-old, we measured their resting metabolic rate (RMR; within the thermoneutral zone) and thermoregulatory metabolic rate (TMR; 12°C; birds must actively thermoregulate). We also measured RMR and TMR of all genetic and foster parents. We found that embryonic heart rate was greater in eggs incubated at the control temperature than those at the low temperature. Further, embryonic heart rate was positively related to genetic father RMR, suggesting that it is both heritable and affected by the pre-natal environment. In addition, we found that post-hatch metabolic rates were positively related to genetic parent metabolic rate, and interactively related to incubation temperature and foster mother metabolic rate. Altogether, this suggests that metabolism and the energetic cost of thermoregulation can be influenced by genetics, the pre-natal environment, and the post-natal environment. Our study sheds light on how environmental changes and parental care may affect avian physiology, as well as which traits may be susceptible to natural selection.
Collapse
|
5
|
Boom MP, van der Jeugd HP, Steffani B, Nolet BA, Larsson K, Eichhorn G. Postnatal growth rate varies with latitude in range-expanding geese: The role of plasticity and day length. J Anim Ecol 2021; 91:417-427. [PMID: 34807466 PMCID: PMC9300058 DOI: 10.1111/1365-2656.13638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/09/2021] [Indexed: 11/29/2022]
Abstract
The postnatal growth period is a crucial life stage, with potential lifelong effects on an animal's fitness. How fast animals grow depends on their life-history strategy and rearing environment, and interspecific comparisons generally show higher growth rates at higher latitudes. However, to elucidate the mechanisms behind this gradient in growth rate, intraspecific comparisons are needed. Recently, barnacle geese expanded their Arctic breeding range from the Russian Barents Sea coast southwards, and now also breed along the Baltic and North Sea coasts. Baltic breeders shortened their migration, while barnacle geese breeding along the North Sea stopped migrating entirely. We collected cross-sectional data on gosling tarsus length, head length and body mass, and constructed population-specific growth curves to compare growth rates among three populations (Barents Sea, Baltic Sea and North Sea) spanning 17° in latitude. Growth rate was faster at higher latitudes, and the gradient resembled the latitudinal gradient previously observed in an interspecific comparison of precocial species. Differences in day length among the three breeding regions could largely explain the observed differences in growth rate. In the Baltic, and especially in the Arctic population, growth rate was slower later in the season, most likely because of the stronger seasonal decline in food quality. Our results suggest that differences in postnatal growth rate between the Arctic and temperate populations are mainly a plastic response to local environmental conditions. This plasticity can increase the individuals' ability to cope with annual variation in local conditions, but can also increase the potential to re-distribute and adapt to new breeding environments.
Collapse
Affiliation(s)
- Michiel P Boom
- Vogeltrekstation-Dutch Centre for Avian Migration and Demography (NIOO-KNAW), Wageningen, The Netherlands.,Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Henk P van der Jeugd
- Vogeltrekstation-Dutch Centre for Avian Migration and Demography (NIOO-KNAW), Wageningen, The Netherlands
| | - Boas Steffani
- Vogeltrekstation-Dutch Centre for Avian Migration and Demography (NIOO-KNAW), Wageningen, The Netherlands
| | - Bart A Nolet
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.,Department of Theoretical and Computational Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Kjell Larsson
- Kalmar Maritime Academy, Linnaeus University, Kalmar, Sweden
| | - Götz Eichhorn
- Vogeltrekstation-Dutch Centre for Avian Migration and Demography (NIOO-KNAW), Wageningen, The Netherlands.,Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| |
Collapse
|
6
|
Senécal S, Riva JC, O'Connor RS, Hallot F, Nozais C, Vézina F. Poor prey quality is compensated by higher provisioning effort in passerine birds. Sci Rep 2021; 11:11182. [PMID: 34045619 PMCID: PMC8159977 DOI: 10.1038/s41598-021-90658-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 05/12/2021] [Indexed: 11/09/2022] Open
Abstract
In altricial avian species, nutrition can significantly impact nestling fitness by increasing their survival and recruitment chances after fledging. Therefore, the effort invested by parents towards provisioning nestlings is crucial and represents a critical link between habitat resources and reproductive success. Recent studies suggest that the provisioning rate has little or no effect on the nestling growth rate. However, these studies do not consider prey quality, which may force breeding pairs to adjust provisioning rates to account for variation in prey nutritional value. In this 8-year study using black-capped (Poecile atricapillus) and boreal (Poecile hudsonicus) chickadees, we hypothesized that provisioning rates would negatively correlate with prey quality (i.e., energy content) across years if parents adjust their effort to maintain nestling growth rates. The mean daily growth rate was consistent across years in both species. However, prey energy content differed among years, and our results showed that parents brought more food to the nest and fed at a higher rate in years of low prey quality. This compensatory effect likely explains the lack of relationship between provisioning rate and growth rate reported in this and other studies. Therefore, our data support the hypothesis that parents increase provisioning efforts to compensate for poor prey quality and maintain offspring growth rates.
Collapse
Affiliation(s)
- Sarah Senécal
- Département de biologie, chimie et géographie, Groupe de recherche sur les environnements nordiques BORÉAS, Université du Québec à Rimouski, Rimouski, QC, Canada. .,Center for Northern Studies, Université du Québec à Rimouski, Rimouski, QC, Canada. .,Quebec Center for Biodiversity Science, McGill University, Montreal, Canada.
| | - Julie-Camille Riva
- Département de biologie, chimie et géographie, Groupe de recherche sur les environnements nordiques BORÉAS, Université du Québec à Rimouski, Rimouski, QC, Canada.,Quebec Center for Biodiversity Science, McGill University, Montreal, Canada
| | - Ryan S O'Connor
- Département de biologie, chimie et géographie, Groupe de recherche sur les environnements nordiques BORÉAS, Université du Québec à Rimouski, Rimouski, QC, Canada.,Center for Northern Studies, Université du Québec à Rimouski, Rimouski, QC, Canada.,Quebec Center for Biodiversity Science, McGill University, Montreal, Canada
| | - Fanny Hallot
- Département de biologie, chimie et géographie, Groupe de recherche sur les environnements nordiques BORÉAS, Université du Québec à Rimouski, Rimouski, QC, Canada.,Quebec Center for Biodiversity Science, McGill University, Montreal, Canada
| | - Christian Nozais
- Département de biologie, chimie et géographie, Groupe de recherche sur les environnements nordiques BORÉAS, Université du Québec à Rimouski, Rimouski, QC, Canada.,Quebec Center for Biodiversity Science, McGill University, Montreal, Canada.,Québec Océan, Université Laval, Quebec, Canada
| | - François Vézina
- Département de biologie, chimie et géographie, Groupe de recherche sur les environnements nordiques BORÉAS, Université du Québec à Rimouski, Rimouski, QC, Canada.,Center for Northern Studies, Université du Québec à Rimouski, Rimouski, QC, Canada.,Quebec Center for Biodiversity Science, McGill University, Montreal, Canada
| |
Collapse
|
7
|
Ramirez-Otarola N, Naya DE, Sabat P. Seasonal changes in digestive enzymes in five bird species. CAN J ZOOL 2018. [DOI: 10.1139/cjz-2017-0350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Most animals must cope with seasonal fluctuations in environmental conditions, including variations in food availability and composition. Accordingly, it is expected that most species should exhibit reversible seasonal phenotypic adjustments in their physiology. Here, we assessed seasonal variation in the activity of three digestive enzymes (sucrase, maltase, and aminopeptidase-N) in one omniviorous bird species (Rufous-collared Sparrow (Zonotrichia capensis (P. L. Statius Müller, 1776))), three granivorous bird species (Black-chinned Siskin (Carduelis barbata (Molina, 1782)), Common Diuca Finch (Diuca diuca (Molina, 1782)), and Mourning Sierra Finch (Phrygilus fruticeti (Kittlitz, 1833))), and one insectivorous bird species (Plain-mantled Tit-Spinetail (Leptasthenura aegithaloides (Kittlitz, 1830))). Based on the adaptive modulation hypothesis, we predicted that the omnivorous species should exhibit the largest seasonal variation in the activity of its digestive enzymes in relation to granivorous and insectivorous species. We found that Z. capensis adjusts total activities of disaccharidases, total sucrase activity varied between seasons in C. barbata, and total activity of aminopeptidase-N only changed seasonally in L. aegithaloides. Moreover, this last species modified the tissue-specific activity of both disaccharidases as well as the wet mass of its intestine. Taken together, our results suggest that seasonal dietary changes occur in most of the species, regardless of the trophic categories in which they belong. Consequently, a better knowledge of the diet and its seasonal variation is necessary to better account for the results recorded in this study.
Collapse
Affiliation(s)
- Natalia Ramirez-Otarola
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Santiago 6513677, Chile
| | - Daniel E. Naya
- Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Pablo Sabat
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Santiago 6513677, Chile
| |
Collapse
|
8
|
Fassbinder-Orth CA, Killpack TL, Goto DS, Rainwater EL, Shearn-Bochsler VI. High costs of infection: Alphavirus infection reduces digestive function and bone and feather growth in nestling house sparrows (Passer domesticus). PLoS One 2018; 13:e0195467. [PMID: 29624598 PMCID: PMC5889171 DOI: 10.1371/journal.pone.0195467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/22/2018] [Indexed: 11/18/2022] Open
Abstract
Increasingly, ecoimmunology studies aim to use relevant pathogen exposure to examine the impacts of infection on physiological processes in wild animals. Alphaviruses are arthropod-borne, single-stranded RNA (ssRNA) viruses ("arboviruses") responsible for millions of cases of human illnesses each year. Buggy Creek virus (BCRV) is a unique alphavirus that is transmitted by a cimicid insect, the swallow bug, and is amplified in two avian species: the house sparrow (Passer domesticus) and the cliff swallow (Petrochelidon pyrrhonota). BCRV, like many alphaviruses, exhibits age-dependent susceptibility where the young are most susceptible to developing disease and exhibit a high mortality rate. However, alphavirus disease etiology in nestling birds is unknown. In this study, we infected nestling house sparrows with Buggy Creek virus and measured virological, pathological, growth, and digestive parameters following infection. Buggy Creek virus caused severe encephalitis in all infected nestlings, and the peak viral concentration in brain tissue was over 34 times greater than any other tissue. Growth, tissue development, and digestive function were all significantly impaired during BCRV infection. However, based on histopathological analysis performed, this impairment does not appear to be the result of direct tissue damage by the virus, but likely caused by encephalitis and neuronal invasion and impairment of the central nervous system. This is the first study to examine the course of alphavirus diseases in nestling birds and these results will improve our understanding of age-dependent infections of alphaviruses in vertebrate hosts.
Collapse
Affiliation(s)
| | - Tess L. Killpack
- Biology Department, Salem State University, Salem, MA, United States of America
| | - Dylan S. Goto
- School of Medicine, Creighton University, Omaha, NE, United States of America
| | | | | |
Collapse
|
9
|
Price ER, Sirsat TS, Sirsat SKG, Curran T, Venables BJ, Dzialowski EM. The membrane pacemaker hypothesis: novel tests during the ontogeny of endothermy. J Exp Biol 2018; 221:jeb.174466. [DOI: 10.1242/jeb.174466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/14/2018] [Indexed: 01/09/2023]
Abstract
The ‘membrane pacemaker’ hypothesis proposes a biochemical explanation for among-species variation in resting metabolism, based on the positive correlation between membrane docosahexaenoic acid (DHA) and metabolic rate. We tested this hypothesis using a novel model, altricial red-winged blackbird nestlings, predicting that the proportion of DHA in muscle and liver membranes should increase with the increasing metabolic rate of the nestling as it develops endothermy. We also used a dietary manipulation, supplementing the natural diet with fish oil (high DHA) or sunflower oil (high linoleic acid) to alter membrane composition and then assessed metabolic rate. In support of the membrane pacemaker hypothesis, DHA proportions increased in membranes from pectoralis muscle, muscle mitochondria, and liver during post-hatch development. By contrast, elevated dietary DHA had no effect on resting metabolic rate, despite causing significant changes to membrane lipid composition. During cold challenges, higher metabolic rates were achieved by birds that had lower DHA and higher linoleic acid in membrane phospholipids. Given the mixed support for this hypothesis, we conclude that correlations between membrane DHA and metabolic rate are likely spurious, and should be attributed to a still-unidentified confounding variable.
Collapse
Affiliation(s)
- Edwin R. Price
- Department of Biological Sciences, University of North Texas, Denton TX, 76201, USA
| | - Tushar S. Sirsat
- Department of Biological Sciences, University of North Texas, Denton TX, 76201, USA
- Current address: Department of Biology, State University of New York Potsdam, Potsdam NY 13676, USA
| | - Sarah K. G. Sirsat
- Department of Biological Sciences, University of North Texas, Denton TX, 76201, USA
- Current address: Department of Biology, State University of New York Potsdam, Potsdam NY 13676, USA
| | - Thomas Curran
- Department of Biological Sciences, University of North Texas, Denton TX, 76201, USA
| | - Barney J. Venables
- Department of Biological Sciences, University of North Texas, Denton TX, 76201, USA
| | - Edward M. Dzialowski
- Department of Biological Sciences, University of North Texas, Denton TX, 76201, USA
| |
Collapse
|
10
|
Meitern R, Lind MA, Karu U, Hõrak P. Simple and noninvasive method for assessment of digestive efficiency: Validation of fecal steatocrit in greenfinch coccidiosis model. Ecol Evol 2016; 6:8756-8763. [PMID: 28035266 PMCID: PMC5192951 DOI: 10.1002/ece3.2575] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 11/09/2022] Open
Abstract
Animals’ capability to absorb energy and nutrients from food poses a major internal constraint that affects the amount of resources available for allocation to maintenance, growth, signaling, and reproduction. Intestinal surface is the largest area of contact between immune system and microbial antigens; gut thus appears the main arena where trade‐offs between immune function and other components of fitness arise. Assessment of the integrity of digestive machinery should therefore be of high priority in ecophysiological research. Traditional methods of digestive physiology, however, appear unsuitable for most ecological applications due to lethality or complexity of the procedure. Here, we test the reliability of a simple, cheap, and noninvasive procedure, an acid steatocrit that assesses fat content in feces. It is based on centrifugation of a fecal sample, diluted in acid medium, in hematocrit capillary tube and quantifying the percentage of fat in fecal matter. The method has been previously validated in humans and mice; here, we apply it for the first time in birds. When applied to captive wild‐caught greenfinches, the method showed reasonable internal consistency (rs = 0.71 for steatocrit values, sampled from the same fecal aliquot in duplicate but processed separately). Individual steatocrit values were significantly repeatable in time in different intervals from eight to at least 20 days (rs = 0.32–0.49). The relationship between intestinal health and steatocrit values was tested by experimental manipulations. Medication against coccidiosis (a naturally pervasive intestinal infection) reduced, and experimental infection with heterologous coccidian strains increased steatocrit. Individual changes in steatocrit correlated negatively with changes of two markers of nutritional state—plasma triglyceride levels and body mass. Findings of this study suggest that steatocrit has a wide application potential as a marker of intestinal health in ecophysiological research. In particular, we see the perspective of this method for increasingly popular immunoecological research, conservation medicine, and studies of animal coloration.
Collapse
Affiliation(s)
| | - Mari-Ann Lind
- Department of Biology II Ludwig-Maximilians-University Munich Planegg-Martinsried Germany
| | - Ulvi Karu
- Department of Zoology Tartu University Tartu Estonia
| | - Peeter Hõrak
- Department of Zoology Tartu University Tartu Estonia
| |
Collapse
|
11
|
Minutes matter: brief hatching asynchrony adversely affects late-hatched hihi nestlings, but not life beyond the nest. Anim Behav 2016. [DOI: 10.1016/j.anbehav.2016.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
12
|
Redondo T, Ochoa D, Moreno-Rueda G, Potti J. Pied flycatcher nestlings incur immunological but not growth begging costs. Behav Ecol 2016. [DOI: 10.1093/beheco/arw045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
13
|
Ringsby TH, Jensen H, Pärn H, Kvalnes T, Boner W, Gillespie R, Holand H, Hagen IJ, Rønning B, Sæther BE, Monaghan P. On being the right size: increased body size is associated with reduced telomere length under natural conditions. Proc Biol Sci 2015; 282:20152331. [PMID: 26631569 PMCID: PMC4685786 DOI: 10.1098/rspb.2015.2331] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/03/2015] [Indexed: 01/21/2023] Open
Abstract
Evolution of body size is likely to involve trade-offs between body size, growth rate and longevity. Within species, larger body size is associated with faster growth and ageing, and reduced longevity, but the cellular processes driving these relationships are poorly understood. One mechanism that might play a key role in determining optimal body size is the relationship between body size and telomere dynamics. However, we know little about how telomere length is affected when selection for larger size is imposed in natural populations. We report here on the relationship between structural body size and telomere length in wild house sparrows at the beginning and end of a selection regime for larger parent size that was imposed for 4 years in an isolated population of house sparrows. A negative relationship between fledgling size and telomere length was present at the start of the selection; this was extended when fledgling size increased under the selection regime, demonstrating a persistent covariance between structural size and telomere length. Changes in telomere dynamics, either as a correlated trait or a consequence of larger size, could reduce potential longevity and the consequent trade-offs could thereby play an important role in the evolution of optimal body size.
Collapse
Affiliation(s)
- Thor Harald Ringsby
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Henrik Jensen
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Henrik Pärn
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Thomas Kvalnes
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Winnie Boner
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| | - Robert Gillespie
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| | - Håkon Holand
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Ingerid Julie Hagen
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Bernt Rønning
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Bernt-Erik Sæther
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| |
Collapse
|
14
|
Farrell TM, Morgan A, Sarquis-Adamson Y, MacDougall-Shackleton SA. Effects of early-developmental stress on growth rates, body composition and developmental plasticity of the HPG-axis. Gen Comp Endocrinol 2015; 222:134-43. [PMID: 26253500 DOI: 10.1016/j.ygcen.2015.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/09/2015] [Accepted: 08/01/2015] [Indexed: 02/08/2023]
Abstract
In altricial songbirds, food restriction in early development has adverse effects on various physiological systems. When conditions improve birds can accelerate growth, but this compensatory strategy is associated with long-term adverse consequences. One system affected by altered growth rates is the hypothalamic-pituitary-gonadal (HPG) axis. Here, we subjected European starlings, Sturnus vulgaris, to an unpredictable food manipulation from 35 to 115days of age. We assessed the effects of the treatment by measuring overall body mass and body composition during and following the treatment period (i.e., accelerated growth). In adulthood, we measured the long-term effects of the treatment on overall body mass, testis volume, and HPG axis function in both sexes by quantifying androgen levels before and after a gonadotropin-releasing hormone (GnRH) challenge. During the treatment period, treatment birds had less body fat than controls. Following the treatment period, treatment birds weighed more than controls, but these gains were attributed to changes in lean mass. In adulthood, treatment males had lower baseline androgen levels, but there was no difference in peak androgen levels compared to controls. Treatment females did not differ from controls on any of the androgen measures. However, females that accelerated growth faster following the termination of the treatment had lower integrated androgen levels. When faced with limited developmental resources, birds may alter the developmental trajectory of physiological systems as a compensatory strategy. Such a strategy may have long-term consequences on endocrine regulation that could affect courtship and reproductive behaviors.
Collapse
Affiliation(s)
- Tara M Farrell
- Department of Psychology, University of Western Ontario, Canada; Advanced Facility for Avian Research, University of Western Ontario, Canada.
| | - Amanda Morgan
- Department of Biology, University of Western Ontario, Canada; Advanced Facility for Avian Research, University of Western Ontario, Canada
| | - Yanina Sarquis-Adamson
- Department of Biology, University of Western Ontario, Canada; Advanced Facility for Avian Research, University of Western Ontario, Canada
| | - Scott A MacDougall-Shackleton
- Department of Psychology, University of Western Ontario, Canada; Department of Biology, University of Western Ontario, Canada; Advanced Facility for Avian Research, University of Western Ontario, Canada
| |
Collapse
|
15
|
Kouba M, Bartoš L, Korpimäki E, Zárybnická M. Factors affecting the duration of nestling period and fledging order in Tengmalm's owl (Aegolius funereus): effect of wing length and hatching sequence. PLoS One 2015; 10:e0121641. [PMID: 25793880 PMCID: PMC4368509 DOI: 10.1371/journal.pone.0121641] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/11/2015] [Indexed: 11/24/2022] Open
Abstract
In altricial birds, the nestling period is an important part of the breeding phase because the juveniles may spend quite a long time in the nest, with associated high energy costs for the parents. The length of the nestling period can be variable and its duration may be influenced by both biotic and abiotic factors; however, studies of this have mostly been undertaken on passerine birds. We studied individual duration of nestling period of 98 Tengmalm's owl chicks (Aegolius funereus) at 27 nests during five breeding seasons using a camera and chip system and radio-telemetry. We found the nestlings stayed in the nest box for 27 - 38 days from hatching (mean ± SD, 32.4 ± 2.2 days). The individual duration of nestling period was negatively related to wing length, but no formally significant effect was found for body weight, sex, prey availability and/or weather conditions. The fledging sequence of individual nestlings was primarily related to hatching order; no relationship with wing length and/or other factors was found in this case. We suggest the length of wing is the most important measure of body condition and individual quality in Tengmalm's owl young determining the duration of the nestling period. Other differences from passerines (e.g., the lack of effect of weather or prey availability on nestling period) are considered likely to be due to different life-history traits, in particular different food habits and nesting sites and greater risk of nest predation among passerines.
Collapse
Affiliation(s)
- Marek Kouba
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Luděk Bartoš
- Department of Animal Science and Ethology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
- Department of Ethology, Institute of Animal Science, Prague, Czech Republic
| | - Erkki Korpimäki
- Section of Ecology, Department of Biology, University of Turku, Turku, Finland
| | - Markéta Zárybnická
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
16
|
Killpack TL, Carrel E, Karasov WH. Impacts of Short-Term Food Restriction on Immune Development in Altricial House Sparrow Nestlings. Physiol Biochem Zool 2015; 88:195-207. [DOI: 10.1086/680168] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
|
18
|
Chin EH, Storm-Suke AL, Kelly RJ, Burness G. Catch-up growth in Japanese quail (Coturnix Japonica): relationships with food intake, metabolic rate and sex. J Comp Physiol B 2013; 183:821-31. [PMID: 23535902 DOI: 10.1007/s00360-013-0751-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 03/01/2013] [Accepted: 03/04/2013] [Indexed: 11/28/2022]
Abstract
The effects of early environmental conditions can profoundly affect individual development and adult phenotype. In birds, limiting resources can affect growth as nestlings, but also fitness and survival as adults. Following periods of food restriction, individuals may accelerate development, undergoing a period of rapid "catch-up" growth, in an attempt to reach the appropriate size at adulthood. Previous studies of altricial birds have shown that catch-up growth can have negative consequences in adulthood, although this has not been explored in species with different developmental strategies. Here, we investigated the effects of resource limitation and the subsequent period of catch-up growth, on the morphological and metabolic phenotype of adult Japanese quail (Coturnix japonica), a species with a precocial developmental strategy. Because males and females differ in adult body size, we also test whether food restriction had sex-specific effects. Birds that underwent food restriction early in development had muscles of similar size and functional maturity, but lower adult body mass than controls. There was no evidence of sex-specific sensitivity of food restriction on adult body mass; however, there was evidence for body size. Females fed ad lib were larger than males fed ad lib, while females subjected to food restriction were of similar size to males. Adults that had previously experienced food restriction did not have an elevated metabolic rate, suggesting that in contrast to altricial nestlings, there was no metabolic carry-over effect of catch-up growth into adulthood. While Japanese quail can undergo accelerated growth after re-feeding, timing of food restriction may be important to adult size, particularly in females. However, greater developmental flexibility compared to altricial birds may contribute to the lack of metabolic carryover effects at adulthood.
Collapse
Affiliation(s)
- Eunice H Chin
- Environmental and Life Sciences Graduate Program, Trent University, 1600 West Bank Drive, Peterborough, ON K9J 7B8, Canada.
| | | | | | | |
Collapse
|