1
|
Perrot-Minnot MJ, Parrot S. Contrasting alterations in brain chemistry in a crustacean intermediate host of two acanthocephalan parasites. Exp Parasitol 2024; 265:108821. [PMID: 39128576 DOI: 10.1016/j.exppara.2024.108821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/20/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
The dynamic properties of neural systems throughout life can be hijacked by so-called manipulative parasites. This study investigated changes in the brain chemistry of the amphipod Gammarus fossarum in response to infection with two trophically-transmitted helminth parasites known to induce distinct behavioral alterations: the bird acanthocephalan Polymorphus minutus and the fish acanthocephalan Pomphorhynchus tereticollis. We quantified brain antioxidant capacity as a common marker of homeostasis and neuroprotection, and brain total protein, on 72 pools of six brains. We analyzed the concentration of serotonin (5HT), dopamine (DA) and tyramine in 52 pools of six brains, by using ultrafast high performance liquid chromatography with electrochemical detection (UHPLC-ECD). Brain total protein concentration scaled hypo-allometrically to dry body weight, and was increased in infected gammarids compared to uninfected ones. The brain of gammarids infected with P. minutus had significantly lower total antioxidant capacity relative to total proteins. Infection with P. tereticollis impacted DA level compared to uninfected ones, and in opposite direction between spring and summer. Brain 5HT level was higher in summer compared to spring independently of infection status, and was decreased by infection after correcting for brain total protein concentration estimated from dry whole-body weight. The potential implication of 5HT/DA balance in parasite manipulation, as a major modulator of the reward-punishment axis, is discussed. Taken together, these findings highlight the need to consider both brain homeostatic and/or structural changes (antioxidant and total protein content) together with neurotransmission balance and flexibility, in studies investigating the impact of parasites on brain and behavior.
Collapse
Affiliation(s)
| | - Sandrine Parrot
- Centre de Recherche en Neurosciences de Lyon, Neurodialytics Facility, Université Claude Bernard Lyon 1, INSERM, U1028, CNRS, UMR 5292, Bron, France
| |
Collapse
|
2
|
Grabner D, Rothe LE, Sures B. Parasites and Pollutants: Effects of Multiple Stressors on Aquatic Organisms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1946-1959. [PMID: 37283208 DOI: 10.1002/etc.5689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/16/2023] [Accepted: 06/04/2023] [Indexed: 06/08/2023]
Abstract
Parasites can affect their hosts in various ways, and this implies that parasites may act as additional biotic stressors in a multiple-stressor scenario, resembling conditions often found in the field if, for example, pollutants and parasites occur simultaneously. Therefore, parasites represent important modulators of host reactions in ecotoxicological studies when measuring the response of organisms to stressors such as pollutants. In the present study, we introduce the most important groups of parasites occurring in organisms commonly used in ecotoxicological studies ranging from laboratory to field investigations. After briefly explaining their life cycles, we focus on parasite stages affecting selected ecotoxicologically relevant target species belonging to crustaceans, molluscs, and fish. We included ecotoxicological studies that consider the combination of effects of parasites and pollutants on the respective model organism with respect to aquatic host-parasite systems. We show that parasites from different taxonomic groups (e.g., Microsporidia, Monogenea, Trematoda, Cestoda, Acanthocephala, and Nematoda) clearly modulate the response to stressors in their hosts. The combined effects of environmental stressors and parasites can range from additive, antagonistic to synergistic. Our study points to potential drawbacks of ecotoxicological tests if parasite infections of test organisms, especially from the field, remain undetected and unaddressed. If these parasites are not detected and quantified, their physiological effects on the host cannot be separated from the ecotoxicological effects. This may render this type of ecotoxicological test erroneous. In laboratory tests, for example to determine effect or lethal concentrations, the presence of a parasite can also have a direct effect on the concentrations to be determined and thus on the subsequently determined security levels, such as predicted no-effect concentrations. Environ Toxicol Chem 2023;42:1946-1959. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Daniel Grabner
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Louisa E Rothe
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Bernd Sures
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
- Research Center One Health Ruhr, Research Alliance Ruhr, University Duisburg-Essen, Essen, Germany
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
3
|
Will I, Attardo GM, de Bekker C. Multiomic interpretation of fungus-infected ant metabolomes during manipulated summit disease. Sci Rep 2023; 13:14363. [PMID: 37658067 PMCID: PMC10474057 DOI: 10.1038/s41598-023-40065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/03/2023] [Indexed: 09/03/2023] Open
Abstract
Camponotus floridanus ants show altered behaviors followed by a fatal summiting phenotype when infected with manipulating Ophiocordyceps camponoti-floridani fungi. Host summiting as a strategy to increase transmission is also observed with parasite taxa beyond fungi, including aquatic and terrestrial helminths and baculoviruses. The drastic phenotypic changes can sometimes reflect significant molecular changes in gene expression and metabolite concentrations measured in manipulated hosts. Nevertheless, the underlying mechanisms still need to be fully characterized. To investigate the small molecules producing summiting behavior, we infected C. floridanus ants with O. camponoti-floridani and sampled their heads for LC-MS/MS when we observed the characteristic summiting phenotype. We link this metabolomic data with our previous genomic and transcriptomic data to propose mechanisms that underlie manipulated summiting behavior in "zombie ants." This "multiomic" evidence points toward the dysregulation of neurotransmitter levels and neuronal signaling. We propose that these processes are altered during infection and manipulation based on (1) differential expression of neurotransmitter synthesis and receptor genes, (2) altered abundance of metabolites and neurotransmitters (or their precursors) with known behavioral effects in ants and other insects, and (3) possible suppression of a connected immunity pathway. We additionally report signals for metabolic activity during manipulation related to primary metabolism, detoxification, and anti-stress protectants. Taken together, these findings suggest that host manipulation is likely a multi-faceted phenomenon, with key processes changing at multiple levels of molecular organization.
Collapse
Affiliation(s)
- I Will
- Biology Department, University of Central Florida, Orlando, USA.
| | - G M Attardo
- Entomology and Nematology Department, University of California-Davis, Davis, USA
| | - C de Bekker
- Biology Department, University of Central Florida, Orlando, USA.
- Biology Department, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
4
|
Jensen CH, Weidner J, Giske J, Jørgensen C, Eliassen S, Mennerat A. Adaptive host responses to infection can resemble parasitic manipulation. Ecol Evol 2023; 13:e10318. [PMID: 37456066 PMCID: PMC10349281 DOI: 10.1002/ece3.10318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/22/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
Using a dynamic optimisation model for juvenile fish in stochastic food environments, we investigate optimal hormonal regulation, energy allocation and foraging behaviour of a growing host infected by a parasite that only incurs an energetic cost. We find it optimal for the infected host to have higher levels of orexin, growth and thyroid hormones, resulting in higher activity levels, increased foraging and faster growth. This growth strategy thus displays several of the fingerprints often associated with parasite manipulation: higher levels of metabolic hormones, faster growth, higher allocation to reserves (i.e. parasite-induced gigantism), higher risk-taking and eventually higher predation rate. However, there is no route for manipulation in our model, so these changes reflect adaptive host compensatory responses. Interestingly, several of these changes also increase the fitness of the parasite. Our results call for caution when interpreting observations of gigantism or risky host behaviours as parasite manipulation without further testing.
Collapse
Affiliation(s)
| | | | - Jarl Giske
- Department of Biological SciencesUniversity of BergenBergenNorway
| | | | - Sigrunn Eliassen
- Department of Biological SciencesUniversity of BergenBergenNorway
| | - Adèle Mennerat
- Department of Biological SciencesUniversity of BergenBergenNorway
| |
Collapse
|
5
|
de Bekker C, Beckerson WC, Elya C. Mechanisms behind the Madness: How Do Zombie-Making Fungal Entomopathogens Affect Host Behavior To Increase Transmission? mBio 2021; 12:e0187221. [PMID: 34607463 PMCID: PMC8546595 DOI: 10.1128/mbio.01872-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Transmission is a crucial step in all pathogen life cycles. As such, certain species have evolved complex traits that increase their chances to find and invade new hosts. Fungal species that hijack insect behaviors are evident examples. Many of these "zombie-making" entomopathogens cause their hosts to exhibit heightened activity, seek out elevated positions, and display body postures that promote spore dispersal, all with specific circadian timing. Answering how fungal entomopathogens manipulate their hosts will increase our understanding of molecular aspects underlying fungus-insect interactions, pathogen-host coevolution, and the regulation of animal behavior. It may also lead to the discovery of novel bioactive compounds, given that the fungi involved have traditionally been understudied. This minireview summarizes and discusses recent work on zombie-making fungi of the orders Hypocreales and Entomophthorales that has resulted in hypotheses regarding the mechanisms that drive fungal manipulation of insect behavior. We discuss mechanical processes, host chemical signaling pathways, and fungal secreted effectors proposed to be involved in establishing pathogen-adaptive behaviors. Additionally, we touch on effectors' possible modes of action and how the convergent evolution of host manipulation could have given rise to the many parallels in observed behaviors across fungus-insect systems and beyond. However, the hypothesized mechanisms of behavior manipulation have yet to be proven. We, therefore, also suggest avenues of research that would move the field toward a more quantitative future.
Collapse
Affiliation(s)
- Charissa de Bekker
- Department of Biology, College of Sciences, University of Central Florida, Orlando, Florida, USA
- Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, Florida, USA
| | - William C. Beckerson
- Department of Biology, College of Sciences, University of Central Florida, Orlando, Florida, USA
- Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, Florida, USA
| | - Carolyn Elya
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
6
|
Herbison R, Evans S, Doherty JF, Algie M, Kleffmann T, Poulin R. A molecular war: convergent and ontogenetic evidence for adaptive host manipulation in related parasites infecting divergent hosts. Proc Biol Sci 2019; 286:20191827. [PMID: 31744433 DOI: 10.1098/rspb.2019.1827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mermithids (phylum Nematoda) and hairworms (phylum Nematomorpha) somehow drive their arthropod hosts into water, which is essential for the worms' survival after egression. The mechanisms behind this behavioural change have been investigated in hairworms, but not in mermithids. Establishing a similar mechanistic basis for host behavioural change between these two distantly related parasitic groups would provide strong convergent evidence for adaptive manipulation and insight into how these parasites modify and/or create behaviour. Here, we search for this convergence, and also contrast changes in physiology between hosts infected with immature and mature mermithids to provide the first ontogenetic evidence for adaptive manipulation by disentangling host response and pathology from the parasite's apparent manipulative effects. We used SWATH-mass spectrometry on brains of Forficula auricularia (earwig) and Bellorchestia quoyana (sandhopper), infected with the mermithids Mermis nigrescens and Thaumamermis zealandica, respectively, at both immature and mature stages of infection, to quantify proteomic changes resulting from mermithid infection. Across both hosts (and hairworm-infected hosts, from earlier studies), the general function of dysregulated proteins was conserved. Proteins involved in energy generation/mobilization were dysregulated, corroborating reports of erratic/hyperactive behaviour in infected hosts. Dysregulated proteins involved in axon/dendrite and synapse modulation were also common to all hosts, suggesting neuronal manipulation is involved in inducing positive hydrotaxis. Furthermore, downregulation of CamKII and associated proteins suggest manipulation of memory also contributes to the behavioural shift.
Collapse
Affiliation(s)
- Ryan Herbison
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Steven Evans
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | | | - Michael Algie
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Torsten Kleffmann
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Robert Poulin
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
7
|
Grabner D, Sures B. Amphipod parasites may bias results of ecotoxicological research. DISEASES OF AQUATIC ORGANISMS 2019; 136:123-134. [PMID: 31575839 DOI: 10.3354/dao03355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Amphipods are commonly used test organisms in ecotoxicological studies. Nevertheless, their naturally occurring parasites have mostly been neglected in these investigations, even though several groups of parasites can have a multitude of effects, e.g. on host survival, physiology, or behavior. In the present review, we summarize the knowledge on the effects of Microsporidia and Acanthocephala, 2 common and abundant groups of parasites in amphipods, on the outcome of ecotoxicological studies. Parasites can have significant effects on toxicological endpoints (e.g. mortality, biochemical markers) that are unexpected in some cases (e.g. down-regulation of heat shock protein 70 response in infected individuals). Therefore, parasites can bias the interpretation of results, for example if populations with different parasite profiles are compared, or if toxicological effects are masked by parasite effects. With the present review, we would like to encourage ecotoxicologists to consider parasites as an additional factor if field-collected test organisms are analyzed for biomarkers. Additionally, we suggest intensification of research activities on the effects of parasites in amphipods in connection with other stressors to disentangle parasite and pollution effects and to improve our understanding of parasite effects in this host taxon.
Collapse
Affiliation(s)
- Daniel Grabner
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Germany
| | | |
Collapse
|
8
|
Del Giudice M. Invisible Designers: Brain Evolution Through the Lens of Parasite Manipulation. QUARTERLY REVIEW OF BIOLOGY 2019. [DOI: 10.1086/705038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Iritani R, Sato T. Host-Manipulation by Trophically Transmitted Parasites: The Switcher-Paradigm. Trends Parasitol 2018; 34:934-944. [DOI: 10.1016/j.pt.2018.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 01/09/2023]
|
10
|
Modulation of the immune response by helminths: a role for serotonin? Biosci Rep 2018; 38:BSR20180027. [PMID: 30177522 PMCID: PMC6148219 DOI: 10.1042/bsr20180027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 12/13/2022] Open
Abstract
The mammalian gut is a remarkable organ: with a nervous system that rivals the spinal cord, it is the body’s largest repository of immune and endocrine cells and houses an immense and complex microbiota. Infection with helminth parasites elicits a conserved program of effector and regulatory immune responses to eradicate the worm, limit tissue damage, and return the gut to homeostasis. Discrete changes in the nervous system, and to a lesser extent the enteroendocrine system, occur following helminth infection but the importance of these adaptations in expelling the worm is poorly understood. Approximately 90% of the body’s serotonin (5-hydroxytryptamine (5-HT)) is made in enterochromaffin (EC) cells in the gut, indicative of the importance of this amine in intestinal function. Signaling via a plethora of receptor subtypes, substantial evidence illustrates that 5-HT affects immunity. A small number of studies document changes in 5-HT levels following infection with helminth parasites, but these have not been complemented by an understanding of the role of 5-HT in the host–parasite interaction. In reviewing this area, the gap in knowledge of how changes in the enteric serotonergic system affects the outcome of infection with intestinal helminths is apparent. We present this as a call-to-action by investigators in the field. We contend that neuronal EC cell–immune interactions in the gut are essential in maintaining homeostasis and, when perturbed, contribute to pathophysiology. The full affect of infection with helminth parasites needs to define, and then mechanistically dissect the role of the enteric nervous and enteroendocrine systems of the gut.
Collapse
|
11
|
Bernardo MA, Singer MS. Parasite-altered feeding behavior in insects: integrating functional and mechanistic research frontiers. ACTA ACUST UNITED AC 2018; 220:2848-2857. [PMID: 28814608 DOI: 10.1242/jeb.143800] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Research on parasite-altered feeding behavior in insects is contributing to an emerging literature that considers possible adaptive consequences of altered feeding behavior for the host or the parasite. Several recent ecoimmunological studies show that insects can adaptively alter their foraging behavior in response to parasitism. Another body of recent work shows that infection by parasites can change the behavior of insect hosts to benefit the parasite; manipulations of host feeding behavior may be part of this phenomenon. Here, we address both the functional and the underlying physiological frontiers of parasite-altered feeding behavior in order to spur research that better integrates the two. Functional categories of parasite-altered behavior that are adaptive for the host include prophylaxis, therapy and compensation, while host manipulation is adaptive for the parasite. To better understand and distinguish prophylaxis, therapy and compensation, further study of physiological feedbacks affecting host sensory systems is especially needed. For host manipulation in particular, research on mechanisms by which parasites control host feedbacks will be important to integrate with functional approaches. We see this integration as critical to advancing the field of parasite-altered feeding behavior, which may be common in insects and consequential for human and environmental health.
Collapse
Affiliation(s)
| | - Michael S Singer
- Department of Biology, Wesleyan University, Middletown, CT 06105, USA
| |
Collapse
|
12
|
Morris A, Green M, Martin H, Crossland K, Swaney WT, Williamson SM, Rae R. A nematode that can manipulate the behaviour of slugs. Behav Processes 2018; 151:73-80. [PMID: 29499346 DOI: 10.1016/j.beproc.2018.02.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/20/2018] [Accepted: 02/26/2018] [Indexed: 11/18/2022]
Abstract
The ability of parasites to manipulate the behaviour of their hosts has evolved multiple times, and has a clear fitness benefit to the parasite in terms of facilitating growth, reproduction and transfer to suitable hosts. The mechanisms by which these behavioural changes are induced are poorly understood, but in many cases parasite manipulation of serotonergic signalling in the host brain is implicated. Here we report that Phasmarhabditis hermaphrodita, a parasite of terrestrial gastropod molluscs, can alter the behaviour of slugs. Uninfected slugs (Deroceras panormitanum, Arion subfuscus and Arion hortensis) avoid areas where P. hermaphrodita is present, but slugs infected with P. hermaphrodita are more likely to be found where the nematodes are present. This ability is specific to P. hermaphrodita and other nematodes (Steinernema carpocapsae and Heterorhabditis bacteriophora) do not induce this behavioural change. To investigate how P. hermaphrodita changes slug behaviour we exposed slugs to fluoxetine (a selective serotonin reuptake inhibitor) and cyproheptadine (a serotonin receptor antagonist). Uninfected slugs fed fluoxetine no longer avoided areas where P. hermaphrodita was present; and conversely, infected slugs fed cyproheptadine showed no increased attraction to areas with nematodes. These findings suggest that a possible mechanism by which P. hermaphrodita is able to manipulate parasite avoidance behaviour in host slugs is by manipulating serotonergic signalling in the brain, and that increased serotonin levels are potentially associated with a reduction in parasite avoidance.
Collapse
Affiliation(s)
- Alex Morris
- Liverpool John Moores University, School of Natural Sciences and Psychology, Byrom Street, L33AF, United Kingdom
| | - Michael Green
- Liverpool John Moores University, School of Natural Sciences and Psychology, Byrom Street, L33AF, United Kingdom
| | - Hayley Martin
- Liverpool John Moores University, School of Natural Sciences and Psychology, Byrom Street, L33AF, United Kingdom
| | - Katie Crossland
- Liverpool John Moores University, School of Natural Sciences and Psychology, Byrom Street, L33AF, United Kingdom
| | - William T Swaney
- Liverpool John Moores University, School of Natural Sciences and Psychology, Byrom Street, L33AF, United Kingdom
| | - Sally M Williamson
- Liverpool John Moores University, School of Natural Sciences and Psychology, Byrom Street, L33AF, United Kingdom
| | - Robbie Rae
- Liverpool John Moores University, School of Natural Sciences and Psychology, Byrom Street, L33AF, United Kingdom.
| |
Collapse
|
13
|
Gage SL, Kramer C, Calle S, Carroll M, Heien M, DeGrandi-Hoffman G. Nosema ceranae parasitism impacts olfactory learning and memory and neurochemistry in honey bees ( Apis mellifera). ACTA ACUST UNITED AC 2018; 221:jeb.161489. [PMID: 29361577 DOI: 10.1242/jeb.161489] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022]
Abstract
Nosema sp. is an internal parasite of the honey bee, Apis mellifera, and one of the leading contributors to colony losses worldwide. This parasite is found in the honey bee midgut and has profound consequences for the host's physiology. Nosema sp. impairs foraging performance in honey bees, yet, it is unclear whether this parasite affects the bee's neurobiology. In this study, we examined whether Nosema sp. affects odor learning and memory and whether the brains of parasitized bees show differences in amino acids and biogenic amines. We took newly emerged bees and fed them with Nosema ceranae At approximate nurse and forager ages, we employed an odor-associative conditioning assay using the proboscis extension reflex and two bioanalytical techniques to measure changes in brain chemistry. We found that nurse-aged bees infected with N. ceranae significantly outperformed controls in odor learning and memory, suggestive of precocious foraging, but by forager age, infected bees showed deficits in learning and memory. We also detected significant differences in amino acid concentrations, some of which were age specific, as well as altered serotonin, octopamine, dopamine and l-dopa concentrations in the brains of parasitized bees. These findings suggest that N. ceranae infection affects honey bee neurobiology and may compromise behavioral tasks. These results yield new insight into the host-parasite dynamic of honey bees and N. ceranae, as well as the neurochemistry of odor learning and memory under normal and parasitic conditions.
Collapse
Affiliation(s)
- Stephanie L Gage
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ 85719, USA .,Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Catherine Kramer
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Samantha Calle
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ 85719, USA
| | - Mark Carroll
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ 85719, USA
| | - Michael Heien
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Gloria DeGrandi-Hoffman
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ 85719, USA.,Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
14
|
Cryptic species and their utilization of indigenous and non-indigenous intermediate hosts in the acanthocephalan Polymorphus minutus sensu lato (Polymorphidae). Parasitology 2018; 145:1421-1429. [PMID: 29455678 DOI: 10.1017/s0031182018000173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The bird-infecting acanthocephalan Polymorphus minutus has been suggested to comprise different lineages or even cryptic species using different intermediate hosts. To clarify this open question, we investigated Polymorphus cf. minutus cystacanths originating from amphipod intermediate hosts from 27 sites in Germany and France. Parasites and hosts were identified using integrated datasets (COI and/or morphology for hosts and COI + ITS1-5.8S-ITS2 for parasites).Mitochondrial and nuclear data (ITS1) strongly support the existence of three cryptic species in Polymorphus cf. minutus (type 1-3). These three types reveal a high degree of intermediate host specificity, with Polymorphus type 1 only encountered in Gammarus fossarum type B, Polymorphus type 2 in Echinogammarus sp. and Echinogammarus berilloni, and Polymorphus type 3 in Gammarus pulex and Gammarus roeselii. Our results point to a so far neglected cryptic diversity of the genus Polymorphus in Central Europe. Furthermore, Polymorphus type 2 is most likely a non-native parasite in Germany that co-invaded with E. berilloni from the Mediterranean area. Potentially, type 3 originates from South-East Europe and migrated to Germany by G. roeselii, where it might have captured G. pulex as an intermediate host. Therefore, our findings can be seen in the context of ecological globalization in terms of the anthropogenic displacement of intermediate hosts and its impact on the genetic divergence of the parasites.
Collapse
|
15
|
Herbison REH. Lessons in Mind Control: Trends in Research on the Molecular Mechanisms behind Parasite-Host Behavioral Manipulation. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00102] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
16
|
Hafer N. Conflicts over host manipulation between different parasites and pathogens: Investigating the ecological and medical consequences. Bioessays 2016; 38:1027-37. [PMID: 27510821 PMCID: PMC5108444 DOI: 10.1002/bies.201600060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
When parasites have different interests in regard to how their host should behave this can result in a conflict over host manipulation, i.e. parasite induced changes in host behaviour that enhance parasite fitness. Such a conflict can result in the alteration, or even complete suppression, of one parasite's host manipulation. Many parasites, and probably also symbionts and commensals, have the ability to manipulate the behaviour of their host. Non‐manipulating parasites should also have an interest in host behaviour. Given the frequency of multiple parasite infections in nature, potential conflicts of interest over host behaviour and manipulation may be common. This review summarizes the evidence on how parasites can alter other parasite's host manipulation. Host manipulation can have important ecological and medical consequences. I speculate on how a conflict over host manipulation could alter these consequences and potentially offer a new avenue of research to ameliorate harmful consequences of host manipulation.
Collapse
Affiliation(s)
- Nina Hafer
- Department of Evolutionary Ecology, Max-Planck-Institute for Evolutionary Biology, Plön, Germany.
| |
Collapse
|
17
|
Tissot T, Arnal A, Jacqueline C, Poulin R, Lefèvre T, Mery F, Renaud F, Roche B, Massol F, Salzet M, Ewald P, Tasiemski A, Ujvari B, Thomas F. Host manipulation by cancer cells: Expectations, facts, and therapeutic implications. Bioessays 2016; 38:276-85. [PMID: 26849295 DOI: 10.1002/bies.201500163] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Similar to parasites, cancer cells depend on their hosts for sustenance, proliferation and reproduction, exploiting the hosts for energy and resources, and thereby impairing their health and fitness. Because of this lifestyle similarity, it is predicted that cancer cells could, like numerous parasitic organisms, evolve the capacity to manipulate the phenotype of their hosts to increase their own fitness. We claim that the extent of this phenomenon and its therapeutic implications are, however, underappreciated. Here, we review and discuss what can be regarded as cases of host manipulation in the context of cancer development and progression. We elaborate on how acknowledging the applicability of these principles can offer novel therapeutic and preventive strategies. The manipulation of host phenotype by cancer cells is one more reason to adopt a Darwinian approach in cancer research.
Collapse
Affiliation(s)
- Tazzio Tissot
- CREEC/MIVEGEC, UMR IRD/CNRS/UM 5290, Montpellier, France
| | - Audrey Arnal
- CREEC/MIVEGEC, UMR IRD/CNRS/UM 5290, Montpellier, France
| | | | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | | - Frédéric Mery
- Evolution, Génomes, Comportement and Ecologie, CNRS, IRD, University of Paris-Sud, Université Paris Saclay, Gif-sur-Yvette, France
| | | | - Benjamin Roche
- CREEC/MIVEGEC, UMR IRD/CNRS/UM 5290, Montpellier, France.,Unité mixte internationale de Modélisation Mathématique et Informatique des Systèmes Complexes, (UMI IRD/UPMC UMMISCO), BondyCedex, France
| | - François Massol
- Université de Lille, UMR 8198, Unité EEP, Ecoimmunology Group, Lille, France
| | - Michel Salzet
- Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM) INSERM U1192, Université Lille, Lille, France
| | - Paul Ewald
- Department of Biology and the Program on Disease Evolution, University of Louisville, Louisville, KY, USA
| | - Aurélie Tasiemski
- Université de Lille, UMR 8198, Unité EEP, Ecoimmunology Group, Lille, France
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | | |
Collapse
|
18
|
Kopp DA, Bierbower SM, Murphy AD, Mormann K, Sparkes TC. Parasite-related modification of mating behaviour and refuge use in the aquatic isopod Caecidotea intermedius: neurological correlates. BEHAVIOUR 2016. [DOI: 10.1163/1568539x-00003379] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The acanthocephalan Acanthocephalus dirus is a trophically transmitted parasite that infects freshwater isopods as intermediate hosts and fish as definitive hosts. Using a laboratory-based experiment, we examined if parasite infection was associated with changes in mating behaviour, refuge use and neurochemical levels of infected isopods (Caecidotea intermedius). Infected isopods were less likely to engage in mating behaviour and more likely to be located in the open than uninfected isopods. Infected isopods also contained lower levels of serotonin (5-HT) and dopamine (DA) and had a greater mass of neural tissue (CNS) than uninfected isopods. We propose that the parasite-related changes in mating behaviour and refuge use may be modulated by the serotonergic and dopaminergic systems. We also suggest that the parasites could potentially be modulating these behavioural changes by exploiting the neural-immune system of the hosts through their neuroinflammatory responses.
Collapse
Affiliation(s)
- Darin A. Kopp
- Department of Biological Sciences, DePaul University, Chicago, IL, USA
| | - Sonya M. Bierbower
- Department of Biology, University of Kentucky, Lexington, KY, USA
- Department of Biology, William Paterson University, Wayne, NJ 07470, USA
| | - Alexandrea D. Murphy
- Department of Biological Sciences, DePaul University, Chicago, IL, USA
- United Way of Metropolitan Chicago, Chicago, IL 60604, USA
| | - Kimberly Mormann
- Department of Biological Sciences, DePaul University, Chicago, IL, USA
- Institute for Molecular Engineering and Physical Science Division, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
19
|
Chen HY, Grabner DS, Nachev M, Shih HH, Sures B. Effects of the acanthocephalan Polymorphus minutus and the microsporidian Dictyocoela duebenum on energy reserves and stress response of cadmium exposed Gammarus fossarum. PeerJ 2015; 3:e1353. [PMID: 26539331 PMCID: PMC4631464 DOI: 10.7717/peerj.1353] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/06/2015] [Indexed: 12/26/2022] Open
Abstract
Amphipods are commonly parasitized by acanthocephalans and microsporidians and co-infections are found frequently. Both groups of parasites are known to have severe effects on their host. For example, microsporidians can modify host sex ratio and acanthocephalans can manipulate the behavior of the amphipod to promote transmission to the final host. These effects influence host metabolism in general and will also affect the ability of amphipods to cope with additional stressors such as environmental pollution, e.g., by toxic metals. Here we tested the effects of sub-lethal concentrations of cadmium on glycogen and lipid levels, as well as on the 70kDa heat shock protein (hsp70) response of field collected Gammarus fossarum, which were naturally infected with microsporidians and the acanthocephalan Polymorphus minutus. Infected and uninfected G. fossarum were exposed to a nominal Cd concentration of 4 µg/L, which resembled measured aqueous Cd concentration of 2.9 µg/L in reconstituted water for 7 d at 15 °C in parallel to an unexposed control. After exposure gammarids were snap frozen, weighed, sexed and tested for microsporidian infection by PCR. Only individuals containing the microsporidian Dictyocoela duebenum were used for the further biochemical and metal analyses. P. minutus infected amphipods were significantly smaller than their uninfected conspecifics. Mortality was insignificantly increased due to cadmium exposure, but not due to parasite infection. Microsporidian infection in combination with cadmium exposure led to increased glycogen levels in female gammarids. An increase of glycogen was also found due to interaction of acanthocephalan and microsporidian infection. Elevated lipid levels were observed in all groups infected with microsporidians, while acanthocephalans had the opposite effect. A positive correlation of lipid and glycogen levels was observed. The general stress response measured in form of hsp70 was significantly increased in microsporidian infected gammarids exposed to cadmium. P. minutus did not affect the stress response of its host. Lipid levels were correlated negatively with hsp70 response, and indicated a possible increased stress susceptibility of individuals with depleted energy reserves. The results of our study clearly demonstrate the importance of parasitic infections, especially of microsporidians, for ecotoxicological research.
Collapse
Affiliation(s)
- Hui-Yu Chen
- Department of Life Science, National Taiwan University, Taipei, Taiwan.,Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Daniel S Grabner
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Milen Nachev
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Hsiu-Hui Shih
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Bernd Sures
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany.,Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
20
|
Abstract
Host behavioural modification by parasites is a common and well-documented phenomenon. However, knowledge on the complexity and specificity of the underlying mechanisms is limited, and host specificity among manipulating parasites has rarely been experimentally verified. We tested the hypothesis that the ability to infect and manipulate host behaviour is restricted to phylogenetically closely related hosts. Our model system consisted of the brain-encysting trematode Euhaplorchis sp. A and six potential fish intermediate hosts from the Order Cyprinodontiformes. Five co-occurring cyprinids were examined for naturally acquired brain infections. Then we selected three species representing three levels of taxonomic relatedness to a known host to experimentally evaluate their susceptibility to infection, and the effect of infection status on behaviours presumably linked to increased trophic transmission. We found natural brain infections of Euhaplorchis sp. A metacercariae in three cyprinids in the shallow sublittoral zone. Of the three experimentally exposed species, Fundulus grandis and Poecilia latipinna acquired infections and displayed an elevated number of conspicuous behaviours in comparison with uninfected controls. Euhaplorchis sp. A was able to infect and manipulate fish belonging to two different families, suggesting that ecological similarity rather than genetic relatedness determines host range in this species.
Collapse
|
21
|
Impacts of a newly identified behaviour-altering trematode on its host amphipod: from the level of gene expression to population. Parasitology 2015; 142:1469-80. [PMID: 26282621 DOI: 10.1017/s0031182015000918] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Changes to host behaviour induced by some trematode species, as a means of increased trophic transmission, represents one of the seminal examples of host manipulation by a parasite. The amphipod Echinogammarus marinus (Leach, 1815) is infected with a previously undescribed parasite, with infected individuals displaying positive phototaxic and negative geotaxic behaviour. This study reveals that the unknown parasite encysts in the brain, nerve cord and the body cavity of E. marinus, and belongs to the Microphallidae family. An 18 month population study revealed that host abundance significantly and negatively correlated with parasite prevalence. Investigation of the trematode's influence at the transcriptomic level revealed genes with putative neurological functions, such as serotonin receptor 1A, an inebriated-like neurotransmitter, tryptophan hydroxylase and amino acid decarboxylase, present consistent altered expression in infected animals. Therefore, this study provides one of the first transcriptomic insights into the neuronal gene pathways altered in amphipods infected with a trematode parasite associated with changes to its host's behaviour and population structure.
Collapse
|
22
|
Perrot-Minnot MJ, Sanchez-Thirion K, Cézilly F. Multidimensionality in host manipulation mimicked by serotonin injection. Proc Biol Sci 2015; 281:20141915. [PMID: 25339729 DOI: 10.1098/rspb.2014.1915] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Manipulative parasites often alter the phenotype of their hosts along multiple dimensions. 'Multidimensionality' in host manipulation could consist in the simultaneous alteration of several physiological pathways independently of one another, or proceed from the disruption of some key physiological parameter, followed by a cascade of effects. We compared multidimensionality in 'host manipulation' between two closely related amphipods, Gammarus fossarum and Gammarus pulex, naturally and experimentally infected with Pomphorhynchus laevis (Acanthocephala), respectively. To that end, we calculated in each host-parasite association the effect size of the difference between infected and uninfected individuals for six different traits (activity, phototaxis, geotaxis, attraction to conspecifics, refuge use and metabolic rate). The effects sizes were highly correlated between host-parasite associations, providing evidence for a relatively constant 'infection syndrome'. Using the same methodology, we compared the extent of phenotypic alterations induced by an experimental injection of serotonin (5-HT) in uninfected G. pulex to that induced by experimental or natural infection with P. laevis. We observed a significant correlation between effect sizes across the six traits, indicating that injection with 5-HT can faithfully mimic the 'infection syndrome'. This is, to our knowledge, the first experimental evidence that multidimensionality in host manipulation can proceed, at least partly, from the disruption of some major physiological mechanism.
Collapse
Affiliation(s)
| | | | - Frank Cézilly
- Université de Bourgogne, UMR CNRS 6282 Biogéosciences, Dijon, France
| |
Collapse
|
23
|
Hafer N, Milinski M. When parasites disagree: evidence for parasite-induced sabotage of host manipulation. Evolution 2015; 69:611-20. [PMID: 25643621 PMCID: PMC4409835 DOI: 10.1111/evo.12612] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/16/2015] [Indexed: 12/12/2022]
Abstract
Host manipulation is a common parasite strategy to alter host behavior in a manner to enhance parasite fitness usually by increasing the parasite's transmission to the next host. In nature, hosts often harbor multiple parasites with agreeing or conflicting interests over host manipulation. Natural selection might drive such parasites to cooperation, compromise, or sabotage. Sabotage would occur if one parasite suppresses the manipulation of another. Experimental studies on the effect of multi-parasite interactions on host manipulation are scarce, clear experimental evidence for sabotage is elusive. We tested the effect of multiple infections on host manipulation using laboratory-bred copepods experimentally infected with the trophically transmitted tapeworm Schistocephalus solidus. This parasite is known to manipulate its host depending on its own developmental stage. Coinfecting parasites with the same aim enhance each other's manipulation but only after reaching infectivity. If the coinfecting parasites disagree over host manipulation, the infective parasite wins this conflict: the noninfective one has no effect. The winning (i.e., infective) parasite suppresses the manipulation of its noninfective competitor. This presents conclusive experimental evidence for both cooperation in and sabotage of host manipulation and hence a proof of principal that one parasite can alter and even neutralize manipulation by another.
Collapse
Affiliation(s)
- Nina Hafer
- Department of Evolutionary Ecology, Max-Planck-Institute for Evolutionary Biology, August-Thienemann-Strasse 2, D-24306 Ploen, Germany.
| | | |
Collapse
|
24
|
Biron DG, Bonhomme L, Coulon M, Øverli Ø. Microbiomes, plausible players or not in alteration of host behavior. Front Microbiol 2015; 5:775. [PMID: 25628614 PMCID: PMC4290534 DOI: 10.3389/fmicb.2014.00775] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/17/2014] [Indexed: 12/26/2022] Open
Affiliation(s)
- David G Biron
- Laboratoire "Microorganismes: Génome et Environnement," Clermont Université, Université Blaise Pascal Clermont-Ferrand, France ; CNRS, UMR 6023, LMGE Aubière, France
| | - Ludovic Bonhomme
- INRA, UMR 1095, Genetics, Diversity, and Ecophysiology of Cereals Clermont-Ferrand, France ; Department of Biology, UMR Genetics, Diversity and Ecophysiology of Cereals, Université Blaise Pascal Aubière, France
| | - Marianne Coulon
- Laboratoire "Microorganismes: Génome et Environnement," Clermont Université, Université Blaise Pascal Clermont-Ferrand, France ; CNRS, UMR 6023, LMGE Aubière, France
| | - Øyvind Øverli
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences Aas, Norway
| |
Collapse
|
25
|
McElroy EJ, de Buron I. Host Performance as a Target of Manipulation by Parasites: A Meta-Analysis. J Parasitol 2014; 100:399-410. [DOI: 10.1645/13-488.1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
26
|
Jacquin L, Mori Q, Pause M, Steffen M, Medoc V. Non-specific manipulation of gammarid behaviour by P. minutus parasite enhances their predation by definitive bird hosts. PLoS One 2014; 9:e101684. [PMID: 25000519 PMCID: PMC4084987 DOI: 10.1371/journal.pone.0101684] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 06/10/2014] [Indexed: 12/18/2022] Open
Abstract
Trophically-transmitted parasites often change the phenotype of their intermediate hosts in ways that increase their vulnerability to definitive hosts, hence favouring transmission. As a "collateral damage", manipulated hosts can also become easy prey for non-host predators that are dead ends for the parasite, and which are supposed to play no role in transmission strategies. Interestingly, infection with the acanthocephalan parasite Polymorphus minutus has been shown to reduce the vulnerability of its gammarid intermediate hosts to non-host predators, whose presence triggered the behavioural alterations expected to favour trophic transmission to bird definitive hosts. Whilst the behavioural response of infected gammarids to the presence of definitive hosts remains to be investigated, this suggests that trophic transmission might be promoted by non-host predation risk. We conducted microcosm experiments to test whether the behaviour of P. minutus-infected gammarids was specific to the type of predator (i.e. mallard as definitive host and fish as non-host), and mesocosm experiments to test whether trophic transmission to bird hosts was influenced by non-host predation risk. Based on the behaviours we investigated (predator avoidance, activity, geotaxis, conspecific attraction), we found no evidence for a specific fine-tuned response in infected gammarids, which behaved similarly whatever the type of predator (mallard or fish). During predation tests, fish predation risk did not influence the differential predation of mallards that over-consumed infected gammarids compared to uninfected individuals. Overall, our results bring support for a less sophisticated scenario of manipulation than previously expected, combining chronic behavioural alterations with phasic behavioural alterations triggered by the chemical and physical cues coming from any type of predator. Given the wide dispersal range of waterbirds (the definitive hosts of P. minutus), such a manipulation whose efficiency does not depend on the biotic context is likely to facilitate its trophic transmission in a wide range of aquatic environments.
Collapse
Affiliation(s)
- Lisa Jacquin
- Institute of Ecology and Environmental Sciences (iEES, UPMC-CNRS) UMR 7618, Université Pierre et Marie Curie, Paris, France; McGill University, Department of Biology & Redpath Museum, Montréal, Québec, Canada
| | - Quentin Mori
- Institute of Ecology and Environmental Sciences (iEES, UPMC-CNRS) UMR 7618, Université Pierre et Marie Curie, Paris, France
| | - Mickaël Pause
- Institute of Ecology and Environmental Sciences (iEES, UPMC-CNRS) UMR 7618, Université Pierre et Marie Curie, Paris, France
| | - Mélanie Steffen
- Institute of Ecology and Environmental Sciences (iEES, UPMC-CNRS) UMR 7618, Université Pierre et Marie Curie, Paris, France
| | - Vincent Medoc
- Institute of Ecology and Environmental Sciences (iEES, UPMC-CNRS) UMR 7618, Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
27
|
Fredensborg BL. Predictors of Host Specificity among Behavior-Manipulating Parasites. Integr Comp Biol 2014; 54:149-58. [DOI: 10.1093/icb/icu051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
28
|
Weinersmith K, Faulkes Z. Parasitic manipulation of hosts' phenotype, or how to make a zombie--an introduction to the symposium. Integr Comp Biol 2014; 54:93-100. [PMID: 24771088 DOI: 10.1093/icb/icu028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nearly all animals in nature are infected by at least one parasite, and many of those parasites can significantly change the phenotype of their hosts, often in ways that increase the parasite's likelihood of transmission. Hosts' phenotypic changes are multidimensional, and manipulated traits include behavior, neurotransmission, coloration, morphology, and hormone levels. The field of parasitic manipulation of hosts' phenotype has now accrued many examples of systems where parasites manipulate the phenotypes of their hosts and focus has shifted to answering three main questions. First, through what mechanisms do parasites manipulate the hosts' phenotype? Parasites often induce changes in the hosts' phenotypes that neuroscientists are unable to recreate under laboratory conditions, suggesting that parasites may have much to teach us about links between the brain, immune system, and the expression of phenotype. Second, what are the ecological implications of phenotypic manipulation? Manipulated hosts are often abundant, and changes in their phenotype may have important population, community, and ecosystem-level implications. Finally, how did parasitic manipulation of hosts' phenotype evolve? The selective pressures faced by parasites are extremely complex, often with multiple hosts that are actively resisting infection, both in physiological and evolutionary time-scales. Here, we provide an overview of how the work presented in this special issue contributes to tackling these three main questions. Studies on parasites' manipulation of their hosts' phenotype are undertaken largely by parasitologists, and a major goal of this symposium is to recruit researchers from other fields to the study of these phenomena. Our ability to answer the three questions outlined above would be greatly enhanced by participation from individuals trained in the fields of, for example, neurobiology, physiology, immunology, ecology, evolutionary biology, and invertebrate biology. Conversely, because parasites that alter their hosts' phenotype are widespread, these fields will benefit from such study.
Collapse
Affiliation(s)
- Kelly Weinersmith
- *Graduate Group in Ecology, University of California Davis, 1005 Wickson Hall, Davis, CA 95616, USA; Department of Biology, The University of Texas-Pan American, 1201 W. University Drive, Edinburg, TX 78539, USA
| | - Zen Faulkes
- *Graduate Group in Ecology, University of California Davis, 1005 Wickson Hall, Davis, CA 95616, USA; Department of Biology, The University of Texas-Pan American, 1201 W. University Drive, Edinburg, TX 78539, USA
| |
Collapse
|
29
|
Ecological genomics of host behavior manipulation by parasites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 781:169-90. [PMID: 24277300 DOI: 10.1007/978-94-007-7347-9_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Among the vast array of niche exploitation strategies exhibited by millions of different species on Earth, parasitic lifestyles are characterized by extremely successful evolutionary outcomes. Some parasites even seem to have the ability to 'control' their host's behavior to fulfill their own vital needs. Research efforts in the past decades have focused on surveying the phylogenetic diversity and ecological nature of these host-parasite interactions, and trying to understand their evolutionary significance. However, to understand the proximal and ultimate causes of these behavioral alterations triggered by parasitic infections, the underlying molecular mechanisms governing them must be uncovered. Studies using ecological genomics approaches have identified key candidate molecules involved in host-parasite molecular cross-talk, but also molecules not expected to alter behavior. These studies have shown the importance of following up with functional analyses, using a comparative approach and including a time-series analysis. High-throughput methods surveying different levels of biological information, such as the transcriptome and the epigenome, suggest that specific biologically-relevant processes are affected by infection, that sex-specific effects at the level of behavior are recapitulated at the level of transcription, and that epigenetic control represents a key factor in managing life cycle stages of the parasite through temporal regulation of gene expression. Post-translational processes, such as protein-protein interactions (interactome) and post translational modifications (e.g. protein phosphorylation, phosphorylome), and processes modifying gene expression and translation, such as interactions with microRNAs (microRNAome), are examples of promising avenues to explore to obtain crucial insights into the proximal and ultimate causes of these fascinating and complex inter-specific interactions.
Collapse
|
30
|
Modulatory effects of the serotonergic and histaminergic systems on reaction to light in the crustacean Gammarus pulex. Neuropharmacology 2013; 75:31-7. [DOI: 10.1016/j.neuropharm.2013.06.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/21/2013] [Accepted: 06/27/2013] [Indexed: 11/22/2022]
|
31
|
Santos E, Santos CP. Parasite-induced and parasite development-dependent alteration of the swimming behavior of fish hosts. Acta Trop 2013; 127:56-62. [PMID: 23545127 DOI: 10.1016/j.actatropica.2013.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/13/2013] [Accepted: 03/22/2013] [Indexed: 10/27/2022]
Abstract
Parasites with complex life cycles have the ability to change the behavior of their intermediate host in a way that increases their transmission rate to the next host. However, the level of behavioral changes can vary considerably, depending on the stage of parasite development and parasite intensity. To investigate the influence of such parameters, we evaluated the locomotory activity of the fish Poecilia vivipara prior to experimental infections, 7 days post-infection (dpi) and 14dpi with cercariae of the digenean Ascocotyle (Phagicola) pindoramensis. The locomotory activity was monitored using an image system, Videomex(®), linked to with a video camera able to record the swimming behavior of the fishes. At the end of the experiments, fishes were dissected and all metacercariae from the gills and mesenteries, the specific sites utilized by A. (P.) pindoramensis, were recovered and counted. There was a significant decrease in the swimming behavior of fishes after 14dpi. Similarly, we found a significant correlation between the swimming behavior of the fishes and parasite intensity in both sites of infection. It is surmised that the decrease in locomotory activity of P. vivipara caused by A. (P.) pindoramensis can disturb its predator-prey relationship in natural environment.
Collapse
|
32
|
McConkey GA, Martin HL, Bristow GC, Webster JP. Toxoplasma gondii infection and behaviour - location, location, location? J Exp Biol 2013; 216:113-9. [PMID: 23225873 PMCID: PMC3515035 DOI: 10.1242/jeb.074153] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 09/18/2012] [Indexed: 12/17/2022]
Abstract
Parasite location has been proposed as an important factor in the behavioural changes observed in rodents infected with the protozoan Toxoplasma gondii. During the chronic stages of infection, encysted parasites are found in the brain but it remains unclear whether the parasite has tropism for specific brain regions. Parasite tissue cysts are found in all brain areas with some, but not all, prior studies reporting higher numbers located in the amygdala and frontal cortex. A stochastic process of parasite location does not, however, seem to explain the distinct and often subtle changes observed in rodent behaviour. One factor that could contribute to the specific changes is increased dopamine production by T. gondii. Recently, it was found that cells encysted with parasites in the brains of experimentally infected rodents have high levels of dopamine and that the parasite encodes a tyrosine hydroxylase, the rate-limiting enzyme in the synthesis of this neurotransmitter. A mechanism is proposed that could explain the behaviour changes due to parasite regulation of dopamine. This could have important implications for T. gondii infections in humans.
Collapse
Affiliation(s)
- Glenn A McConkey
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | | | | | | |
Collapse
|
33
|
Abstract
Summary
For millions of years, parasites have altered the behaviour of their hosts. Parasites can affect host behaviour by: (1) interfering with the host’s normal immune–neural communication, (2) secreting substances that directly alter neuronal activity via non-genomic mechanisms and (3) inducing genomic- and/or proteomic-based changes in the brain of the host. Changes in host behaviour are often restricted to particular behaviours, with many other behaviours remaining unaffected. Neuroscientists can produce this degree of selectivity by targeting specific brain areas. Parasites, however, do not selectively attack discrete brain areas. Parasites typically induce a variety of effects in several parts of the brain. Parasitic manipulation of host behaviour evolved within the context of the manipulation of other host physiological systems (especially the immune system) that was required for a parasite’s survival. This starting point, coupled with the fortuitous nature of evolutionary innovation and evolutionary pressures to minimize the costs of parasitic manipulation, likely contributed to the complex and indirect nature of the mechanisms involved in host behavioural control. Because parasites and neuroscientists use different tactics to control behaviour, studying the methods used by parasites can provide novel insights into how nervous systems generate and regulate behaviour. Studying how parasites influence host behaviour will also help us integrate genomic, proteomic and neurophysiological perspectives on behaviour.
Collapse
Affiliation(s)
- Shelley Anne Adamo
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
34
|
Lafferty KD, Shaw JC. Comparing mechanisms of host manipulation across host and parasite taxa. J Exp Biol 2013; 216:56-66. [DOI: 10.1242/jeb.073668] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Summary
Parasites affect host behavior in several ways. They can alter activity, microhabitats or both. For trophically transmitted parasites (the focus of our study), decreased activity might impair the ability of hosts to respond to final-host predators, and increased activity and altered microhabitat choice might increase contact rates between hosts and final-host predators. In an analysis of trophically transmitted parasites, more parasite groups altered activity than altered microhabitat choice. Parasites that infected vertebrates were more likely to impair the host’s reaction to predators, whereas parasites that infected invertebrates were more likely to increase the host’s contact with predators. The site of infection might affect how parasites manipulate their hosts. For instance, parasites in the central nervous system seem particularly suited to manipulating host behavior. Manipulative parasites commonly occupy the body cavity, muscles and central nervous systems of their hosts. Acanthocephalans in the data set differed from other taxa in that they occurred exclusively in the body cavity of invertebrates. In addition, they were more likely to alter microhabitat choice than activity. Parasites in the body cavity (across parasite types) were more likely to be associated with increased host contact with predators. Parasites can manipulate the host through energetic drain, but most parasites use more sophisticated means. For instance, parasites target four physiological systems that shape behavior in both invertebrates and vertebrates: neural, endocrine, neuromodulatory and immunomodulatory. The interconnections between these systems make it difficult to isolate specific mechanisms of host behavioral manipulation.
Collapse
Affiliation(s)
- Kevin D. Lafferty
- Western Ecological Research Center, US Geological Survey, USA
- Marine Science Institute, University of California, Santa Barbara, CA 93106, USA
| | - Jenny C. Shaw
- Marine Science Institute, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
35
|
Perrot-Minnot MJ, Cézilly F. Investigating candidate neuromodulatory systems underlying parasitic manipulation: concepts, limitations and prospects. J Exp Biol 2013; 216:134-41. [DOI: 10.1242/jeb.074146] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Summary
Studies addressing the functional basis of parasitic manipulation suggest that alteration of the neuromodulatory system is a common feature of manipulated hosts. Screening of the neuromodulatory system has so far been carried out by performing ethopharmacological analysis, biochemical quantification of neurotransmitters and neuromodulators, and/or immunocytochemistry. Here, we review the advantages and limitations of such approaches through the analysis of case studies. We further address whether the analysis of candidate neuromodulatory systems fits the current view of manipulation as being multidimensional. The benefits in combining ethopharmacology with more recent molecular tools to investigate candidate neuromodulatory pathways is also emphasized. We conclude by discussing the value of a multidisciplinary study of parasitic manipulation, combining evolutionary (parasite transmission), behavioural (syndrome of manipulation) and neuroimmunological approaches.
Collapse
Affiliation(s)
- Marie-Jeanne Perrot-Minnot
- Equipe Ecologie Evolutive, UMR CNRS 6282 Biogéosciences, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Frank Cézilly
- Equipe Ecologie Evolutive, UMR CNRS 6282 Biogéosciences, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France
| |
Collapse
|