1
|
Martin TG, Leinwand LA. Molecular regulation of reversible cardiac remodeling: lessons from species with extreme physiological adaptations. J Exp Biol 2024; 227:jeb247445. [PMID: 39344503 PMCID: PMC11463965 DOI: 10.1242/jeb.247445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Some vertebrates evolved to have a remarkable capacity for anatomical and physiological plasticity in response to environmental challenges. One example of such plasticity can be found in the ambush-hunting snakes of the genus Python, which exhibit reversible cardiac growth with feeding. The predation strategy employed by pythons is associated with months-long fasts that are arrested by ingestion of large prey. Consequently, digestion compels a dramatic increase in metabolic rate and hypertrophy of multiple organs, including the heart. In this Review, we summarize the post-prandial cardiac adaptations in pythons at the whole-heart, cellular and molecular scales. We highlight circulating factors and cellular signaling pathways that are altered during digestion to affect cardiac form and function and propose possible mechanisms that may drive the post-digestion regression of cardiac mass. Adaptive physiological cardiac hypertrophy has also been observed in other vertebrates, including in fish acclimated to cold water, birds flying at high altitudes and exercising mammals. To reveal potential evolutionarily conserved features, we summarize the molecular signatures of reversible cardiac remodeling identified in these species and compare them with those of pythons. Finally, we offer a perspective on the potential of biomimetics targeting the natural biology of pythons as therapeutics for human heart disease.
Collapse
Affiliation(s)
- Thomas G. Martin
- Molecular, Cellular, and Developmental Biology Department, University of Colorado Boulder, Boulder, CO 80309, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Leslie A. Leinwand
- Molecular, Cellular, and Developmental Biology Department, University of Colorado Boulder, Boulder, CO 80309, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| |
Collapse
|
2
|
Jensen B, Wang T. The Elusive Hypertrophy of the Python Heart. Physiology (Bethesda) 2024; 39:0. [PMID: 38085014 DOI: 10.1152/physiol.00025.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 01/19/2024] Open
Abstract
The Burmese python, one of the world's largest snakes, has reached celebrity status for its dramatic physiological responses associated with digestion of enormous meals. The meals elicit a rapid gain of mass and function of most visceral organs, particularly the small intestine. There is also a manyfold elevation of oxygen consumption that demands the heart to deliver more oxygen. It therefore made intuitive sense when it was reported that the postprandial response entailed a 40% growth of heart mass that could accommodate a rise in stroke volume. Many studies, however, have not been able to reproduce the 40% growth of the heart. We collated published values on postprandial heart mass in pythons, which include several instances of no change in heart mass. On average, the heart mass is only 15% greater. The changes in heart mass did not correlate to the mass gain of the small intestine or peak oxygen consumption. Hemodynamic studies show that the rise in cardiac output does not require increased heart mass but can be fully explained by augmented cardiac filling and postprandial tachycardia. Under the assumption that hypertrophy is a contingent phenomenon, more recent experiments have employed two interventions such as feeding with a concomitant reduction in hematocrit. The results suggest that the postprandial response of the heart can be enhanced, but the 40% hypertrophy of the python heart remains elusive.
Collapse
Affiliation(s)
- Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Tobias Wang
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
Guagnoni IN, Armelin VA, da Silva Braga VH, Monteiro DA, Florindo LH. Cardiovascular responses and the role of the neurohumoral cardiac regulation during digestion in the herbivorous lizard Iguana iguana. J Exp Biol 2024; 227:jeb247105. [PMID: 38186316 DOI: 10.1242/jeb.247105] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/27/2023] [Indexed: 01/09/2024]
Abstract
Carnivorous reptiles exhibit an intense metabolic increment during digestion, which is accompanied by several cardiovascular adjustments responsible for meeting the physiological demands of the gastrointestinal system. Postprandial tachycardia, a well-documented phenomenon in these animals, is mediated by the withdrawal of vagal tone associated with the chronotropic effects of non-adrenergic and non-cholinergic (NANC) factors. However, herbivorous reptiles exhibit a modest metabolic increment during digestion and there is no information about postprandial cardiovascular adjustments. Considering the significant impact of feeding characteristics on physiological responses, we investigated cardiovascular and metabolic responses, as well as the neurohumoral mechanisms of cardiac control, in the herbivorous lizard Iguana iguana during digestion. We measured oxygen consumption rate (O2), heart rate (fH), mean arterial blood pressure (MAP), myocardial activity, cardiac autonomic tone, fH/MAP variability and baroreflex efficiency in both fasting and digesting animals before and after parasympathetic blockade with atropine followed by double autonomic blockade with atropine and propranolol. Our results revealed that the peak of O2 in iguanas was reached 24 h after feeding, accompanied by an increase in myocardial activity and a subtle tachycardia mediated exclusively by a reduction in cardiac parasympathetic activity. This represents the first reported case of postprandial tachycardia in digesting reptiles without the involvement of NANC factors. Furthermore, this withdrawal of vagal stimulation during digestion may reduce the regulatory range for short-term fH adjustments, subsequently intensifying the blood pressure variability as a consequence of limiting baroreflex efficiency.
Collapse
Affiliation(s)
- Igor Noll Guagnoni
- Department of Biological Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP 15054-000, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT - FAPESP/CNPq), São Paulo, SP 13506-900, Brazil
| | - Vinicius Araújo Armelin
- Department of Biological Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP 15054-000, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT - FAPESP/CNPq), São Paulo, SP 13506-900, Brazil
- Department of Physiology, Institute of Biosciences (IB), University of São Paulo (USP), São Paulo, SP 05508-090, Brazil
| | - Victor Hugo da Silva Braga
- Department of Biological Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP 15054-000, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT - FAPESP/CNPq), São Paulo, SP 13506-900, Brazil
| | - Diana Amaral Monteiro
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), Rodovia Washington Luiz, km 235, São Carlos, SP 13565-905, Brazil
| | - Luiz Henrique Florindo
- Department of Biological Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP 15054-000, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT - FAPESP/CNPq), São Paulo, SP 13506-900, Brazil
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), Rodovia Washington Luiz, km 235, São Carlos, SP 13565-905, Brazil
| |
Collapse
|
4
|
Tan Y, Martin TG, Harrison BC, Leinwand LA. Utility of the burmese Python as a model for studying plasticity of extreme physiological systems. J Muscle Res Cell Motil 2023; 44:95-106. [PMID: 36316565 PMCID: PMC10149580 DOI: 10.1007/s10974-022-09632-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/30/2022] [Indexed: 03/18/2023]
Abstract
Non-traditional animal models present an opportunity to discover novel biology that has evolved to allow such animals to survive in extreme environments. One striking example is the Burmese python (Python molurus bivittatus), which exhibits extreme physiological adaptation in various metabolic organs after consuming a large meal following long periods of fasting. The response to such a large meal in pythons involves a dramatic surge in metabolic rate, lipid overload in plasma, and massive but reversible organ growth through the course of digestion. Multiple studies have reported the physiological responses in post-prandial pythons, while the specific molecular control of these processes is less well-studied. Investigating the mechanisms that coordinate organ growth and adaptive responses offers the opportunity to gain novel insight that may be able to treat various pathologies in humans. Here, we summarize past research on the post-prandial physiological changes in the Burmese python with a focus on the gastrointestinal tract, heart, and liver. Specifically, we address our recent molecular discoveries in the post-prandial python liver which demonstrate transient adaptations that may reveal new therapeutic targets. Lastly, we explore new biology of the aquaporin 7 gene that is potently upregulated in mammalian cardiac myocytes by circulating factors in post-prandial python plasma.
Collapse
Affiliation(s)
- Yuxiao Tan
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder. 3415 Colorado Ave, UCB 596, 80309, Boulder, CO, USA
| | - Thomas G Martin
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder. 3415 Colorado Ave, UCB 596, 80309, Boulder, CO, USA
| | - Brooke C Harrison
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder. 3415 Colorado Ave, UCB 596, 80309, Boulder, CO, USA
| | - Leslie A Leinwand
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder. 3415 Colorado Ave, UCB 596, 80309, Boulder, CO, USA.
| |
Collapse
|
5
|
Josimovich JM, Falk BG, Grajal-Puche A, Hanslowe EB, Bartoszek IA, Reed RN, Currylow AF. Clutch may predict growth of hatchling Burmese pythons better than food availability or sex. Biol Open 2021; 10:273482. [PMID: 34796905 PMCID: PMC8609237 DOI: 10.1242/bio.058739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/21/2021] [Indexed: 12/20/2022] Open
Abstract
Identifying which environmental and genetic factors affect growth pattern phenotypes can help biologists predict how organisms distribute finite energy resources in response to varying environmental conditions and physiological states. This information may be useful for monitoring and managing populations of cryptic, endangered, and invasive species. Consequently, we assessed the effects of food availability, clutch, and sex on the growth of invasive Burmese pythons (Python bivittatus Kuhl) from the Greater Everglades Ecosystem in Florida, USA. Though little is known from the wild, Burmese pythons have been physiological model organisms for decades, with most experimental research sourcing individuals from the pet trade. Here, we used 60 hatchlings collected as eggs from the nests of two wild pythons, assigned them to High or Low feeding treatments, and monitored growth and meal consumption for 12 weeks, a period when pythons are thought to grow very rapidly. None of the 30 hatchlings that were offered food prior to their fourth week post-hatching consumed it, presumably because they were relying on internal yolk stores. Although only two clutches were used in the experiment, we found that nearly all phenotypic variation was explained by clutch rather than feeding treatment or sex. Hatchlings from clutch 1 (C1) grew faster and were longer, heavier, in better body condition, ate more frequently, and were bolder than hatchlings from clutch 2 (C2), regardless of food availability. On average, C1 and C2 hatchling snout-vent length (SVL) and weight grew 0.15 cm d−1 and 0.10 cm d−1, and 0.20 g d−1 and 0.03 g d−1, respectively. Additional research may be warranted to determine whether these effects remain with larger clutch sample sizes and to identify the underlying mechanisms and fitness implications of this variation to help inform risk assessments and management. This article has an associated First Person interview with the first author of the paper. Summary: Hatchling pythons from an invasive population displayed substantial phenotypic variation in morphometrics, growth rates, and behaviors. This information may be useful for managing populations of cryptic, endangered, and invasive species.
Collapse
Affiliation(s)
- Jillian M Josimovich
- U.S. Geological Survey, Fort Collins Science Center - South Florida Field Station, 40001 SR 9336, Homestead, FL 33034, USA
| | - Bryan G Falk
- U.S. Geological Survey, Fort Collins Science Center - South Florida Field Station, 40001 SR 9336, Homestead, FL 33034, USA
| | - Alejandro Grajal-Puche
- U.S. Geological Survey, Fort Collins Science Center - South Florida Field Station, 40001 SR 9336, Homestead, FL 33034, USA
| | - Emma B Hanslowe
- U.S. Geological Survey, Fort Collins Science Center - South Florida Field Station, 40001 SR 9336, Homestead, FL 33034, USA
| | | | - Robert N Reed
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO 80526, USA
| | - Andrea F Currylow
- U.S. Geological Survey, Fort Collins Science Center - South Florida Field Station, 40001 SR 9336, Homestead, FL 33034, USA
| |
Collapse
|
6
|
March DT, Marshall K, Swan G, Gerlach T, Smith H, Blyde D, Ariel E, Christidis L, Kelaher BP. The use of echocardiography as a health assessment tool in green sea turtles (Chelonia mydas). Aust Vet J 2020; 99:46-54. [PMID: 33227826 DOI: 10.1111/avj.13039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 10/25/2020] [Indexed: 12/13/2022]
Abstract
There are limited techniques available to assess the health of sea turtles as physical examination has little correlation to clinical findings, and blood reference intervals are broad and provide limited prognostic significance. Advances in the portability of ultrasound machines allow echocardiography to be increasingly used in the health assessments of wild animals. This study performed blood analysis and echocardiograms on 11 green sea turtles upon admission to a rehabilitation clinic and six animals before release. Significant differences were seen between groups, with admission animals having significantly smaller diameters of the cavum arteriosum at systole and diastole, smaller E-waves and an increased fractional shortening. Pre-release animals displayed significant increases in the maximum blood velocities of both the pulmonary artery and the left aorta. Significant negative correlations were seen between fractional shortening and uric acid and between the velocity time integral of the pulmonary artery and urea. The pulmonary artery velocity time integral was also significantly correlated to the E wave. Furthermore, there was asynchrony between the cavum arteriosum and the cavum pulmonale and the detection of a parasitic granuloma in the ventricular outflow tract of one animal. Overall, the results suggest that cardiac function in stranded green sea turtles is significantly impaired and that echocardiography has applications in the health assessments of green sea turtles.
Collapse
Affiliation(s)
- D T March
- National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia.,Dolphin Marine Rescue, Veterinary Department, Coffs Harbour, New South Wales, Australia
| | - K Marshall
- Dolphin Marine Rescue, Veterinary Department, Coffs Harbour, New South Wales, Australia
| | - G Swan
- Mid North Coast Cardiac Services, Medical Imaging Department, Coffs Harbour, New South Wales, Australia
| | - T Gerlach
- Veterinary Specialty Centre, Cardiology Department, Chicago, Illinois, USA
| | - H Smith
- Massey University, College of Sciences, Palmerston North, New Zealand
| | - D Blyde
- Veterinary Department, Sea World, Sea World Drive, Gold Coast, Queensland, Australia
| | - E Ariel
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - L Christidis
- National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - B P Kelaher
- National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
| |
Collapse
|
7
|
Historical Assumptions about the Predation Patterns of Yellow Anacondas (Eunectes notaeus): Are They Infrequent Feeders? J HERPETOL 2019. [DOI: 10.1670/18-089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Filogonio R, Wang T, Danielsen CC. Analysis of vascular mechanical properties of the yellow anaconda reveals increased elasticity and distensibility of the pulmonary artery during digestion. ACTA ACUST UNITED AC 2018; 221:jeb.177766. [PMID: 29941610 DOI: 10.1242/jeb.177766] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/21/2018] [Indexed: 12/26/2022]
Abstract
In animals with functional division of blood systemic and pulmonary pressures, such as mammals, birds, crocodilians and a few non-crocodilian reptiles, the vessel walls of systemic and pulmonary arteries are exquisitely adapted to endure different pressures during the cardiac cycle, systemic arteries being stronger and stiffer than pulmonary arteries. However, the typical non-crocodilian reptile heart possesses an undivided ventricle that provides similar systolic blood pressure to both circuits. This raises the question whether in these species the systemic and pulmonary mechanical vascular properties are similar. Snakes also display large organ plasticity and increased cardiac output in response to digestion, and we speculate how the vascular circuit would respond to this further stress. We addressed these questions by testing the mechanical vascular properties of the dorsal aorta and the right pulmonary artery of fasted and fed yellow anacondas, Eunectes notaeus, a snake without functional ventricular separation that also exhibits large metabolic and cardiovascular responses to digestion. Similar to previous studies, the dorsal aorta was thicker, stronger, stiffer and more elastic than the pulmonary artery. However, unlike any other species studied so far, the vascular distensibility (i.e. the relative volume change given a pressure change) was similar for the two circuits. Most striking, the pulmonary artery elasticity (i.e. its capacity to resume its original form after being stretched) and distensibility increased during digestion, which suggests that this circuit is remodeled to accommodate the larger stroke volume and enhance the Windkessel effect, thus providing a more constant blood perfusion during digestion.
Collapse
Affiliation(s)
- Renato Filogonio
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| | - Tobias Wang
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| | | |
Collapse
|
9
|
Pokorný M, Mrázová I, Malý J, Pirk J, Netuka I, Vaňourková Z, Doleželová Š, Červenková L, Maxová H, Melenovský V, Šochman J, Sadowski J, Červenka L. Effects of increased myocardial tissue concentration of myristic, palmitic and palmitoleic acids on the course of cardiac atrophy of the failing heart unloaded by heterotopic transplantation. Physiol Res 2018; 67:13-30. [PMID: 29137478 DOI: 10.33549/physiolres.933637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The present experiments were performed to evaluate if increased heart tissue concentration of fatty acids, specifically myristic, palmitic and palmitoleic acids that are believed to promote physiological heart growth, can attenuate the progression of unloading-induced cardiac atrophy in rats with healthy and failing hearts. Heterotopic abdominal heart transplantation (HT(x)) was used as a model for heart unloading. Cardiac atrophy was assessed from the ratio of the native- to-transplanted heart weight (HW). The degree of cardiac atrophy after HT(x) was determined on days 7, 14, 21 and 28 after HT(x) in recipients of either healthy or failing hearts. HT(x) of healthy hearts resulted in 23+/-3, 46+/-3, 48+/-4 and 46+/-4 % HW loss at the four time-points. HT(x) of the failing heart resulted in even greater HW losses, of 46+/-4, 58+/-3, 66+/-2 and 68+/-4 %, respectively (P<0.05). Activation of "fetal gene cardiac program" (e.g. beta myosin heavy chain gene expression) and "genes reflecting cardiac remodeling" (e.g. atrial natriuretic peptide gene expression) after HT(x) was greater in failing than in healthy hearts (P<0.05 each time). Exposure to isocaloric high sugar diet caused significant increases in fatty acid concentrations in healthy and in failing hearts. However, these increases were not associated with any change in the course of cardiac atrophy, similarly in healthy and post-HT(x) failing hearts. We conclude that increasing heart tissue concentrations of the fatty acids allegedly involved in heart growth does not attenuate the unloading-induced cardiac atrophy.
Collapse
Affiliation(s)
- M Pokorný
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Bogan JE. Measuring Cardiac Troponin I in Snake Cardiac Muscle: A Pilot Study. ACTA ACUST UNITED AC 2017. [DOI: 10.5818/16-12-101.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- James E. Bogan
- Central Florida Zoo & Botanical Gardens, 3755 NW Hwy 17-92, Sanford, FL 32771, USA
| |
Collapse
|
11
|
Duan J, Sanggaard KW, Schauser L, Lauridsen SE, Enghild JJ, Schierup MH, Wang T. Transcriptome analysis of the response of Burmese python to digestion. Gigascience 2017; 6:1-18. [PMID: 28873961 PMCID: PMC5597892 DOI: 10.1093/gigascience/gix057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 04/12/2017] [Accepted: 07/06/2017] [Indexed: 12/13/2022] Open
Abstract
Exceptional and extreme feeding behaviour makes the Burmese python (Python bivittatus) an interesting model to study physiological remodelling and metabolic adaptation in response to refeeding after prolonged starvation. In this study, we used transcriptome sequencing of 5 visceral organs during fasting as well as 24 hours and 48 hours after ingestion of a large meal to unravel the postprandial changes in Burmese pythons. We first used the pooled data to perform a de novo assembly of the transcriptome and supplemented this with a proteomic survey of enzymes in the plasma and gastric fluid. We constructed a high-quality transcriptome with 34 423 transcripts, of which 19 713 (57%) were annotated. Among highly expressed genes (fragments per kilo base per million sequenced reads > 100 in 1 tissue), we found that the transition from fasting to digestion was associated with differential expression of 43 genes in the heart, 206 genes in the liver, 114 genes in the stomach, 89 genes in the pancreas, and 158 genes in the intestine. We interrogated the function of these genes to test previous hypotheses on the response to feeding. We also used the transcriptome to identify 314 secreted proteins in the gastric fluid of the python. Digestion was associated with an upregulation of genes related to metabolic processes, and translational changes therefore appear to support the postprandial rise in metabolism. We identify stomach-related proteins from a digesting individual and demonstrate that the sensitivity of modern liquid chromatography/tandem mass spectrometry equipment allows the identification of gastric juice proteins that are present during digestion.
Collapse
Affiliation(s)
- Jinjie Duan
- Bioinformatics Research Center, Aarhus University, C.F. Moellers Alle 8, Aarhus C, Denmark
| | - Kristian Wejse Sanggaard
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, Aarhus C, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, Denmark
| | | | - Sanne Enok Lauridsen
- Department of Bioscience, Aarhus University, Ny Munkegade 116, Aarhus C, Denmark
| | - Jan J. Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, Aarhus C, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, Denmark
| | - Mikkel Heide Schierup
- Bioinformatics Research Center, Aarhus University, C.F. Moellers Alle 8, Aarhus C, Denmark
- Department of Bioscience, Aarhus University, Ny Munkegade 116, Aarhus C, Denmark
| | - Tobias Wang
- Department of Bioscience, Aarhus University, Ny Munkegade 116, Aarhus C, Denmark
| |
Collapse
|
12
|
Enok S, Leite GSPC, Leite CAC, Gesser H, Hedrick MS, Wang T. Improved cardiac filling facilitates the postprandial elevation of stroke volume in Python regius. ACTA ACUST UNITED AC 2016; 219:3009-3018. [PMID: 27445352 DOI: 10.1242/jeb.142729] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/18/2016] [Indexed: 01/10/2023]
Abstract
To accommodate the pronounced metabolic response to digestion, pythons increase heart rate and elevate stroke volume, where the latter has been ascribed to a massive and fast cardiac hypertrophy. However, numerous recent studies show that heart mass rarely increases, even upon ingestion of large meals, and we therefore explored the possibility that a rise in mean circulatory filling pressure (MCFP) serves to elevate venous pressure and cardiac filling during digestion. To this end, we measured blood flows and pressures in anaesthetized Python regius The anaesthetized snakes exhibited the archetypal tachycardia as well as a rise in both venous pressure and MCFP that fully account for the approximate doubling of stroke volume. There was no rise in blood volume and the elevated MCFP must therefore stem from increased vascular tone, possibly by means of increased sympathetic tone on the veins. Furthermore, although both venous pressure and MCFP increased during volume loading, there was no evidence that postprandial hearts were endowed with an additional capacity to elevate stroke volume. In vitro measurements of force development of paced ventricular strips also failed to reveal signs of increased contractility, but the postprandial hearts had higher activities of cytochrome oxidase and pyruvate kinase, which probably serves to sustain the rise in cardiac work during digestion.
Collapse
Affiliation(s)
- Sanne Enok
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus 8000, Denmark
| | - Gabriella S P C Leite
- Department of Physiological Sciences, Federal University of São Carlos, São Paulo 13565-905, Brazil
| | - Cléo A C Leite
- Department of Physiological Sciences, Federal University of São Carlos, São Paulo 13565-905, Brazil
| | - Hans Gesser
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus 8000, Denmark
| | - Michael S Hedrick
- Department of Biological Sciences, California State University, East Bay, Hayward, CA 94542, USA
| | - Tobias Wang
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|