1
|
Liu YJ, Yan S, Shen ZJ, Li Z, Zhang XF, Liu XM, Zhang QW, Liu XX. The expression of three opsin genes and phototactic behavior of Spodoptera exigua (Lepidoptera: Noctuidae): Evidence for visual function of opsin in phototaxis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 96:27-35. [PMID: 29625217 DOI: 10.1016/j.ibmb.2018.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
Phototaxis in nocturnal moths is widely utilized to control pest populations in practical production. However, as an elusive behavior, phototactic behavior is still not well understood. Determination of whether the opsin gene plays a key role in phototaxis is an interesting topic. This study was conducted to analyze expression levels and biological importance of three opsin genes (Se-uv, Se-bl, and Se-lw) and phototactic behavior of Spodoptera exigua. The three opsin genes exhibited higher expression levels during daytime, excluding Se-bl in females, whose expression tended to increase at night. And cycling of opsin gene levels tended to be upregulated at night, although the magnitude of increase in females was lower than that in males exposed to constant darkness. The results of western blotting were consistent with those of qRT-PCR. Furthermore, opsin gene expression was not influenced by light exposure during the scotophase, excluding Se-uv in males, and tended to be downregulated by starvation in females and copulation in both female and male moths. To determine the relationship between opsin gene expression and phototactic behavior, Se-lw was knocked down by RNA interference. Moths with one opsin gene knocked down showed enhanced expression of the other two opsin genes, which may play important roles in compensation in vision. The Se-lw-knockdown moths exhibited reduced phototactic efficiency to green light, suggesting that Se-LW contributes to phototaxis, and increases phototactic efficiency to green light. Our finding provides a sound theoretical basis for further investigation of visual expression pattern and phototactic mechanisms in nocturnal moths.
Collapse
Affiliation(s)
- Yan-Jun Liu
- Department of Entomology, China Agricultural University, Beijing, 100193, China
| | - Shuo Yan
- Department of Entomology, China Agricultural University, Beijing, 100193, China
| | - Zhong-Jian Shen
- Department of Entomology, China Agricultural University, Beijing, 100193, China
| | - Zhen Li
- Department of Entomology, China Agricultural University, Beijing, 100193, China
| | - Xin-Fang Zhang
- Changli Institute of Pomology, Academy of Agriculture and Forestry Sciences, Hebei, 066600, China
| | - Xiao-Ming Liu
- Department of Entomology, China Agricultural University, Beijing, 100193, China
| | - Qing-Wen Zhang
- Department of Entomology, China Agricultural University, Beijing, 100193, China
| | - Xiao-Xia Liu
- Department of Entomology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Li F, Qiao H, Fu H, Sun S, Zhang W, Jin S, Jiang S, Gong Y, Xiong Y, Wu Y, Hu Y, Shan D. Identification and characterization of opsin gene and its role in ovarian maturation in the oriental river prawn Macrobrachium nipponense. Comp Biochem Physiol B Biochem Mol Biol 2018; 218:1-12. [PMID: 29309912 DOI: 10.1016/j.cbpb.2017.12.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 01/19/2023]
Abstract
Opsins are photoreceptors with important roles in reproductive regulation in birds and fishes. In the present study, we identified an opsin gene from the eyes of the oriental river prawn Macrobrachium nipponense using expressed sequence tag analysis and rapid amplification of cDNA ends. The full-length transcript contained 1382 base pairs, encoding 375 amino acids. It was classified into the long-wavelength opsin group by phylogenetic analysis, and designated Mn-LW. Mn-LW expression demonstrated significant seasonal variation in somatic tissues from both male and female prawns, with the highest expression in the eyes, and expression also shown in the ovary. The expression profiles of Mn-LW in eyes and ovary were positively related to ovarian development. In situ hybridization showed that Mn-LW was present in retinular cells in the eye and oocytes in the ovary. Injection of Mn-LW dsRNA in vivo effectively down-regulated Mn-LW expression levels compared with control levels. Mn-LW dsRNA injection also significantly reduced vitellogenin (Vg) expression, indicating a close relationship between Mn-LW and Vg in ovarian development. These results suggest that Mn-LW may play an important role in Vg synthesis and accumulation during ovarian maturation in M. nipponense.
Collapse
Affiliation(s)
- Fei Li
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, PR China
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Hongtuo Fu
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| | - Shengming Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Yan Wu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Yuning Hu
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, PR China
| | - Dongyan Shan
- Shanghai Ocean University, Shanghai 201306, PR China
| |
Collapse
|
3
|
Battelle BA, Ryan JF, Kempler KE, Saraf SR, Marten CE, Warren WC, Minx PJ, Montague MJ, Green PJ, Schmidt SA, Fulton L, Patel NH, Protas ME, Wilson RK, Porter ML. Opsin Repertoire and Expression Patterns in Horseshoe Crabs: Evidence from the Genome of Limulus polyphemus (Arthropoda: Chelicerata). Genome Biol Evol 2016; 8:1571-89. [PMID: 27189985 PMCID: PMC4898813 DOI: 10.1093/gbe/evw100] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2016] [Indexed: 12/19/2022] Open
Abstract
Horseshoe crabs are xiphosuran chelicerates, the sister group to arachnids. As such, they are important for understanding the most recent common ancestor of Euchelicerata and the evolution and diversification of Arthropoda. Limulus polyphemus is the most investigated of the four extant species of horseshoe crabs, and the structure and function of its visual system have long been a major focus of studies critical for understanding the evolution of visual systems in arthropods. Likewise, studies of genes encoding Limulus opsins, the protein component of the visual pigments, are critical for understanding opsin evolution and diversification among chelicerates, where knowledge of opsins is limited, and more broadly among arthropods. In the present study, we sequenced and assembled a high quality nuclear genomic sequence of L. polyphemus and used these data to annotate the full repertoire of Limulus opsins. We conducted a detailed phylogenetic analysis of Limulus opsins, including using gene structure and synteny information to identify relationships among different opsin classes. We used our phylogeny to identify significant genomic events that shaped opsin evolution and therefore the visual system of Limulus We also describe the tissue expression patterns of the 18 opsins identified and show that transcripts encoding a number, including a peropsin, are present throughout the central nervous system. In addition to significantly extending our understanding of photosensitivity in Limulus and providing critical insight into the genomic evolution of horseshoe crab opsins, this work provides a valuable genomic resource for addressing myriad questions related to xiphosuran physiology and arthropod evolution.
Collapse
Affiliation(s)
- Barbara-Anne Battelle
- Whitney Laboratory for Marine Bioscience, Departments of Neuroscience and Biology, University of Florida
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida
| | - Karen E Kempler
- Whitney Laboratory for Marine Bioscience, Departments of Neuroscience and Biology, University of Florida
| | - Spencer R Saraf
- Whitney Laboratory for Marine Bioscience, Departments of Neuroscience and Biology, University of Florida Present address: School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY
| | - Catherine E Marten
- Whitney Laboratory for Marine Bioscience, Departments of Neuroscience and Biology, University of Florida Present address: Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL
| | - Wesley C Warren
- McDonnell Genome Institute, Washington University School of Medicine in St. Louis
| | - Patrick J Minx
- McDonnell Genome Institute, Washington University School of Medicine in St. Louis
| | - Michael J Montague
- McDonnell Genome Institute, Washington University School of Medicine in St. Louis
| | - Pamela J Green
- Department of Plant and Soil Sciences, School of Marine Science and Policy, Delaware Biotechnology Institute, University of Delaware
| | - Skye A Schmidt
- Department of Plant and Soil Sciences, School of Marine Science and Policy, Delaware Biotechnology Institute, University of Delaware
| | - Lucinda Fulton
- McDonnell Genome Institute, Washington University School of Medicine in St. Louis
| | - Nipam H Patel
- Department of Molecular Cell Biology, Center for Integrative Genomics, University of California, Berkley
| | - Meredith E Protas
- Department of Molecular Cell Biology, Center for Integrative Genomics, University of California, Berkley Present address: Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, CA
| | - Richard K Wilson
- McDonnell Genome Institute, Washington University School of Medicine in St. Louis
| | | |
Collapse
|
4
|
Macias-Muñoz A, Smith G, Monteiro A, Briscoe AD. Transcriptome-Wide Differential Gene Expression in Bicyclus anynana Butterflies: Female Vision-Related Genes Are More Plastic. Mol Biol Evol 2015; 33:79-92. [PMID: 26371082 DOI: 10.1093/molbev/msv197] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Vision is energetically costly to maintain. Consequently, over time many cave-adapted species downregulate the expression of vision genes or even lose their eyes and associated eye genes entirely. Alternatively, organisms that live in fluctuating environments, with different requirements for vision at different times, may evolve phenotypic plasticity for expression of vision genes. Here, we use a global transcriptomic and candidate gene approach to compare gene expression in the heads of a polyphenic butterfly. Bicyclus anynana have two seasonal forms that display sexual dimorphism and plasticity in eye morphology, and female-specific plasticity in opsin gene expression. Nonchoosy dry season females downregulate opsin expression, consistent with the high physiological cost of vision. To identify other genes associated with sexually dimorphic and seasonally plastic differences in vision, we analyzed RNA-sequencing data from whole head tissues. We identified two eye development genes (klarsicht and warts homologs) and an eye pigment biosynthesis gene (henna) differentially expressed between seasonal forms. By comparing sex-specific expression across seasonal forms, we found that klarsicht, warts, henna, and another eye development gene (domeless) were plastic in a female-specific manner. In a male-only analysis, white (w) was differentially expressed between seasonal forms. Reverse transcription polymerase chain reaction confirmed that warts and white are expressed in eyes only, whereas klarsicht, henna and domeless are expressed in both eyes and brain. We find that differential expression of eye development and eye pigment genes is associated with divergent eye phenotypes in B. anynana seasonal forms, and that there is a larger effect of season on female vision-related genes.
Collapse
Affiliation(s)
- Aide Macias-Muñoz
- Ecology and Evolutionary Biology, University of California, Irvine BEACON Center for the Study of Evolution in Action
| | - Gilbert Smith
- Ecology and Evolutionary Biology, University of California, Irvine BEACON Center for the Study of Evolution in Action
| | - Antónia Monteiro
- Biological Sciences, National University of Singapore, Singapore Yale-NUS College, Singapore
| | - Adriana D Briscoe
- Ecology and Evolutionary Biology, University of California, Irvine BEACON Center for the Study of Evolution in Action
| |
Collapse
|
5
|
|
6
|
Comparative transcriptomic analysis provides insights into the molecular basis of brachyurization and adaptation to benthic lifestyle in Eriocheir sinensis. Gene 2015; 558:88-98. [DOI: 10.1016/j.gene.2014.12.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/20/2014] [Accepted: 12/22/2014] [Indexed: 01/29/2023]
|
7
|
Battelle BA, Kempler KE, Saraf SR, Marten CE, Dugger DR, Speiser DI, Oakley TH. Opsins in Limulus eyes: characterization of three visible light-sensitive opsins unique to and co-expressed in median eye photoreceptors and a peropsin/RGR that is expressed in all eyes. J Exp Biol 2015; 218:466-79. [PMID: 25524988 PMCID: PMC4317242 DOI: 10.1242/jeb.116087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 12/09/2014] [Indexed: 11/20/2022]
Abstract
The eyes of the horseshoe crab Limulus polyphemus have long been used for studies of basic mechanisms of vision, and the structure and physiology of Limulus photoreceptors have been examined in detail. Less is known about the opsins Limulus photoreceptors express. We previously characterized a UV opsin (LpUVOps1) that is expressed in all three types of Limulus eyes (lateral compound eyes, median ocelli and larval eyes) and three visible light-sensitive rhabdomeric opsins (LpOps1, -2 and -5) that are expressed in Limulus lateral compound and larval eyes. Physiological studies showed that visible light-sensitive photoreceptors are also present in median ocelli, but the visible light-sensitive opsins they express were unknown. In the current study we characterize three newly identified, visible light-sensitive rhabdomeric opsins (LpOps6, -7 and -8) that are expressed in median ocelli. We show that they are ocellar specific and that all three are co-expressed in photoreceptors distinct from those expressing LpUVOps1. Our current findings show that the pattern of opsin expression in Limulus eyes is much more complex than previously thought and extend our previous observations of opsin co-expression in visible light-sensitive Limulus photoreceptors. We also characterize a Limulus peropsin/RGR (LpPerOps1). We examine the phylogenetic relationship of LpPerOps1 with other peropsins and RGRs, demonstrate that LpPerOps1 transcripts are expressed in each of the three types of Limulus eyes and show that the encoded protein is expressed in membranes of cells closely associated with photoreceptors in each eye type. These finding suggest that peropsin was in the opsin repertoire of euchelicerates.
Collapse
Affiliation(s)
- Barbara-Anne Battelle
- Whitney Laboratory for Marine Bioscience and Departments of Neuroscience and Biology, 9505 Ocean Shore Blvd, University of Florida, St Augustine, FL 32080, USA
| | - Karen E Kempler
- Whitney Laboratory for Marine Bioscience and Departments of Neuroscience and Biology, 9505 Ocean Shore Blvd, University of Florida, St Augustine, FL 32080, USA
| | - Spencer R Saraf
- Whitney Laboratory for Marine Bioscience and Departments of Neuroscience and Biology, 9505 Ocean Shore Blvd, University of Florida, St Augustine, FL 32080, USA
| | - Catherine E Marten
- Whitney Laboratory for Marine Bioscience and Departments of Neuroscience and Biology, 9505 Ocean Shore Blvd, University of Florida, St Augustine, FL 32080, USA
| | - Donald R Dugger
- Department of Ophthalmology, University of Florida, Gainesville, FL 32080, USA
| | - Daniel I Speiser
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106, USA Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Todd H Oakley
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
8
|
Yan S, Zhu J, Zhu W, Zhang X, Li Z, Liu X, Zhang Q. The expression of three opsin genes from the compound eye of Helicoverpa armigera (Lepidoptera: Noctuidae) is regulated by a circadian clock, light conditions and nutritional status. PLoS One 2014; 9:e111683. [PMID: 25353953 PMCID: PMC4213014 DOI: 10.1371/journal.pone.0111683] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 10/02/2014] [Indexed: 01/26/2023] Open
Abstract
Visual genes may become inactive in species that inhabit poor light environments, and the function and regulation of opsin components in nocturnal moths are interesting topics. In this study, we cloned the ultraviolet (UV), blue (BL) and long-wavelength-sensitive (LW) opsin genes from the compound eye of the cotton bollworm and then measured their mRNA levels using quantitative real-time PCR. The mRNA levels fluctuated over a daily cycle, which might be an adaptation of a nocturnal lifestyle, and were dependent on a circadian clock. Cycling of opsin mRNA levels was disturbed by constant light or constant darkness, and the UV opsin gene was up-regulated after light exposure. Furthermore, the opsin genes tended to be down-regulated upon starvation. Thus, this study illustrates that opsin gene expression is determined by multiple endogenous and exogenous factors and is adapted to the need for nocturnal vision, suggesting that color vision may play an important role in the sensory ecology of nocturnal moths.
Collapse
Affiliation(s)
- Shuo Yan
- Department of Entomology, China Agricultural University, Beijing, P.R. China
| | - Jialin Zhu
- Beijing Entry-Exit Inspection and Quarantine Bureau, Beijing, P.R. China
| | - Weilong Zhu
- Department of Entomology, China Agricultural University, Beijing, P.R. China
| | - Xinfang Zhang
- Department of Entomology, China Agricultural University, Beijing, P.R. China
| | - Zhen Li
- Department of Entomology, China Agricultural University, Beijing, P.R. China
| | - Xiaoxia Liu
- Department of Entomology, China Agricultural University, Beijing, P.R. China
- * E-mail: (XXL); (QWZ)
| | - Qingwen Zhang
- Department of Entomology, China Agricultural University, Beijing, P.R. China
- * E-mail: (XXL); (QWZ)
| |
Collapse
|
9
|
Battelle BA, Kempler KE, Harrison A, Dugger DR, Payne R. Opsin expression in Limulus eyes: a UV opsin is expressed in each eye type and co-expressed with a visible light-sensitive opsin in ventral larval eyes. ACTA ACUST UNITED AC 2014; 217:3133-45. [PMID: 24948643 DOI: 10.1242/jeb.107383] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The eyes of the horseshoe crab, Limulus polyphemus, are a model for studies of visual function and the visual systems of euarthropods. Much is known about the structure and function of L. polyphemus photoreceptors, much less about their photopigments. Three visible-light-sensitive L. polyphemus opsins were characterized previously (LpOps1, 2 and 5). Here we characterize a UV opsin (LpUVOps1) that is expressed in all three types of L. polyphemus eyes. It is expressed in most photoreceptors in median ocelli, the only L. polyphemus eyes in which UV sensitivity was previously detected, and in the dendrite of eccentric cells in lateral compound eyes. Therefore, eccentric cells, previously thought to be non-photosensitive second-order neurons, may actually be UV-sensitive photoreceptors. LpUVOps1 is also expressed in small photoreceptors in L. polyphemus ventral larval eyes, and intracellular recordings from these photoreceptors confirm that LpUVOps1 is an active, UV-sensitive photopigment. These photoreceptors also express LpOps5, which we demonstrate is an active, long-wavelength-sensitive photopigment. Thus small photoreceptors in ventral larval eyes, and probably those of the other larval eyes, have dual sensitivity to UV and visible light. Interestingly, the spectral tuning of small ventral photoreceptors may change day to night, because the level of LpOps5 in their rhabdoms is lower during the day than during the night, whereas LpUVOps1 levels show no diurnal change. These and previous findings show that opsin co-expression and the differential regulation of co-expressed opsins in rhabdoms is a common feature of L. polyphemus photoreceptors.
Collapse
Affiliation(s)
- Barbara-Anne Battelle
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA Departments of Neuroscience and Biology, University of Florida, Gainesville, FL 32611, USA
| | - Karen E Kempler
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA Departments of Neuroscience and Biology, University of Florida, Gainesville, FL 32611, USA
| | - Alexandra Harrison
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA Departments of Neuroscience and Biology, University of Florida, Gainesville, FL 32611, USA
| | - Donald R Dugger
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610, USA
| | - Richard Payne
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|