1
|
Serra PA, Arrigo P, Bacciu A, Zuncheddu D, Deliperi R, Antón Viana D, Monti P, Varoni MV, Sotgiu MA, Bandiera P, Rocchitta G. Real-time telemetry monitoring of oxygen in the central complex of freely-walking Gromphadorhina portentosa. PLoS One 2019; 14:e0224932. [PMID: 31710629 PMCID: PMC6844484 DOI: 10.1371/journal.pone.0224932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/24/2019] [Indexed: 11/21/2022] Open
Abstract
A new telemetric system for the electrochemical monitoring of dissolved oxygen is showed. The device, connected with two amperometric sensors, has been successfully applied to the wireless detection of the extracellular oxygen in the central complex of freely-walking Gromphadorhina portentosa. The unit was composed of a potentiostat, a two-channel sensor conditioning circuit, a microprocessor module, and a wireless serial transceiver. The amperometric signals were digitalized and sent to a notebook using a 2.4 GHz transceiver while a serial-to-USB converter was connected to a second transceiver for completing the communication bridge. The software, running on the laptop, allowed to save and graph the oxygen signals. The electronics showed excellent stability and the acquired data was linear in a range comprised between 0 and -165 nA, covering the entire range of oxygen concentrations. A series of experiments were performed to explore the dynamics of dissolved oxygen by exposing the animals to different gases (nitrogen, oxygen and carbon dioxide), to low temperature and anesthetic agents (chloroform and triethylamine). The resulting data are in agreement with previous O2 changes recorded in the brain of awake rats and mice. The proposed system, based on simple and inexpensive components, can constitute a new experimental model for the exploration of central complex neurochemistry and it can also work with oxidizing sensors and amperometric biosensors.
Collapse
Affiliation(s)
- Pier Andrea Serra
- Department of Medical, Surgical and Experimental Medicine, Medical School, University of Sassari, Sassari, Italy
- Institute of Sciences of Food Production, Italian National Research Council, Sassari, Italy
- Mediterranean Center for Disease Control, University of Sassari, Sassari, Italy
- * E-mail:
| | - Paola Arrigo
- Department of Medical, Surgical and Experimental Medicine, Medical School, University of Sassari, Sassari, Italy
| | - Andrea Bacciu
- Department of Medical, Surgical and Experimental Medicine, Medical School, University of Sassari, Sassari, Italy
| | - Daniele Zuncheddu
- Department of Medical, Surgical and Experimental Medicine, Medical School, University of Sassari, Sassari, Italy
| | - Riccardo Deliperi
- Department of Medical, Surgical and Experimental Medicine, Medical School, University of Sassari, Sassari, Italy
| | - Diego Antón Viana
- Department of Medical, Surgical and Experimental Medicine, Medical School, University of Sassari, Sassari, Italy
| | - Patrizia Monti
- Department of Medical, Surgical and Experimental Medicine, Medical School, University of Sassari, Sassari, Italy
| | - Maria Vittoria Varoni
- Department of Veterinary Medicine, Medical School, University of Sassari, Sassari, Italy
| | | | - Pasquale Bandiera
- Department of Biomedical Sciences, Medical School, University of Sassari, Sassari, Italy
| | - Gaia Rocchitta
- Department of Medical, Surgical and Experimental Medicine, Medical School, University of Sassari, Sassari, Italy
- Mediterranean Center for Disease Control, University of Sassari, Sassari, Italy
| |
Collapse
|
2
|
Talal S, Ayali A, Gefen E. Respiratory gas levels interact to control ventilatory motor patterns in isolated locust ganglia. ACTA ACUST UNITED AC 2019; 222:jeb.195388. [PMID: 30910833 DOI: 10.1242/jeb.195388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 03/19/2019] [Indexed: 11/20/2022]
Abstract
Large insects actively ventilate their tracheal system even at rest, using abdominal pumping movements, which are controlled by a central pattern generator (CPG) in the thoracic ganglia. We studied the effects of respiratory gases on the ventilatory rhythm by isolating the thoracic ganglia and perfusing its main tracheae with various respiratory gas mixtures. Fictive ventilation activity was recorded from motor nerves controlling spiracular and abdominal ventilatory muscles. Both hypoxia and hypercapnia increased the ventilation rate, with the latter being much more potent. Sub-threshold hypoxic and hypercapnic levels were still able to modulate the rhythm as a result of interactions between the effects of the two respiratory gases. Additionally, changing the oxygen levels in the bathing saline affected ventilation rate, suggesting a modulatory role for haemolymph oxygen. Central sensing of both respiratory gases as well as interactions of their effects on the motor output of the ventilatory CPG reported here indicate convergent evolution of respiratory control among terrestrial animals of distant taxa.
Collapse
Affiliation(s)
- Stav Talal
- School of Zoology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Amir Ayali
- School of Zoology, Tel Aviv University, Tel Aviv 6997801, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Eran Gefen
- Department of Biology, University of Haifa-Oranim, Tivon 3600600, Israel
| |
Collapse
|
3
|
Moon KL, Aitkenhead IJ, Fraser CI, Chown SL. Can a Terrestrial Ectoparasite Disperse with Its Marine Host? Physiol Biochem Zool 2019; 92:163-176. [PMID: 30694106 DOI: 10.1086/701726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
One of the most extreme examples of parasite adaptation comes from terrestrial ectoparasites exploiting marine hosts. Despite the ubiquity of such ectoparasitism and its ecological and evolutionary importance, investigations of the responses of ectoparasites to conditions encountered on their hosts are rare. In the case of penguins and their ticks, current understanding suggests that ticks freely parasitize their hosts on land but are incapable of surviving extended oceanic journeys. We examined this conjecture by assessing the physiological capacity of little penguin ticks to endure at-sea foraging and dispersal events of their hosts. Survival in penguins ticks was not significantly compromised by exposure to depths commonly associated with host dives (40 and 60 m), repeated seawater exposure relevant to the most common (30 s) and longest (120 s) recorded host dives, or extended (48 h) exposure to seawater. Mean (±SD) closed-phase durations in adult and nymphal ticks exhibiting discontinuous gas exchange ( <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>339</mml:mn><mml:mo>±</mml:mo><mml:mn>237</mml:mn></mml:mrow></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>240</mml:mn><mml:mo>±</mml:mo><mml:mn>295</mml:mn></mml:mrow></mml:math> s, respectively) exceeded that of the maximum recorded host dive duration (120 s). Normoxic-anoxic-normoxic respirometry also confirmed spiracle closure. Mean metabolic rates ( <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>0.354</mml:mn><mml:mo>±</mml:mo><mml:mn>0.220</mml:mn></mml:mrow></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>4.853</mml:mn><mml:mo>±</mml:mo><mml:mn>4.930</mml:mn></mml:mrow></mml:math> μL/h at 25°C for unfed and fed adult females, respectively) were significantly influenced by temperature; optimal and LT50 temperatures for adult ticks and fed nymphal ticks were typically higher than swimming penguin body temperatures. These findings suggest that marine host dispersal is unlikely to present an insurmountable barrier to long-distance tick dispersal. Such dispersal has important implications for evolutionary theory, conservation, and epidemiology.
Collapse
|
4
|
Terblanche JS, Woods HA. Why do models of insect respiratory patterns fail? J Exp Biol 2018; 221:221/13/jeb130039. [DOI: 10.1242/jeb.130039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
ABSTRACT
Insects exchange respiratory gases using an astonishing diversity of patterns. Of these, discontinuous gas exchange cycles (DGCs) have received the most study, but there are many other patterns exhibited intraspecifically and interspecifically. Moreover, some individual insects transition between patterns based on poorly understood combinations of internal and external factors. Why have biologists failed, so far, to develop a framework capable of explaining this diversity? Here, we propose two answers. The first is that the framework will have to be simultaneously general and highly detailed. It should describe, in a universal way, the physical and chemical processes that any insect uses to exchange gases through the respiratory system (i.e. tracheal tubes and spiracles) while simultaneously containing enough morphological, physiological and neural detail that it captures the specifics of patterns exhibited by any species or individual. The second difficulty is that the framework will have to provide ultimate, evolutionary explanations for why patterns vary within and among insects as well as proximate physiological explanations for how different parts of the respiratory system are modified to produce that diversity. Although biologists have made significant progress on all of these problems individually, there has been little integration among approaches. We propose that renewed efforts be undertaken to integrate across levels and approaches with the goal of developing a new class of general, flexible models capable of explaining a greater fraction of the observed diversity of respiratory patterns.
Collapse
Affiliation(s)
- John S. Terblanche
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch, South Africa
| | - H. Arthur Woods
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
5
|
Talal S, Gefen E, Ayali A. Intricate but tight coupling of spiracular activity and abdominal ventilation during locust discontinuous gas exchange cycles. ACTA ACUST UNITED AC 2018; 221:jeb.174722. [PMID: 29386224 DOI: 10.1242/jeb.174722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/25/2018] [Indexed: 11/20/2022]
Abstract
Discontinuous gas exchange (DGE) is the best studied among insect gas exchange patterns. DGE cycles comprise three phases, which are defined by their spiracular state: closed, flutter and open. However, spiracle status has rarely been monitored directly; rather, it is often assumed based on CO2 emission traces. In this study, we directly recorded electromyogram (EMG) signals from the closer muscle of the second thoracic spiracle and from abdominal ventilation muscles in a fully intact locust during DGE. Muscular activity was monitored simultaneously with CO2 emission, under normoxia and under various experimental oxic conditions. Our findings indicate that locust DGE does not correspond well with the commonly described three-phase cycle. We describe unique DGE-related ventilation motor patterns, coupled to spiracular activity. During the open phase, when CO2 emission rate is highest, the thoracic spiracles do not remain open; rather, they open and close rapidly. This fast spiracle activity coincides with in-phase abdominal ventilation, while alternating with the abdominal spiracle and thus facilitating a unidirectional air flow along the main trachea. A change in the frequency of rhythmic ventilation during the open phase suggests modulation by intra-tracheal CO2 levels. A second, slow ventilatory movement pattern probably serves to facilitate gas diffusion during spiracle closure. Two flutter-like patterns are described in association with the different types of ventilatory activity. We offer a modified mechanistic model for DGE in actively ventilating insects, incorporating ventilatory behavior and changes in spiracle state.
Collapse
Affiliation(s)
- Stav Talal
- School of Zoology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eran Gefen
- Department of Biology, University of Haifa-Oranim, Tivon 36006, Israel
| | - Amir Ayali
- School of Zoology, Tel Aviv University, Tel Aviv 6997801, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
6
|
Gudowska A, Schramm BW, Czarnoleski M, Kozłowski J, Bauchinger U. Physical mechanism or evolutionary trade-off? Factors dictating the relationship between metabolic rate and ambient temperature in carabid beetles. J Therm Biol 2017; 68:89-95. [DOI: 10.1016/j.jtherbio.2016.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/05/2016] [Accepted: 11/11/2016] [Indexed: 12/01/2022]
|
7
|
Boardman L, Sørensen JG, Koštál V, Šimek P, Terblanche JS. Cold tolerance is unaffected by oxygen availability despite changes in anaerobic metabolism. Sci Rep 2016; 6:32856. [PMID: 27619175 PMCID: PMC5020647 DOI: 10.1038/srep32856] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 08/10/2016] [Indexed: 12/18/2022] Open
Abstract
Insect cold tolerance depends on their ability to withstand or repair perturbations in cellular homeostasis caused by low temperature stress. Decreased oxygen availability (hypoxia) can interact with low temperature tolerance, often improving insect survival. One mechanism proposed for such responses is that whole-animal cold tolerance is set by a transition to anaerobic metabolism. Here, we provide a test of this hypothesis in an insect model system (Thaumatotibia leucotreta) by experimental manipulation of oxygen availability while measuring metabolic rate, critical thermal minimum (CTmin), supercooling point and changes in 43 metabolites in moth larvae at three key timepoints (before, during and after chill coma). Furthermore, we determined the critical oxygen partial pressure below which metabolic rate was suppressed (c. 4.5 kPa). Results showed that altering oxygen availability did not affect (non-lethal) CTmin nor (lethal) supercooling point. Metabolomic profiling revealed the upregulation of anaerobic metabolites and alterations in concentrations of citric acid cycle intermediates during and after chill coma exposure. Hypoxia exacerbated the anaerobic metabolite responses induced by low temperatures. These results suggest that cold tolerance of T. leucotreta larvae is not set by oxygen limitation, and that anaerobic metabolism in these larvae may contribute to their ability to survive in necrotic fruit.
Collapse
Affiliation(s)
- Leigh Boardman
- Department of Conservation Ecology and Entomology, Centre for Invasion Biology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Jesper G Sørensen
- Section for Genetics, Ecology &Evolution, Department of Bioscience, Aarhus University, Ny Munkegade 116, DK-8000 Aarhus C, Denmark
| | - Vladimír Koštál
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Petr Šimek
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - John S Terblanche
- Department of Conservation Ecology and Entomology, Centre for Invasion Biology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| |
Collapse
|
8
|
King KJ, Sinclair BJ. Water loss in tree weta (Hemideina): adaptation to the montane environment and a test of the melanisation-desiccation resistance hypothesis. ACTA ACUST UNITED AC 2016; 218:1995-2004. [PMID: 26157158 DOI: 10.1242/jeb.118711] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Montane insects are at a higher risk of desiccation than their lowland counterparts and are expected to have evolved reduced water loss. Hemideina spp. (tree weta; Orthoptera: Anostostomatidae) have both lowland (Hemideina femorata, Hemideina crassidens and Hemideina thoracica) and montane (Hemideina maori and Hemideina ricta) species. H. maori has both melanic and yellow morphs. We use these weta to test two hypotheses: that montane insects lose water more slowly than lowland species, and that cuticular water loss rates are lower in darker insects than lighter morphs, because of incorporation of melanin in the cuticle. We used flow-through respirometry to compare water loss rates among Hemideina species and found that montane weta have reduced cuticular water loss by 45%, reduced respiratory water loss by 55% and reduced the molar ratio of V̇H2 O:V̇CO2 by 64% compared with lowland species. Within H. maori, cuticular water loss was reduced by 46% when compared with yellow morphs. Removal of cuticular hydrocarbons significantly increased total water loss in both melanic and yellow morphs, highlighting the role that cuticular hydrocarbons play in limiting water loss; however, the dark morph still lost water more slowly after removal of cuticular hydrocarbons (57% less), supporting the melanisation-desiccation resistance hypothesis.
Collapse
Affiliation(s)
- Keith J King
- Department of Zoology, University of Otago, Dunedin 9054, New Zealand
| | - Brent J Sinclair
- Department of Biology, University of Western Ontario, London, Ontario, Canada N6A 5B7
| |
Collapse
|
9
|
Gudowska A, Boardman L, Terblanche JS. The closed spiracle phase of discontinuous gas exchange predicts diving duration in the grasshopper, Paracinema tricolor. J Exp Biol 2016; 219:2423-5. [DOI: 10.1242/jeb.135129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 06/04/2016] [Indexed: 11/20/2022]
Abstract
The discontinuous gas exchange (DGE) pattern of respiration shown by many arthropods includes periods of spiracle closure (C-phase) and is largely thought to serve as a physiological adaptation to restrict water loss in terrestrial environments. One major challenge to this hypothesis is to explain the presence of DGE in insects in moist environments. Here, we show a novel ecological correlate of the C-phase, namely diving behaviour in mesic Paracinema tricolor grasshoppers. Notably, maximal dive duration is positively correlated with C-phase length, even after accounting for mass scaling and absolute metabolic rate. Here, we propose that an additional advantage of DGE may be conferred by allowing the tracheal system to act as a sealed underwater oxygen reservoir. Spiracle closure may facilitate underwater submersion, which in turn, may contribute to predator avoidance, the survival of accidental immersion or periodic flooding and aid exploiting underwater resources.
Collapse
Affiliation(s)
| | - Leigh Boardman
- Department of Conservation Ecology and Entomology, Centre for Invasion Biology, Stellenbosch University, South Africa
| | - John S. Terblanche
- Department of Conservation Ecology and Entomology, Centre for Invasion Biology, Stellenbosch University, South Africa
| |
Collapse
|
10
|
Gudowska A, Drobniak SM, Schramm BW, Labecka AM, Kozlowski J, Bauchinger U. Hold your breath beetle-Mites! Evolution 2015; 70:249-55. [DOI: 10.1111/evo.12827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 11/06/2015] [Accepted: 11/11/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Agnieszka Gudowska
- Institute of Environmental Sciences; Jagiellonian University; ul. Gronostajowa 7 30-387 Kraków Poland
| | - Szymon M. Drobniak
- Institute of Environmental Sciences; Jagiellonian University; ul. Gronostajowa 7 30-387 Kraków Poland
| | - Bartosz W. Schramm
- Institute of Environmental Sciences; Jagiellonian University; ul. Gronostajowa 7 30-387 Kraków Poland
| | - Anna Maria Labecka
- Institute of Environmental Sciences; Jagiellonian University; ul. Gronostajowa 7 30-387 Kraków Poland
| | - Jan Kozlowski
- Institute of Environmental Sciences; Jagiellonian University; ul. Gronostajowa 7 30-387 Kraków Poland
| | - Ulf Bauchinger
- Institute of Environmental Sciences; Jagiellonian University; ul. Gronostajowa 7 30-387 Kraków Poland
| |
Collapse
|
11
|
Boardman L, Sørensen JG, Terblanche JS. Physiological and molecular mechanisms associated with cross tolerance between hypoxia and low temperature in Thaumatotibia leucotreta. JOURNAL OF INSECT PHYSIOLOGY 2015; 82:75-84. [PMID: 26376454 DOI: 10.1016/j.jinsphys.2015.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/24/2015] [Accepted: 09/03/2015] [Indexed: 06/05/2023]
Abstract
Biochemical adaptations allow insects to withstand exposures to hypoxia and/or hypothermia. Exposure to hypoxia may interact either synergistically or antagonistically with standard low temperature stress responses yet this has not been systematically researched and no clear mechanism has been identified to date. Using larvae of false codling moth Thaumatotibia leucotreta, a pest of southern Africa, we investigated the physiological and molecular responses to hypoxia or temperature stress pre-treatments, followed by a standard low temperature exposure. Survival rates were significantly influenced by pre-treatment conditions, although T. leucotreta shows relatively high basal resistance to various stressors (4% variation in larval survival across all pre-treatments). Results showed that mild pre-treatments with chilling and hypoxia increased resistance to low temperatures and that these responses were correlated with increased membrane fluidity (increased UFA:SFA) and/or alterations in heat shock protein 70 (HSP70); while general mechanical stress (shaking) and heat (2h at 35°C) do not elicit cross tolerance (no change in survival or molecular responses). We therefore found support for some limited cold hardening and cross tolerance responses. Given that combined exposure to hypoxia and low temperature is used to sterilize commodities in post-harvest pest management programs, researchers can now exploit these mechanisms involved in cross tolerance to develop more targeted control methods.
Collapse
Affiliation(s)
- Leigh Boardman
- Department of Conservation Ecology and Entomology, Centre for Invasion Biology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - Jesper G Sørensen
- Section for Genetics, Ecology & Evolution, Department of Bioscience, Aarhus University, Ny Munkegade 116, DK-8000 Aarhus C, Denmark
| | - John S Terblanche
- Department of Conservation Ecology and Entomology, Centre for Invasion Biology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
12
|
Talal S, Ayali A, Gefen E. Discontinuous gas-exchange cycle characteristics are differentially affected by hydration state and energy metabolism in gregarious and solitary desert locusts. J Exp Biol 2015; 218:3807-15. [PMID: 26486365 DOI: 10.1242/jeb.126490] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/02/2015] [Indexed: 11/20/2022]
Abstract
The termination of discontinuous gas exchange cycles (DGCs) in severely dehydrated insects casts doubt on the generality of the hygric hypothesis, which posits that DGCs evolved as a water conservation mechanism. We followed DGC characteristics in the two density-dependent phases of the desert locust Schistocerca gregaria throughout exposure to an experimental treatment of combined dehydration and starvation stress, and subsequent rehydration. We hypothesized that, under stressful conditions, the more stress-resistant gregarious locusts would maintain DGCs longer than solitary locusts. However, we found no phase-specific variations in body water content, water loss rates (total and respiratory) or timing of stress-induced abolishment of DGCs. Likewise, locusts of both phases re-employed DGCs after ingesting comparable volumes of water when rehydrated. Despite comparable water management performances, the effect of exposure to stressful experimental conditions on DGC characteristics varied significantly between gregarious and solitary locusts. Interburst duration, which is affected by the ability to buffer CO2, was significantly reduced in dehydrated solitary locusts compared with gregarious locusts. Moreover, despite similar rehydration levels, only gregarious locusts recovered their initial CO2 accumulation capacity, indicating that cycle characteristics are affected by factors other than haemolymph volume. Haemolymph protein measurements and calculated respiratory exchange ratios suggest that catabolism of haemolymph proteins may contribute to a reduced haemolymph buffering capacity, and thus a compromised ability for CO2 accumulation, in solitary locusts. Nevertheless, DGC was lost at similar hydration states in the two phases, suggesting that DGCs are terminated as a result of inadequate oxygen supply to the tissues.
Collapse
Affiliation(s)
- Stav Talal
- Department of Zoology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Amir Ayali
- Department of Zoology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eran Gefen
- Department of Biology, University of Haifa at Oranim, Tivon 3600600, Israel
| |
Collapse
|
13
|
Verberk WCEP, Bartolini F, Marshall DJ, Pörtner HO, Terblanche JS, White CR, Giomi F. Can respiratory physiology predict thermal niches? Ann N Y Acad Sci 2015; 1365:73-88. [PMID: 26333058 DOI: 10.1111/nyas.12876] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Predicting species responses to global warming is the holy grail of climate change science. As temperature directly affects physiological rates, it is clear that a mechanistic understanding of species vulnerability should be grounded in organismal physiology. Here, we review what respiratory physiology can offer the field of thermal ecology, showcasing different perspectives on how respiratory physiology can help explain thermal niches. In water, maintaining adequate oxygen delivery to fuel the higher metabolic rates under warming conditions can become the weakest link, setting thermal tolerance limits. This has repercussions for growth and scaling of metabolic rate. On land, water loss is more likely to become problematic as long as O2 delivery and pH balance can be maintained, potentially constraining species in their normal activity. Therefore, high temperatures need not be lethal, but can still affect the energy intake of an animal, with concomitant consequences for long-term fitness. While respiratory challenges and adaptive responses are diverse, there are clear recurring elements such as oxygen uptake, CO2 excretion, and water homeostasis. We show that respiratory physiology has much to offer the field of thermal ecology and call for an integrative, multivariate view incorporating respiratory challenges, thermal responses, and energetic consequences. Fruitful areas for future research are highlighted.
Collapse
Affiliation(s)
- Wilco C E P Verberk
- Department of Animal Ecology and Ecophysiology, Radboud University Nijmegen, Nijmegen, the Netherlands
| | | | | | - Hans-O Pörtner
- Department of Integrative Ecophysiology, Alfred-Wegener-Institute for Polar and Marine Research, Bremerhaven, Germany
| | - John S Terblanche
- Department of Conservation Ecology and Entomology, Centre for Invasion Biology, Stellenbosch University, Stellenbosch, South Africa
| | - Craig R White
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Folco Giomi
- Department of Integrative Ecophysiology, Alfred-Wegener-Institute for Polar and Marine Research, Bremerhaven, Germany
| |
Collapse
|
14
|
Huang SP, Talal S, Ayali A, Gefen E. The effect of discontinuous gas exchange on respiratory water loss in grasshoppers (Orthoptera: Acrididae) varies across an aridity gradient. J Exp Biol 2015; 218:2510-7. [DOI: 10.1242/jeb.118141] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The significance of discontinuous gas-exchange cycles (DGC) in reducing respiratory water loss (RWL) in insects is contentious. Results from single-species studies are equivocal in their support of the classic ‘hygric hypothesis’ for the evolution of DGC, whereas comparative analyses generally support a link between DGC and water balance. In this study, we investigated DGC prevalence and characteristics and RWL in three grasshopper species (Acrididae, subfamily Pamphaginae) across an aridity gradient in Israel. In order to determine whether DGC contributes to a reduction in RWL, we compared the DGC characteristics and RWL associated with CO2 release (transpiration ratio, i.e. the molar ratio of RWL to CO2 emission rates) among these species. Transpiration ratios of DGC and continuous breathers were also compared intraspecifically. Our data show that DGC characteristics, DGC prevalence and the transpiration ratios correlate well with habitat aridity. The xeric-adapted Tmethis pulchripennis exhibited a significantly shorter burst period and lower transpiration ratio compared with the other two mesic species, Ocneropsis bethlemita and Ocneropsis lividipes. However, DGC resulted in significant water savings compared with continuous exchange in T. pulchripennis only. These unique DGC characteristics for T. pulchripennis were correlated with its significantly higher mass-specific tracheal volume. Our data suggest that the origin of DGC may not be adaptive, but rather that evolved modulation of cycle characteristics confers a fitness advantage under stressful conditions. This modulation may result from morphological and/or physiological modifications.
Collapse
Affiliation(s)
- Shu-Ping Huang
- Department of Biology, University of Haifa-Oranim, Tivon 600600, Israel
| | - Stav Talal
- Department of Biology, University of Haifa-Oranim, Tivon 600600, Israel
- Department of Zoology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Amir Ayali
- Department of Zoology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eran Gefen
- Department of Biology, University of Haifa-Oranim, Tivon 600600, Israel
| |
Collapse
|
15
|
Grieshaber BJ, Terblanche JS. A computational model of insect discontinuous gas exchange: A two-sensor, control systems approach. J Theor Biol 2015; 374:138-51. [DOI: 10.1016/j.jtbi.2015.03.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 03/11/2015] [Accepted: 03/24/2015] [Indexed: 11/17/2022]
|