1
|
Erman A, Hawkins LJ, Storey KB. Changes in microRNA expression related to ischemia-reperfusion injury in the kidney of the thirteen-lined ground squirrel during torpor. Biochimie 2024; 225:40-48. [PMID: 38705508 DOI: 10.1016/j.biochi.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
During the hibernation season, the thirteen-lined ground squirrel undergoes cyclical torpor and arousal periods. The decrease and restoration of metabolic rate and oxygen delivery during torpor and arousal, respectively, may cause reperfusion-ischemia injury in the kidneys. In order to maintain the structural integrity of the kidneys necessary for renal function resumption during arousal, the thirteen-lined ground squirrel has developed adaptive methods to prevent and repair kidney injury. In this present study, computational methods were used to clean and analyze sequenced kidney RNA samples. Significantly differentially expressed microRNAs and enriched gene sets were also determined. From the gene set analysis, the results showed an increase in ubiquitin-related processes and p53 signaling pathways which suggested the occurrence of kidney damage during torpor. There was also an observed increase in cell cycle processes and the anchoring junction cellular compartment which may lend to the prevention of kidney injury. From the differentially expressed microRNAs, miR-27a (log2FC = 1.639; p-value = 0.023), miR-129 (log2FC = 2.516; p-value = 0.023), miR-let-7b (log2FC = 2.360; p-value = 0.025), miR-let-7c (log2FC = 2.291; p-value = 0.037) and miR-let-7i (log2FC = 1.564; p-value = 0.039) were found to be significantly upregulated. These biochemical adaptations may allow the thirteen-lined ground squirrel to maintain kidney structure and function during hibernation.
Collapse
Affiliation(s)
- Aylin Erman
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada.
| | - Liam J Hawkins
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| |
Collapse
|
2
|
Duffy BM, Hayward L, Staples JF. Torpid 13-lined ground squirrel liver mitochondria resist anoxia-reoxygenation despite high levels of protein damage. J Comp Physiol B 2023; 193:715-728. [PMID: 37851102 DOI: 10.1007/s00360-023-01515-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/27/2023] [Accepted: 09/05/2023] [Indexed: 10/19/2023]
Abstract
Hibernation confers resistance to ischemia-reperfusion injury in tissue, but the underlying mechanisms remain unclear. Suppression of mitochondrial respiration during torpor may contribute to this tolerance. To explore this concept, we subjected isolated liver mitochondria from torpid, interbout euthermic (IBE) and summer 13-lined ground squirrels (Ictidomys tridecemlineatus) to 5 min of anoxia, followed by reoxygenation (A/R). We also included rat liver mitochondria as a non-hibernating comparison group. Maximum respiration rates of mitochondria from torpid ground squirrels were not affected by A/R, but in IBE and summer, these rates decreased by 50% following A/R and in rats they decreased by 80%. Comparing net ROS production rates among groups, revealed seasonal differences; mitochondria from IBE and torpor produced 75% less ROS than summer ground squirrels and rats. Measurements of oxidative damage to these mitochondria, both freshly isolated, as well as pre- and post-A/R, demonstrated elevated damage to protein, but not lipids, in all groups. Hibernation likely generates oxidative stress, as freshly isolated mitochondria had greater protein damage in torpor and IBE than in summer and rats. When comparing markers of damage pre- and post-A/R, we found that when RET was active, rat macromolecules were more damaged than when RET is inhibited, but in TLGS markers of damage were similar. This result suggests that suppression of RET during hibernation, both in torpor and IBE, lessens oxidative stress produced during arousal. Taken together our study suggests that ischemia-reperfusion tolerance at the mitochondrial level is associated with metabolically suppressed oxidative phosphorylation during hibernation.
Collapse
Affiliation(s)
- Brynne M Duffy
- University of Western Ontario, (Biology), London, ON, Canada.
| | - Leah Hayward
- University of Western Ontario, (Biology), London, ON, Canada
- McMaster University, (Hamilton Health Sciences), Hamilton, ON, Canada
| | - James F Staples
- University of Western Ontario, (Biology), London, ON, Canada
| |
Collapse
|
3
|
Ilyina TN, Baishnikova IV. Retinol and α-Tocopherol Content in the Liver and Skeletal Muscle of Bats (Chiroptera) during Hibernation and Summer Activity. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022060035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Cominassi L, Ressel KN, Brooking AA, Marbacher P, Ransdell-Green EC, O'Brien KM. Metabolic rate increases with acclimation temperature and is associated with mitochondrial function in some tissues of threespine stickleback. J Exp Biol 2022; 225:jeb244659. [PMID: 36268761 PMCID: PMC9687547 DOI: 10.1242/jeb.244659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/07/2022] [Indexed: 11/20/2022]
Abstract
The metabolic rate (ṀO2) of eurythermal fishes changes in response to temperature, yet it is unclear how changes in mitochondrial function contribute to changes in ṀO2. We hypothesized that ṀO2 would increase with acclimation temperature in the threespine stickleback (Gasterosteus aculeatus) in parallel with metabolic remodeling at the cellular level but that changes in metabolism in some tissues, such as liver, would contribute more to changes in ṀO2 than others. Threespine stickleback were acclimated to 5, 12 and 20°C for 7 to 21 weeks. At each temperature, standard and maximum metabolic rate (SMR and MMR, respectively), and absolute aerobic scope (AAS) were quantified, along with mitochondrial respiration rates in liver, oxidative skeletal and cardiac muscles, and the maximal activity of citrate synthase (CS) and lactate dehydrogenase (LDH) in liver, and oxidative and glycolytic skeletal muscles. SMR, MMR and AAS increased with acclimation temperature, along with rates of mitochondrial phosphorylating respiration in all tissues. Low SMR and MMR at 5°C were associated with low or undetectable rates of mitochondrial complex II activity and a greater reliance on complex I activity in liver, oxidative skeletal muscle and heart. SMR was positively correlated with cytochrome c oxidase (CCO) activity in liver and oxidative muscle, but not mitochondrial proton leak, whereas MMR was positively correlated with CCO activity in liver. Overall, the results suggest that changes in ṀO2 in response to temperature are driven by changes in some aspects of mitochondrial function in some, but not all, tissues of threespine stickleback.
Collapse
Affiliation(s)
- Louise Cominassi
- University of Alaska Fairbanks, Institute of Arctic Biology, PO Box 757000 Fairbanks, AK 99775, USA
| | - Kirsten N. Ressel
- University of Alaska Fairbanks, Institute of Arctic Biology, PO Box 757000 Fairbanks, AK 99775, USA
| | - Allison A. Brooking
- University of Alaska Fairbanks, Institute of Arctic Biology, PO Box 757000 Fairbanks, AK 99775, USA
| | - Patrick Marbacher
- University of Alaska Fairbanks, Institute of Arctic Biology, PO Box 757000 Fairbanks, AK 99775, USA
| | | | - Kristin M. O'Brien
- University of Alaska Fairbanks, Institute of Arctic Biology, PO Box 757000 Fairbanks, AK 99775, USA
| |
Collapse
|
5
|
Staples JF, Mathers KE, Duffy BM. Mitochondrial Metabolism in Hibernation: Regulation and Implications. Physiology (Bethesda) 2022; 37:0. [PMID: 35658625 DOI: 10.1152/physiol.00006.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hibernators rapidly and reversibly suppress mitochondrial respiration and whole animal metabolism. Posttranslational modifications likely regulate these mitochondrial changes, which may help conserve energy in winter. These modifications are affected by reactive oxygen species (ROS), so suppressing mitochondrial ROS production may also be important for hibernators, just as it is important for surviving ischemia-reperfusion injury.
Collapse
Affiliation(s)
- James F Staples
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Katherine E Mathers
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Brynne M Duffy
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
6
|
Characterizing the regulation of pyruvate kinase in response to hibernation in ground squirrel liver (Urocitellus richardsonii). Comp Biochem Physiol B Biochem Mol Biol 2020; 248-249:110466. [DOI: 10.1016/j.cbpb.2020.110466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 01/24/2023]
|
7
|
Hadj-Moussa H, Watts AJ, Storey KB. Genes of the undead: hibernation and death display different gene profiles. FEBS Lett 2019; 593:527-532. [PMID: 30767213 DOI: 10.1002/1873-3468.13338] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/08/2019] [Accepted: 02/12/2019] [Indexed: 02/01/2023]
Abstract
A degree of regulation continues into death according to post-mortem transcriptome studies, which have identified 'zombie genes' that come alive hours and days after organismal death. We hypothesized that hibernation, representing the closest natural mammalian phenomenon to death, would display similar gene expression profiles. Exploring zombie genes using qPCR and available transcriptomic resources from multiple torpid tissues in 13-lined ground squirrels showed little in common with gene profiles observed following death. Hibernators repress transcription, surviving only on the transcripts required during profound slowdowns of metabolic rate and of most physiological functions, therefore not requiring zombie gene expression that could be the cell's last resort during stress. This is the first study to explore zombie gene responses to a near-death situation in a living system.
Collapse
|
8
|
Devaux JBL, Hickey AJR, Renshaw GMC. Mitochondrial plasticity in the cerebellum of two anoxia-tolerant sharks: contrasting responses to anoxia/reoxygenation. J Exp Biol 2019; 222:jeb.191353. [DOI: 10.1242/jeb.191353] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 02/20/2019] [Indexed: 11/20/2022]
Abstract
Exposure to anoxia leads to rapid ATP depletion, alters metabolic pathways and exacerbates succinate accumulation. Upon re-oxygenation, the preferential oxidation of accumulated succinate most often impairs mitochondrial function. Few species can survive prolonged periods of hypoxia and anoxia at tropical temperatures and those that do may rely on mitochondria plasticity in response to disruptions to oxygen availability. Two carpet sharks, the epaulette shark (Hemiscyllium ocellatum; ES) and the grey carpet shark (Chiloscyllium punctatum; GCS) display different adaptive responses to prolonged anoxia: while the ES enters energy conserving metabolic depression, the GCS temporarily elevates its haematocrit prolonging oxygen delivery. High-resolution respirometry was used to investigate mitochondrial function in the cerebellum, a highly metabolically active organ that is oxygen sensitive and vulnerable to injury after anoxia/re-oxygenation (AR).
Succinate was titrated into cerebellar preparations in vitro, with or without pre-exposure to AR, then the activity of mitochondrial complexes was examined. Like most vertebrates, GCS mitochondria significantly increased succinate oxidation rates, with impaired complex I function post-AR. In contrast, ES mitochondria inhibited succinate oxidation rates and both complex I and II capacities were conserved, resulting in preservation of oxidative phosphorylation capacity post-AR.
Divergent mitochondrial plasticity elicited by elevated succinate post A/R parallels the inherently divergent physiological adaptations of these animals to prolonged anoxia, namely the absence (GCS) and presence of metabolic depression (ES). Since anoxia tolerance in these species also occurs at temperatures close to that of humans, examining their mitochondrial responses to AR could provide insights for novel interventions in clinical settings.
Collapse
Affiliation(s)
- Jules B. L. Devaux
- School of Biological Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Anthony J. R. Hickey
- School of Biological Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Gillian M. C. Renshaw
- Hypoxia and Ischemia Research Unit, School of Allied Sciences, Griffith University, Gold Coast campus, QLD 4222, Australia
| |
Collapse
|
9
|
Cortes PA, Bozinovic F, Blier PU. Mitochondrial phenotype during torpor: Modulation of mitochondrial electron transport system in the Chilean mouse-opossum Thylamys elegans. Comp Biochem Physiol A Mol Integr Physiol 2018; 221:7-14. [PMID: 29551753 DOI: 10.1016/j.cbpa.2017.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/30/2017] [Accepted: 12/08/2017] [Indexed: 12/20/2022]
Abstract
Mammalian torpor is a phenotype characterized by a controlled decline of metabolic rate, generally followed by a reduction in body temperature. During arousal from torpor, both metabolic rate and body temperature rapidly returns to resting levels. Metabolic rate reduction experienced by torpid animals is triggered by active suppression of mitochondrial respiration, which is rapidly reversed during rewarming process. In this study, we analyzed the changes in the maximal activity of key enzymes related to electron transport system (complexes I, III and IV) in six tissues of torpid, arousing and euthermic Chilean mouse-opossums (Thylamys elegans). We observed higher maximal activities of complexes I and IV during torpor in brain, heart and liver, the most metabolically active organs in mammals. On the contrary, higher enzymatic activities of complexes III were observed during torpor in kidneys and lungs. Moreover, skeletal muscle was the only tissue without significant differences among stages in all complexes evaluated, suggesting no modulation of oxidative capacities of electron transport system components in this thermogenic tissue. In overall, our data suggest that complexes I and IV activity plays a major role in initiation and maintenance of metabolic suppression during torpor in Chilean mouse-opossum, whereas improvement of oxidative capacities in complex III might be critical to sustain metabolic machinery in organs that remains metabolically active during torpor.
Collapse
Affiliation(s)
- Pablo A Cortes
- Escuela de Agronomía, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide, 5750, Huechuraba, Chile; Departamento de Ecología, Center of Applied Ecology and Sustainability, Facultad de Ciencias Biológicas, Universidad Católica de Chile, Santiago 6513677, Chile.
| | - Francisco Bozinovic
- Departamento de Ecología, Center of Applied Ecology and Sustainability, Facultad de Ciencias Biológicas, Universidad Católica de Chile, Santiago 6513677, Chile
| | - Pierre U Blier
- Département de Biologie, Laboratoire de Physiologie Animale Intégrative, Université du Québec, Rimouski G5L 3A1, QC, Canada
| |
Collapse
|
10
|
Herinckx G, Hussain N, Opperdoes FR, Storey KB, Rider MH, Vertommen D. Changes in the phosphoproteome of brown adipose tissue during hibernation in the ground squirrel, Ictidomys tridecemlineatus. Physiol Genomics 2017; 49:462-472. [PMID: 28698229 DOI: 10.1152/physiolgenomics.00038.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/06/2017] [Accepted: 07/06/2017] [Indexed: 11/22/2022] Open
Abstract
Mammalian hibernation is characterized by metabolic rate depression and a strong decrease in core body temperature that together create energy savings such that most species do not have to eat over the winter months. Brown adipose tissue (BAT), a thermogenic tissue that uses uncoupled mitochondrial respiration to generate heat instead of ATP, plays a major role in rewarming from deep torpor. In the present study we developed a label-free liquid chromatography mass spectrometry (LC-MS) strategy to investigate both differential protein expression and protein phosphorylation in BAT extracts from euthermic vs. hibernating ground squirrels (Ictidomys tridecemlineatus). In particular, we incorporated the filter-assisted sample preparation protocol, which provides a more in-depth analysis compared with gel-based and other LC-MS proteomics approaches. Surprisingly, mitochondrial membrane and matrix protein expression in BAT was largely constant between active euthermic squirrels and their hibernating counterparts. Validation by immunoblotting confirmed that the protein levels of mitochondrial respiratory chain complexes were largely unchanged in hibernating vs. euthermic animals. On the other hand, phosphoproteomics revealed that pyruvate dehydrogenase (PDH) phosphorylation increased during squirrel hibernation, confirmed by immunoblotting with phospho-specific antibodies. PDH phosphorylation leads to its inactivation, which suggests that BAT carbohydrate oxidation is inhibited during hibernation. Phosphorylation of hormone-sensitive lipase (HSL) was also found to increase during hibernation, suggesting that HSL would be active in BAT to produce the fatty acids that are likely the primary fuel for thermogenesis upon arousal. Increased perilipin phosphorylation along with that of a number of other proteins was also revealed, emphasizing the importance of protein phosphorylation as a regulatory mechanism during mammalian hibernation.
Collapse
Affiliation(s)
- Gaëtan Herinckx
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium; and
| | - Nusrat Hussain
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium; and
| | - Fred R Opperdoes
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium; and
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Mark H Rider
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium; and
| | - Didier Vertommen
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium; and
| |
Collapse
|
11
|
Being right on Q: shaping eukaryotic evolution. Biochem J 2017; 473:4103-4127. [PMID: 27834740 PMCID: PMC5103874 DOI: 10.1042/bcj20160647] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/18/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022]
Abstract
Reactive oxygen species (ROS) formation by mitochondria is an incompletely understood eukaryotic process. I proposed a kinetic model [BioEssays (2011) 33, 88–94] in which the ratio between electrons entering the respiratory chain via FADH2 or NADH (the F/N ratio) is a crucial determinant of ROS formation. During glucose breakdown, the ratio is low, while during fatty acid breakdown, the ratio is high (the longer the fatty acid, the higher is the ratio), leading to higher ROS levels. Thus, breakdown of (very-long-chain) fatty acids should occur without generating extra FADH2 in mitochondria. This explains peroxisome evolution. A potential ROS increase could also explain the absence of fatty acid oxidation in long-lived cells (neurons) as well as other eukaryotic adaptations, such as dynamic supercomplex formation. Effective combinations of metabolic pathways from the host and the endosymbiont (mitochondrion) allowed larger varieties of substrates (with different F/N ratios) to be oxidized, but high F/N ratios increase ROS formation. This might have led to carnitine shuttles, uncoupling proteins, and multiple antioxidant mechanisms, especially linked to fatty acid oxidation [BioEssays (2014) 36, 634–643]. Recent data regarding peroxisome evolution and their relationships with mitochondria, ROS formation by Complex I during ischaemia/reperfusion injury, and supercomplex formation adjustment to F/N ratios strongly support the model. I will further discuss the model in the light of experimental findings regarding mitochondrial ROS formation.
Collapse
|
12
|
Ballinger MA, Schwartz C, Andrews MT. Enhanced oxidative capacity of ground squirrel brain mitochondria during hibernation. Am J Physiol Regul Integr Comp Physiol 2017; 312:R301-R310. [PMID: 28077389 DOI: 10.1152/ajpregu.00314.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 01/06/2017] [Accepted: 01/08/2017] [Indexed: 11/22/2022]
Abstract
During hibernation, thirteen-lined ground squirrels (Ictidomys tridecemlineatus) regularly cycle between bouts of torpor and interbout arousal (IBA). Most of the brain is electrically quiescent during torpor but regains activity quickly upon arousal to IBA, resulting in extreme oscillations in energy demand during hibernation. We predicted increased functional capacity of brain mitochondria during hibernation compared with spring to accommodate the variable energy demands of hibernation. To address this hypothesis, we examined mitochondrial bioenergetics in the ground squirrel brain across three time points: spring (SP), torpor (TOR), and IBA. Respiration rates of isolated brain mitochondria through complex I of the electron transport chain were more than twofold higher in TOR and IBA than in SP (P < 0.05). We also found a 10% increase in membrane potential between hibernation and spring (P < 0.05), and that proton leak was lower in TOR and IBA than in SP. Finally, there was a 30% increase in calcium loading in SP brain mitochondria compared with TOR and IBA (P < 0.01). To analyze brain mitochondrial abundance between spring and hibernation, we measured the ratio of copy number in a mitochondrial gene (ND1) vs. a nuclear gene (B2M) in frozen cerebral cortex samples. No significant differences were observed in DNA copies between SP and IBA. These data show that brain mitochondrial bioenergetics are not static across the year and suggest that brain mitochondria function more effectively during the hibernation season, allowing for rapid production of energy to meet demand when extreme physiological changes are occurring.
Collapse
Affiliation(s)
- Mallory A Ballinger
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota; and
| | - Christine Schwartz
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota; and.,Department of Biology, University of Wisconsin-La Crosse, La Crosse, Wisconsin
| | - Matthew T Andrews
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota; and
| |
Collapse
|
13
|
McFarlane SV, Mathers KE, Staples JF. Reversible temperature-dependent differences in brown adipose tissue respiration during torpor in a mammalian hibernator. Am J Physiol Regul Integr Comp Physiol 2017; 312:R434-R442. [PMID: 28077390 DOI: 10.1152/ajpregu.00316.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 12/06/2016] [Accepted: 01/06/2017] [Indexed: 01/23/2023]
Abstract
Although seasonal modifications of brown adipose tissue (BAT) in hibernators are well documented, we know little about functional regulation of BAT in different phases of hibernation. In the 13-lined ground squirrel, liver mitochondrial respiration is suppressed by up to 70% during torpor. This suppression is reversed during arousal and interbout euthermia (IBE), and corresponds with patterns of maximal activities of electron transport system (ETS) enzymes. Uncoupling of BAT mitochondria is controlled by free fatty acid release stimulated by sympathetic activation of adipocytes, so we hypothesized that further regulation at the level of the ETS would be of little advantage. As predicted, maximal ETS enzyme activities of isolated BAT mitochondria did not differ between torpor and IBE. In contrast to this pattern, respiration rates of mitochondria isolated from torpid individuals were suppressed by ~60% compared with rates from IBE individuals when measured at 37°C. At 10°C, however, mitochondrial respiration rates tended to be greater in torpor than IBE. As a result, the temperature sensitivity (Q10) of mitochondrial respiration was significantly lower in torpor (~1.4) than IBE (~2.4), perhaps facilitating energy savings during entrance into torpor and thermogenesis at low body temperatures. Despite the observed differences in isolated mitochondria, norepinephrine-stimulated respiration rates of isolated BAT adipocytes did not differ between torpor and IBE, perhaps because the adipocyte isolation requires lengthy incubation at 37°C, potentially reversing any changes that occur in torpor. Such changes may include remodeling of BAT mitochondrial membrane phospholipids, which could change in situ enzyme activities and temperature sensitivities.
Collapse
Affiliation(s)
- Sarah V McFarlane
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Katherine E Mathers
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - James F Staples
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
14
|
Kupynyak NI, Ikkert OV, Shlykov SG, Babich LG, Manko VV. Mitochondrial ryanodine-sensitive Ca 2+ channels of rat liver. Cell Biochem Funct 2017; 35:42-49. [PMID: 28052355 DOI: 10.1002/cbf.3243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/26/2016] [Accepted: 11/21/2016] [Indexed: 11/06/2022]
Abstract
To examine ryanodine-sensitive Ca2+ channels in mitochondria of rat hepatocytes and their role in energy state of the cells via investigation of the ryanodine effect on mitochondrial membrane potential. Oxygen consumption was measured by polarography using the Clark electrode. The substrates of oxidation such as pyruvate (5mM), α-ketoglutarate (5mM), or succinate (5mM) were used. Oxidative phosphorylation was stimulated by the addition of adenosine diphosphate (200nM). Mitochondrial membrane potential was measured using a voltage-sensitive fluorescent probe tetramethylrhodamine-methyl-ester (0.1μM) and was analyzed by a flow cytometer. To evaluate the intact mitochondria, we used carbonil cyanide m-chlorophenyl hydrazone (CCCP, 10μM). Changes in the ionized calcium concentration in rat liver mitochondria were measured using a fluorescent probe Fluo-4 AM. Effect of ryanodine on oxygen consumption of rat liver mitochondria depends on the oxidation substrate and the incubation time. Oxidation of pyruvate in the presence of ryanodine (0.05μM) decreased the membrane potential of rat liver mitochondria by 38.4%. At higher concentrations, ryanodine (0.1μM or 1μM) led to decrease of membrane potential by 51.7% and 42.8%, respectively. In contrast, oxidation of α-ketoglutarate in the presence of ryanodine (0.05μM) increased mitochondrial membrane potential by 16.8%. However, at higher concentrations, ryanodine (0.1μM or 1μM) triggered a decreasing of membrane potential by 42.5% and 31.0%, respectively. Therefore, ryanodine at various concentrations (0.05μM, 0.1μM, or 1μM) causes differential effects on Ca2+ concentration in the mitochondria matrix under oxidation of pyruvate or α-ketoglutarate. The data suggest the presence of ryanodine receptors in mitochondrial membrane of rat hepatocytes. Their inhibition with higher concentrations of ryanodine leads to decreasing of intra-mitochondrial Ca2+ concentration and affecting the energy state of mictochondria in hepatocytes.
Collapse
Affiliation(s)
- N I Kupynyak
- Ivan Franko National University of Lviv, Lviv, Ukraine.,Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - O V Ikkert
- Ivan Franko National University of Lviv, Lviv, Ukraine
| | - S G Shlykov
- Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - L G Babich
- Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - V V Manko
- Ivan Franko National University of Lviv, Lviv, Ukraine
| |
Collapse
|
15
|
Abstract
Autonomic thermoregulation is a recently acquired function, as it appears for the first time in mammals and provides the brain with the ability to control energy expenditure. The importance of such control can easily be highlighted by the ability of a heterogeneous group of mammals to actively reduce metabolic rate and enter a condition of regulated hypometabolism known as torpor. The central neural circuits of thermoregulatory cold defense have been recently unraveled and could in theory be exploited to reduce energy expenditure in species that do not normally use torpor, inducing a state called synthetic torpor. This approach may represent the first steps toward the development of a technology to induce a safe and reversible state of hypometabolism in humans, unlocking many applications ranging from new medical procedures to deep space travel.
Collapse
Affiliation(s)
- Matteo Cerri
- Department of Biomedical and Neuromotor Sciences, Physiology Division, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
16
|
Ballinger MA, Hess C, Napolitano MW, Bjork JA, Andrews MT. Seasonal changes in brown adipose tissue mitochondria in a mammalian hibernator: from gene expression to function. Am J Physiol Regul Integr Comp Physiol 2016; 311:R325-36. [PMID: 27225952 DOI: 10.1152/ajpregu.00463.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 05/24/2016] [Indexed: 12/25/2022]
Abstract
Brown adipose tissue (BAT) is a thermogenic organ that is vital for hibernation in mammals. Throughout the hibernation season, BAT mitochondrial uncoupling protein 1 (UCP1) enables rapid rewarming from hypothermic torpor to periodic interbout arousals (IBAs), as energy is dissipated as heat. However, BAT's unique ability to rewarm the body via nonshivering thermogenesis is not necessary outside the hibernation season, suggesting a potential seasonal change in the regulation of BAT function. Here, we examined the BAT mitochondrial proteome and mitochondrial bioenergetics in the thirteen-lined ground squirrel (Ictidomys tridecemlineatus) across four time points: spring, fall, torpor, and IBA. Relative mitochondrial content of BAT was estimated by measuring BAT pad mass, UCP1 protein content, and mitochondrial DNA (mtDNA) copy number. BAT mtDNA content was significantly lower in spring compared with torpor and IBA (P < 0.05). UCP1 mRNA and protein levels were highest during torpor and IBA. Respiration rates of isolated BAT mitochondria were interrogated at each complex of the electron transport chain. Respiration at complex II was significantly higher in torpor and IBA compared with spring (P < 0.05), suggesting an enhancement in mitochondrial respiratory capacity during hibernation. Additionally, proteomic iTRAQ labeling identified 778 BAT mitochondrial proteins. Proteins required for mitochondrial lipid translocation and β-oxidation were upregulated during torpor and IBA and downregulated in spring. These data imply that BAT bioenergetics and mitochondrial content are not static across the year, despite the year-round presence of UCP1.
Collapse
Affiliation(s)
| | - Clair Hess
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota
| | - Max W Napolitano
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota
| | - James A Bjork
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota
| | - Matthew T Andrews
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota
| |
Collapse
|
17
|
Abstract
Many environmental conditions can constrain the ability of animals to obtain sufficient food energy, or transform that food energy into useful chemical forms. To survive extended periods under such conditions animals must suppress metabolic rate to conserve energy, water, or oxygen. Amongst small endotherms, this metabolic suppression is accompanied by and, in some cases, facilitated by a decrease in core body temperature-hibernation or daily torpor-though significant metabolic suppression can be achieved even with only modest cooling. Within some ectotherms, winter metabolic suppression exceeds the passive effects of cooling. During dry seasons, estivating ectotherms can reduce metabolism without changes in body temperature, conserving energy reserves, and reducing gas exchange and its inevitable loss of water vapor. This overview explores the similarities and differences of metabolic suppression among these states within adult animals (excluding developmental diapause), and integrates levels of organization from the whole animal to the genome, where possible. Several similarities among these states are highlighted, including patterns and regulation of metabolic balance, fuel use, and mitochondrial metabolism. Differences among models are also apparent, particularly in whether the metabolic suppression is intrinsic to the tissue or depends on the whole-animal response. While in these hypometabolic states, tissues from many animals are tolerant of hypoxia/anoxia, ischemia/reperfusion, and disuse. These natural models may, therefore, serve as valuable and instructive models for biomedical research.
Collapse
Affiliation(s)
- James F Staples
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
18
|
Cortés PA, Bacigalupe LD, Mondaca F, Desrosiers V, Blier PU. Mitochondrial phenotype of marsupial torpor: Fuel metabolic switch in the Chilean mouse-opossumThylamys elegans. ACTA ACUST UNITED AC 2015; 325:41-51. [DOI: 10.1002/jez.1994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Pablo Andres Cortés
- Instituto de Ciencias Ambientales y Evolutivas; Facultad de Ciencias; Universidad Austral de Chile; Campus Isla Teja Valdivia Chile
- Departamento de Ecología; Center of Applied Ecology and Sustainability; Facultad de Ciencias Biológicas; Universidad Católica de Chile; Santiago Chile
| | - Leonardo Daniel Bacigalupe
- Instituto de Ciencias Ambientales y Evolutivas; Facultad de Ciencias; Universidad Austral de Chile; Campus Isla Teja Valdivia Chile
| | - Fredy Mondaca
- Instituto de Ciencias Ambientales y Evolutivas; Facultad de Ciencias; Universidad Austral de Chile; Campus Isla Teja Valdivia Chile
| | - Véronique Desrosiers
- Département de Biologie; Laboratoire de Physiologie Animale Intégrative; Université du Québec; Rimouski QC Canada
| | - Pierre U. Blier
- Département de Biologie; Laboratoire de Physiologie Animale Intégrative; Université du Québec; Rimouski QC Canada
| |
Collapse
|
19
|
Schlegel A, Dutkowski P. Hypothermic liver perfusion. Liver Transpl 2015; 21 Suppl 1:S8-12. [PMID: 26334767 DOI: 10.1002/lt.24321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/26/2015] [Accepted: 08/31/2015] [Indexed: 02/07/2023]
Affiliation(s)
- Andrea Schlegel
- Department of Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Philipp Dutkowski
- Department of Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Rider MH. Role of AMP-activated protein kinase in metabolic depression in animals. J Comp Physiol B 2015; 186:1-16. [PMID: 26174210 DOI: 10.1007/s00360-015-0920-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/23/2015] [Accepted: 07/01/2015] [Indexed: 01/24/2023]
Abstract
AMP-activated protein kinase (AMPK) is a highly conserved eukaryotic protein serine/threonine kinase that controls cellular and whole body energy homoeostasis. AMPK is activated during energy stress by a rise in AMP:ATP ratio and maintains energy balance by phosphorylating targets to switch on catabolic ATP-generating pathways, while at the same time switching off anabolic ATP-consuming processes. Metabolic depression is a strategy used by many animals to survive environmental stress and has been extensively studied across phylogeny by comparative biochemists and physiologists, but the role of AMPK has only recently been addressed. This review first deals with the evolution of AMPK in eukaryotes (excluding plants and fungi) and its regulation. Changes in adenine nucleotides and AMPK activation are described in animals during environmental energy stress, before considering the involvement of AMPK in controlling β-oxidation, fatty acid synthesis, triacylglycerol mobilization and protein synthesis. Lastly, strategies are presented to validate the role of AMPK in mediating metabolic depression by phosphorylating downstream targets.
Collapse
Affiliation(s)
- Mark H Rider
- de Duve Institute and Université Catholique de Louvain, Avenue Hippocrate 75, 1200, Brussels, Belgium.
| |
Collapse
|
21
|
Staples JF. Metabolic suppression in mammalian hibernation: the role of mitochondria. ACTA ACUST UNITED AC 2015; 217:2032-6. [PMID: 24920833 DOI: 10.1242/jeb.092973] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hibernation evolved in some small mammals that live in cold environments, presumably to conserve energy when food supplies are low. Throughout the winter, hibernators cycle spontaneously between torpor, with low metabolism and near-freezing body temperatures, and euthermia, with high metabolism and body temperatures near 37°C. Understanding the mechanisms underlying this natural model of extreme metabolic plasticity is important for fundamental and applied science. During entrance into torpor, reductions in metabolic rate begin before body temperatures fall, even when thermogenesis is not active, suggesting active mechanisms of metabolic suppression, rather than passive thermal effects. Mitochondrial respiration is suppressed during torpor, especially when measured in liver mitochondria fuelled with succinate at 37°C in vitro. This suppression of mitochondrial metabolism appears to be invoked quickly during entrance into torpor when body temperature is high, but is reversed slowly during arousal when body temperature is low. This pattern may reflect body temperature-sensitive, enzyme-mediated post-translational modifications of oxidative phosphorylation complexes, for instance by phosphorylation or acetylation.
Collapse
Affiliation(s)
- James F Staples
- Department of Biology, University of Western Ontario, London, ON, Canada, N6A 5B8
| |
Collapse
|
22
|
Salminen A, Kauppinen A, Hiltunen M, Kaarniranta K. Krebs cycle intermediates regulate DNA and histone methylation: epigenetic impact on the aging process. Ageing Res Rev 2014; 16:45-65. [PMID: 24910305 DOI: 10.1016/j.arr.2014.05.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 05/20/2014] [Accepted: 05/29/2014] [Indexed: 02/01/2023]
Abstract
Many aging theories have proposed that mitochondria and energy metabolism have a major role in the aging process. There are recent studies indicating that Krebs cycle intermediates can shape the epigenetic landscape of chromatin by regulating DNA and histone methylation. A growing evidence indicates that epigenetics plays an important role in the regulation of healthspan but also is involved in the aging process. 2-Oxoglutarate (α-ketoglutarate) is a key metabolite in the Krebs cycle but it is also an obligatory substrate for 2-oxoglutarate-dependent dioxygenases (2-OGDO). The 2-OGDO enzyme family includes the major enzymes of DNA and histone demethylation, i.e. Ten-Eleven Translocation (TETs) and Jumonji C domain containing (JmjC) demethylases. In addition, 2-OGDO members can regulate collagen synthesis and hypoxic responses in a non-epigenetical manner. Interestingly, succinate and fumarate, also Krebs cycle intermediates, are potent inhibitors of 2-OGDO enzymes, i.e. the balance of Krebs cycle reactions can affect the level of DNA and histone methylation and thus control gene expression. We will review the epigenetic mechanisms through which Krebs cycle intermediates control the DNA and histone methylation. We propose that age-related disturbances in the Krebs cycle function induce stochastic epigenetic changes in chromatin structures which in turn promote the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Neurology, Kuopio University Hospital, P.O. Box 1777, FIN-70211 Kuopio, Finland.
| | - Anu Kauppinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 1777, FIN-70211 Kuopio, Finland
| | - Mikko Hiltunen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Neurology, Kuopio University Hospital, P.O. Box 1777, FIN-70211 Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 1777, FIN-70211 Kuopio, Finland
| |
Collapse
|
23
|
Cooper AN, Brown JCL, Staples JF. Are long chain acyl CoAs responsible for suppression of mitochondrial metabolism in hibernating 13-lined ground squirrels? Comp Biochem Physiol B Biochem Mol Biol 2014; 170:50-7. [PMID: 24561259 DOI: 10.1016/j.cbpb.2014.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/11/2014] [Accepted: 02/13/2014] [Indexed: 11/18/2022]
Abstract
Hibernation in 13-lined ground squirrels (Ictidomys tridecemlineatus) is associated with a substantial suppression of whole-animal metabolism. We compared the metabolism of liver mitochondria isolated from torpid ground squirrels with those from interbout euthermic (IBE; recently aroused from torpor) and summer euthermic conspecifics. Succinate-fuelled state 3 respiration, calculated relative to mitochondrial protein, was suppressed in torpor by 48% and 44% compared with IBE and summer, respectively. This suppression remains when respiration is expressed relative to cytochrome c oxidase activity. We hypothesized that this suppression was caused by inhibition of succinate transport at the dicarboxylate transporter (DCT) by long-chain fatty acyl CoAs that may accumulate during torpor. We predicted, therefore, that exogenous palmitoyl CoA would inhibit respiration in IBE more than in torpor. Palmitoyl CoA inhibited respiration ~70%, in both torpor and IBE. The addition of carnitine, predicted to reverse palmitoyl CoA suppression by facilitating its transport into the mitochondrial matrix, did not rescue the respiration rates in IBE or torpor. Liver mitochondrial activities of carnitine palmitoyl transferase did not differ among IBE, torpor and summer animals. Although palmitoyl CoA inhibits succinate-fuelled respiration, this suppression is likely not related exclusively to inhibition of the DCT, and may involve additional mitochondrial transporters such as the adenine-nucleotide transporter.
Collapse
Affiliation(s)
- Alex N Cooper
- Department of Biology, University of Western Ontario, London, ON N6A5B8, Canada
| | - Jason C L Brown
- Department of Biology, University of Western Ontario, London, ON N6A5B8, Canada
| | - James F Staples
- Department of Biology, University of Western Ontario, London, ON N6A5B8, Canada.
| |
Collapse
|
24
|
Hindle AG, Martin SL. Intrinsic circannual regulation of brown adipose tissue form and function in tune with hibernation. Am J Physiol Endocrinol Metab 2014; 306:E284-99. [PMID: 24326419 PMCID: PMC3920013 DOI: 10.1152/ajpendo.00431.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Winter hibernators repeatedly cycle between cold torpor and rewarming supported by nonshivering thermogenesis in brown adipose tissue (BAT). In contrast, summer animals are homeotherms, undergoing reproduction, growth, and fattening. This life history confers variability to BAT recruitment and activity. To address the components underlying prewinter enhancement and winter activation, we interrogated the BAT proteome in 13-lined ground squirrels among three summer and five winter states. We also examined mixed physiology in fall and spring individuals to test for ambient temperature and seasonal effects, as well as the timing of seasonal transitions. BAT form and function differ circannually in these animals, as evidenced by morphology and proteome dynamics. This intrinsic pattern distinguished homeothermic groups and early vs. late winter hibernators. Homeothermic variation derived from postemergence delay in growth and substrate biosynthesis. The heterothermic proteome varied less despite extreme winter physiological shifts and was optimized to exploit lipids by enhanced fatty acid binding, β-oxidation, and mitochondrial protein translocation. Surprisingly, ambient temperature did not affect the BAT proteome during transition seasons; rather, the pronounced summer-winter shift preceded environmental changes and phenotypic progression. During fall transition, differential regulation of two fatty acid binding proteins provides further evidence of recruitment and separates proteomic preparation from successful hibernation. Abundance of FABP4 correlates with torpor bout length throughout the year, clarifying its potential function in hibernation. Metabolically active BAT is a target for treating human obesity and metabolic disorders. Understanding the hibernator's extreme and seasonally distinct recruitment and activation control strategies offers untapped potential to identify novel, therapeutically relevant regulatory pathways.
Collapse
Affiliation(s)
- Allyson G Hindle
- Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | | |
Collapse
|
25
|
Substrate-specific changes in mitochondrial respiration in skeletal and cardiac muscle of hibernating thirteen-lined ground squirrels. J Comp Physiol B 2014; 184:401-14. [PMID: 24408585 DOI: 10.1007/s00360-013-0799-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 12/20/2013] [Accepted: 12/29/2013] [Indexed: 10/25/2022]
Abstract
During torpor, the metabolic rate (MR) of thirteen-lined ground squirrels (Ictidomys tridecemlineatus) is considerably lower relative to euthermia, resulting in part from temperature-independent mitochondrial metabolic suppression in liver and skeletal muscle, which together account for ~40% of basal MR. Although heart accounts for very little (<0.5%) of basal MR, in the present study, we showed that respiration rates were decreased up to 60% during torpor in both subsarcolemmal (SS) and intermyofibrillar (IM) mitochondria from cardiac muscle. We further demonstrated pronounced seasonal (summer vs. winter [i.e., interbout] euthermia) changes in respiration rates in both mitochondrial subpopulations in this tissue, consistent with a shift in fuel use away from carbohydrates and proteins and towards fatty acids and ketones. By contrast, these seasonal changes in respiration rates were not observed in either SS or IM mitochondria isolated from hind limb skeletal muscle. Both populations of skeletal muscle mitochondria, however, did exhibit metabolic suppression during torpor, and this suppression was 2- to 3-fold greater in IM mitochondria, which provide ATP for Ca(2+)- and myosin ATPases, the activities of which are likely quite low in skeletal muscle during torpor because animals are immobile. Finally, these changes in mitochondrial respiration rates were still evident when standardized to citrate synthase activity rather than to total mitochondrial protein.
Collapse
|
26
|
Reilly BD, Hickey AJ, Cramp RL, Franklin CE. Decreased hydrogen peroxide production and mitochondrial respiration in skeletal muscle but not cardiac muscle of the green-striped burrowing frog, a natural model of muscle disuse. J Exp Biol 2013; 217:1087-93. [DOI: 10.1242/jeb.096834] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Summary
Suppression of disuse-induced muscle atrophy has been associated with altered mitochondrial reactive oxygen species (ROS) production in mammals. However, despite extended hindlimb immobility aestivating animals exhibit little skeletal muscle atrophy compared with artificially-immobilised mammalian models. Therefore, we studied mitochondrial respiration and ROS (H2O2) production in permeabilised muscle fibres of the green-striped burrowing frog, Cyclorana alboguttata. Mitochondrial respiration within saponin-permeabilised skeletal and cardiac muscle fibres was measured concurrently with ROS production using high-resolution respirometry coupled to custom-made fluorometers. After four months of aestivation, C. alboguttata had significantly depressed whole body metabolism by approximately 70% relative to control (active) frogs, and mitochondrial respiration in saponin-permeabilised skeletal muscle fibres decreased by almost 50% both in the absence of ADP and during oxidative phosphorylation. Mitochondrial ROS production showed up to an 88% depression in aestivating skeletal muscle when malate, succinate and pyruvate were present at concentrations likely reflecting those in vivo. The percentage ROS released per O2 molecule consumed was also approximately 94 % less at these concentrations indicating an intrinsic difference in ROS production capacities during aestivation. We also examined mitochondrial respiration and ROS production in permeabilised cardiac muscle fibres and found that aestivating frogs maintained respiratory flux and ROS production at control levels. These results show that aestivating C. alboguttata has the capacity to independently regulate mitochondrial function in skeletal and cardiac muscles. Furthermore, this work indicates that ROS production can be suppressed in the disused skeletal muscle of aestivating frogs, which may in turn protect against potential oxidative damage and preserve skeletal muscle structure during aestivation and following arousal.
Collapse
|