1
|
Ferré A, Chauvigné F, Gozdowska M, Kulczykowska E, Finn RN, Cerdà J. Neurohypophysial and paracrine vasopressinergic signaling regulates aquaporin trafficking to hydrate marine teleost oocytes. Front Endocrinol (Lausanne) 2023; 14:1222724. [PMID: 37635977 PMCID: PMC10454913 DOI: 10.3389/fendo.2023.1222724] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
The dual aquaporin (Aqp1ab1/Aqp1ab2)-mediated hydration of marine teleost eggs, which occurs during oocyte meiosis resumption (maturation), is considered a key adaptation underpinning their evolutionary success in the oceans. However, the endocrine signals controlling this mechanism are almost unknown. Here, we investigated whether the nonapeptides arginine vasopressin (Avp, formerly vasotocin) and oxytocin (Oxt, formerly isotocin) are involved in marine teleost oocyte hydration using the gilthead seabream (Sparus aurata) as a model. We show that concomitant with an increased systemic production of Avp and Oxt, the nonapeptides are also produced and accumulated locally in the ovarian follicles during oocyte maturation and hydration. Functional characterization of representative Avp and Oxt receptor subtypes indicates that Avpr1aa and Oxtrb, expressed in the postvitellogenic oocyte, activate phospholipase C and protein kinase C pathways, while Avpr2aa, which is highly expressed in the oocyte and in the follicular theca and granulosa cells, activates the cAMP-protein kinase A (PKA) cascade. Using ex vivo, in vitro and mutagenesis approaches, we determined that Avpr2aa plays a major role in the PKA-mediated phosphorylation of the aquaporin subdomains driving membrane insertion of Aqp1ab2 in the theca and granulosa cells, and of Aqp1ab1 and Aqp1ab2 in the distal and proximal regions of the oocyte microvilli, respectively. The data further indicate that luteinizing hormone, which surges during oocyte maturation, induces the synthesis of Avp in the granulosa cells via progestin production and the nuclear progestin receptor. Collectively, our data suggest that both the neurohypophysial and paracrine vasopressinergic systems integrate to differentially regulate the trafficking of the Aqp1ab-type paralogs via a common Avp-Avpr2aa-PKA pathway to avoid competitive occupancy of the same plasma membrane space and maximize water influx during oocyte hydration.
Collapse
Affiliation(s)
- Alba Ferré
- Institute of Agrifood Research and Technology (IRTA)-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - François Chauvigné
- Institute of Marine Sciences, Spanish National Research Council (CSIC), Barcelona, Spain
| | - Magdalena Gozdowska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| | - Ewa Kulczykowska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| | - Roderick Nigel Finn
- Institute of Agrifood Research and Technology (IRTA)-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Joan Cerdà
- Institute of Agrifood Research and Technology (IRTA)-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Hypo-Osmoregulatory Roles of Vasotocinergic and Isotocinergic Systems in the Intestines of Two European Sea Bass Lineages. Int J Mol Sci 2022; 23:ijms232113636. [PMID: 36362422 PMCID: PMC9655083 DOI: 10.3390/ijms232113636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
European sea bass (Dicentrarchus labrax) are a major aquaculture species that live in habitats with fluctuating salinities that are sometimes higher than in seawater (SW). Atlantic and West-Mediterranean genetic lineages were compared regarding intestinal neuropeptide receptor expression in SW (36%) and following a two-week transfer to hypersalinity (HW, 55%). Phylogenetic analysis revealed seven neuropeptide receptors belonging to the arginine vasotocine (AVTR) family and two isotocin receptors (ITR). Among AVTR paralogs, the highest mRNA levels were recorded for v1a2, with a two- to fourfold upregulation in the European sea bass intestinal sections after transfer of fish to HW. Principal component analysis in posterior intestines showed that v1a2 expression grouped together with the expression and activity of main ion transporters and channels involved in solute-coupled water uptake, indicating a possible role of this receptor in triggering water absorption. v1a1 expression, however, was decreased or did not change after transfer to hypersaline water. Among ITR paralogs, itr1 was the most expressed paralog in the intestine and opposite expression patterns were observed following salinity transfer, comparing intestinal sections. Overall, different expression profiles were observed between genetic lineages for several analyzed genes which could contribute to different osmotic stress-related responses in D. labrax lineages.
Collapse
|
3
|
Carnevali O, Maradonna F, Sagrati A, Candelma M, Lombardo F, Pignalosa P, Bonfanti E, Nocillado J, Palma P, Gioacchini G, Elizur A. Insights on the seasonal variations of reproductive features in the Eastern Atlantic Bluefin Tuna. Gen Comp Endocrinol 2019; 282:113216. [PMID: 31278920 DOI: 10.1016/j.ygcen.2019.113216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023]
Abstract
The Atlantic Bluefin Tuna (ABFT, Thunnus thynnus) is one of the most intensely exploited fisheries resources in the world. In spite of the years of studies on ABFT, basic aspects of its reproductive biology remain uncertain. To gain insight regarding the seasonal changes of the reproductive characteristics of the eastern stock of ABFT, blood and tissue samples were collected from mature specimens caught in the Mediterranean basin during the reproductive (May-June) and non-reproductive season (Oct-Nov). Histological analysis of the gonads of May-June samples indicated that there were females which were actively spawning (contained post-ovulatory follicles) and females that were not actively spawning that had previtellogenic and fully vitellogenic oocytes. In males, testis were at early or late stage of spermatogenesis during the reproductive season. In Oct-Nov, ovaries contained mostly previtellogenic oocytes as well as β and α atretic follicles while the testis predominantly contained spermatogonia and few cysts with spermatocytes and spermatozoa. Gonadosomatic index (GSI) in females was highest among the actively spawning individuals while in males GSI was higher in early and late spermatogenic individuals compared to those that were spent. Plasma sex steroids levels varied with the reproductive season. In females, estradiol (E2), was higher in May-June while testosterone (T) and progesterone (P) did not vary. In males, E2 and T were higher in May-June while P levels were similar at the two sampling points. Circulating follicle stimulating hormone (FSH) was higher in Oct-Nov than in May-June both in males and females. Vitellogenin (VTG) was detected in plasma from both males and females during the reproductive season with levels in females significantly higher than in males. VTG was undetected in Oct-Nov samples. Since choriogenesis is an important event during follicle growth, the expression of three genes involved in vitelline envelope formation and hardening was measured and results showed significantly higher levels in ovaries in fish caught in May-June with respect to those sampled in Oct-Nov. In addition, a set of genes encoding for ion channels that are responsible for oocyte hydration and buoyancy, as well as sperm viability, were characterized at the two time points, and these were found to be more highly expressed in females during the reproductive season. Finally, the expression level of three mRNAs encoding for different lipid-binding proteins was analyzed with significantly higher levels detected in males, suggesting sex-specific expression. Our findings provide additional information on the reproductive biology of ABFT, particularly on biomarkers for the assessment of the state of maturation of the gonad, highlighting gender-specific signals and seasonal differences.
Collapse
Affiliation(s)
- Oliana Carnevali
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Francesca Maradonna
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Andrea Sagrati
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Michela Candelma
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Francesco Lombardo
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | | | - Erica Bonfanti
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; Genecology Research Centre, University of the Sunshine Coast, Qld, Australia
| | - Josephine Nocillado
- Genecology Research Centre, University of the Sunshine Coast, Qld, Australia
| | - Peter Palma
- Genecology Research Centre, University of the Sunshine Coast, Qld, Australia; Aquaculture Department, Southeast Asian Fisheries Development Center, 5021 Tigbauan, Iloilo, Philippines
| | - Giorgia Gioacchini
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Abigail Elizur
- Genecology Research Centre, University of the Sunshine Coast, Qld, Australia
| |
Collapse
|
4
|
Li W, Zhang D, Zhu G, Mi X, Guo W. Combining genome-wide and transcriptome-wide analyses reveal the evolutionary conservation and functional diversity of aquaporins in cotton. BMC Genomics 2019; 20:538. [PMID: 31262248 PMCID: PMC6604486 DOI: 10.1186/s12864-019-5928-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 06/23/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Aquaporins (AQPs) are integral membrane proteins from a larger family of major intrinsic proteins (MIPs) and function in a huge variety of processes such as water transport, plant growth and stress response. The availability of the whole-genome data of different cotton species allows us to study systematic evolution and function of cotton AQPs on a genome-wide level. RESULTS Here, a total of 53, 58, 113 and 111 AQP genes were identified in G. arboreum, G. raimondii, G. hirsutum and G. barbadense, respectively. A comprehensive analysis of cotton AQPs, involved in exon/intron structure, functional domains, phylogenetic relationships and gene duplications, divided these AQPs into five subfamilies (PIP, NIP, SIP, TIP and XIP). Comparative genome analysis among 30 species from algae to angiosperm as well as common tandem duplication events in 24 well-studied plants further revealed the evolutionary conservation of AQP family in the organism kingdom. Combining transcriptome analysis and Quantitative Real-time PCR (qRT-PCR) verification, most AQPs exhibited tissue-specific expression patterns both in G. raimondii and G. hirsutum. Meanwhile, a bias of time to peak expression of several AQPs was also detected after treating G. davidsonii and G. hirsutum with 200 mM NaCl. It is interesting that both PIP1;4 h/i/j and PIP2;2a/e showed the highly conserved tandem structure, but differentially contributed to tissue development and stress response in different cotton species. CONCLUSIONS These results demonstrated that cotton AQPs were structural conservation while experienced the functional differentiation during the process of evolution and domestication. This study will further broaden our insights into the evolution and functional elucidation of AQP gene family in cotton.
Collapse
Affiliation(s)
- Weixi Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Dayong Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Guozhong Zhu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Xinyue Mi
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China.
| |
Collapse
|
5
|
Skrzynska AK, Martínez-Rodríguez G, Gozdowska M, Kulczykowska E, Mancera JM, Martos-Sitcha JA. Aroclor 1254 inhibits vasotocinergic pathways related to osmoregulatory and stress functions in the gilthead sea bream (Sparus aurata, Linnaeus 1758). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 212:98-109. [PMID: 31082703 DOI: 10.1016/j.aquatox.2019.04.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/01/2019] [Accepted: 04/28/2019] [Indexed: 06/09/2023]
Abstract
The present study assesses the response of vasotocinergic system in the gilthead sea bream (Sparus aurata) after administering two doses of the polychlorinated biphenyl Aroclor 1254 (15 or 50 μg g-1 fresh body mass). Seven days post-administration, eight fish of each experimental group were sampled, and the remaining animals were challenged with a hyperosmotic stress by being transferred from seawater (36 ppt) to high salinity water (55 ppt) and being sampled 3 days post-transfer. Aroclor 1254 affected gene expression of avt, together with Avt concentrations in pituitary and plasma, inhibiting the stimulation observed in vasotocinergic system after hyperosmotic challenge. This was noted by the accumulation of Avt at hypophyseal level as well as by its undetectable values in plasma. Hyperosmotic transfer significantly changed branchial avtrv1a, avtrv2, atp1a and cftr mRNA expression levels in control fish, while in Aroclor 1254-treated fish they remained mostly unchanged. This desensitization also occurred for avtrs in hypothalamus, caudal kidney and liver. In addition, an enhancement in plasma cortisol concentration, together with the orchestration of several players of the Hypothalamic-Pituitary-Interrenal axis (crh, crhbp, trh, star), was also observed mostly at the highest dose used (50 μg g-1 body mass), affecting plasma and hepatic metabolites. Our results demonstrated that Aroclor 1254 compromises the hypoosmoregulatory function of vasotocinergic system in S. aurata, also inducing a concomitant stress response. In summary, this study demonstrates that Aroclor 1254 can be considered an important endocrine disruptor in relation with the correct arrangement of vasotocinergic, metabolic and stress pathways after their stimulation by transfer to hyperosmotic environments.
Collapse
Affiliation(s)
- Arleta Krystyna Skrzynska
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, E-11519, Puerto Real, Cádiz, Spain
| | - Gonzalo Martínez-Rodríguez
- Institute of Marine Sciences of Andalusia, Spanish National Research Council (ICMAN-CSIC), E-11519, Puerto Real, Cádiz, Spain
| | - Magdalena Gozdowska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology of Polish Academy of Sciences, 81-712, Sopot, Poland
| | - Ewa Kulczykowska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology of Polish Academy of Sciences, 81-712, Sopot, Poland
| | - Juan Miguel Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, E-11519, Puerto Real, Cádiz, Spain
| | - Juan Antonio Martos-Sitcha
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, E-11519, Puerto Real, Cádiz, Spain.
| |
Collapse
|
6
|
Gregório SF, Ruiz-Jarabo I, Carvalho EM, Fuentes J. Increased intestinal carbonate precipitate abundance in the sea bream (Sparus aurata L.) in response to ocean acidification. PLoS One 2019; 14:e0218473. [PMID: 31226164 PMCID: PMC6588277 DOI: 10.1371/journal.pone.0218473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/03/2019] [Indexed: 12/20/2022] Open
Abstract
Marine fish contribute to the carbon cycle by producing mineralized intestinal precipitates generated as by-products of their osmoregulation. Here we aimed at characterizing the control of epithelial bicarbonate secretion and intestinal precipitate presence in the gilthead sea bream in response to predicted near future increases of environmental CO2. Our results demonstrate that hypercapnia (950 and 1800 μatm CO2) elicits higher intestine epithelial HCO3- secretion ex vivo and a subsequent parallel increase of intestinal precipitate presence in vivo when compared to present values (440 μatm CO2). Intestinal gene expression analysis in response to environmental hypercapnia revealed the up-regulation of transporters involved in the intestinal bicarbonate secretion cascade such as the basolateral sodium bicarbonate co-transporter slc4a4, and the apical anion transporters slc26a3 and slc26a6 of sea bream. In addition, other genes involved in intestinal ion uptake linked to water absorption such as the apical nkcc2 and aquaporin 1b expression, indicating that hypercapnia influences different levels of intestinal physiology. Taken together the current results are consistent with an intestinal physiological response leading to higher bicarbonate secretion in the intestine of the sea bream paralleled by increased luminal carbonate precipitate abundance and the main related transporters in response to ocean acidification.
Collapse
Affiliation(s)
- Sílvia F. Gregório
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Ignacio Ruiz-Jarabo
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Edison M. Carvalho
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Juan Fuentes
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
- * E-mail:
| |
Collapse
|
7
|
Alves A, Gregório SF, Egger RC, Fuentes J. Molecular and functional regionalization of bicarbonate secretion cascade in the intestine of the European sea bass (Dicentrarchus labrax). Comp Biochem Physiol A Mol Integr Physiol 2019; 233:53-64. [PMID: 30946979 DOI: 10.1016/j.cbpa.2019.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 10/27/2022]
Abstract
In marine fish the intestinal HCO3- secretion is the key mechanism to enable luminal aggregate formation and water absorption. Using the sea bass (Dicentrarchus labrax), the present study aimed at establishing the functional and molecular organization of different sections of the intestine concerning bicarbonate secretion and Cl- movements. The proximal intestinal regions presented similar HCO3- secretion rates, while differences were detected in the molecular expression of the transporters involved and on regional HCO3- concentrations. The anterior region presented significantly higher Na+/K+-ATPase activity, Cl- transepithelial transport and basolateral slc4a4, apical slc26a6 and slc26a3 expression levels. In the mid intestine, the total HCO3- content was significantly increased in the fluid as in the carbonate aggregates. In the rectum no HCO3- secretion was observed and was characterized by the diminished HCO3- total content, residual molecular expression of slc4a4, slc26a6 and slc26a3, higher H+-ATPase activity and expression, suggesting the existence of a different bicarbonate handling mechanism. The possible regulation of HCO3- secretion by extracellular HCO3- and increased intracellular cAMP levels were also investigated. cAMP did not affect HCO3- secretion, although Cl- secretion was enhanced by cftr. HCO3- secretion rise due to the HCO3- basolateral increment showed that at resting levels slc4a4 was not a limiting step for secretion. The transcellular/intracellular dependence of apical HCO3- secretion differed between the proximal regions. In conclusion, intestinal HCO3- secretion has a functional region-dependent organization that was not reflected by the anterior-posterior regionalization on HCO3- secretion and expression profiles of chloride/water absorption related genes.
Collapse
Affiliation(s)
- Alexandra Alves
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Sílvia F Gregório
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Renata C Egger
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Juan Fuentes
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
8
|
Lema SC, Washburn EH, Crowley ME, Carvalho PG, Egelston JN, McCormick SD. Evidence for a role of arginine vasotocin receptors in the gill during salinity acclimation by a euryhaline teleost fish. Am J Physiol Regul Integr Comp Physiol 2019; 316:R735-R750. [PMID: 30916577 DOI: 10.1152/ajpregu.00328.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The nonapeptide arginine vasotocin (AVT) regulates osmotic balance in teleost fishes, but its mechanisms of action are not fully understood. Recently, it was discovered that nonapeptide receptors in teleost fishes are differentiated into two V1a-type, several V2-type, and two isotocin (IT) receptors, but it remains unclear which receptors mediate AVT's effects on gill osmoregulation. Here, we examined the role of nonapeptide receptors in the gill of the euryhaline Amargosa pupfish (Cyprinodon nevadensis amargosae) during osmotic acclimation. Transcripts for the teleost V1a-type receptor v1a2 were upregulated over fourfold in gill 24 h after transferring pupfish from 7.5 ppt to seawater (35 ppt) or hypersaline (55 ppt) conditions and downregulated after transfer to freshwater (0.3 ppt). Gill transcripts for the nonapeptide degradation enzyme leucyl-cystinyl aminopeptidase (LNPEP) also increased in fish acclimating to 35 ppt. To test whether the effects of AVT on the gill might be mediated by a V1a-type receptor, we administered AVT or a V1-type receptor antagonist (Manning compound) intraperitoneally to pupfish before transfer to 0.4 ppt or 35 ppt. Pupfish transferred to 35 ppt exhibited elevated gill mRNA abundance for cystic fibrosis transmembrane conductance regulator (cftr), but that upregulation diminished under V1-receptor inhibition. AVT inhibited the increase in gill Na+/Cl- cotransporter 2 (ncc2) transcript abundance that occurs following transfer to hypoosmotic environments, whereas V1-type receptor antagonism increased ncc2 mRNAs even without a change in salinity. These findings indicate that AVT acts via a V1-type receptor to regulate gill Cl- transport by inhibiting Cl- uptake and facilitating Cl- secretion during seawater acclimation.
Collapse
Affiliation(s)
- Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University , San Luis Obispo, California
| | - Elsie H Washburn
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University , San Luis Obispo, California
| | - Mary E Crowley
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University , San Luis Obispo, California
| | - Paul G Carvalho
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University , San Luis Obispo, California
| | - Jennifer N Egelston
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University , San Luis Obispo, California
| | - Stephen D McCormick
- United States Geological Survey, Leetown Science Center, Conte Anadromous Fish Research Laboratory, Turners Falls, Massachusetts
| |
Collapse
|
9
|
Oxytocin/vasopressin-like peptide inotocin regulates cuticular hydrocarbon synthesis and water balancing in ants. Proc Natl Acad Sci U S A 2019; 116:5597-5606. [PMID: 30842287 PMCID: PMC6431230 DOI: 10.1073/pnas.1817788116] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Inotocin, the oxytocin/vasopressin-like peptide, is widely conserved in arthropods; however, little is known about its molecular function. Here, we show that, in ants, the expression levels of inotocin and its receptor are correlated with the age of workers and their behavior. We also demonstrate that inotocin signaling is involved in desiccation resistance by regulating the synthesis of cuticular hydrocarbons. We propose that the up-regulation of inotocin and its receptor as workers age and switch tasks from nursing to foraging is a key physiological adaption to survive drier environments outside of the nest. Oxytocin/vasopressin-like peptides are important regulators of physiology and social behavior in vertebrates. However, the function of inotocin, the homologous peptide in arthropods, remains largely unknown. Here, we show that the level of expression of inotocin and inotocin receptor are correlated with task allocation in the ant Camponotus fellah. Both genes are up-regulated when workers age and switch tasks from nursing to foraging. in situ hybridization revealed that inotocin receptor is specifically expressed in oenocytes, which are specialized cells synthesizing cuticular hydrocarbons which function as desiccation barriers in insects and for social recognition in ants. dsRNA injection targeting inotocin receptor, together with pharmacological treatments using three identified antagonists blocking inotocin signaling, revealed that inotocin signaling regulates the expression of cytochrome P450 4G1 (CYP4G1) and the synthesis of cuticular hydrocarbons, which play an important role in desiccation resistance once workers initiate foraging.
Collapse
|
10
|
Katayama Y, Sakamoto T, Takanami K, Takei Y. The Amphibious Mudskipper: A Unique Model Bridging the Gap of Central Actions of Osmoregulatory Hormones Between Terrestrial and Aquatic Vertebrates. Front Physiol 2018; 9:1112. [PMID: 30154735 PMCID: PMC6102947 DOI: 10.3389/fphys.2018.01112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/25/2018] [Indexed: 12/15/2022] Open
Abstract
Body fluid regulation, or osmoregulation, continues to be a major topic in comparative physiology, and teleost fishes have been the subject of intensive research. Great progress has been made in understanding the osmoregulatory mechanisms including drinking behavior in teleosts and mammals. Mudskipper gobies can bridge the gap from aquatic to terrestrial habitats by their amphibious behavior, but the studies are yet emerging. In this review, we introduce this unique teleost as a model to study osmoregulatory behaviors, particularly amphibious behaviors regulated by the central action of hormones. Regarding drinking behavior of mammals, a thirst sensation is aroused by angiotensin II (Ang II) through direct actions on the forebrain circumventricular structures, which predominantly motivates them to search for water and take it into the mouth for drinking. By contrast, aquatic teleosts can drink water that is constantly present in their mouth only by reflex swallowing, and Ang II induces swallowing by acting on the hindbrain circumventricular organ without inducing thirst. In mudskippers, however, through the loss of buccal water by swallowing, which appears to induce buccal drying on land, Ang II motivates these fishes to move to water for drinking. Thus, mudskippers revealed a unique thirst regulation by sensory detection in the buccal cavity. In addition, the neurohypophysial hormones, isotocin (IT) and vasotocin (VT), promote migration to water via IT receptors in mudskippers. VT is also dipsogenic and the neurons in the forebrain may mediate their thirst. VT regulates social behaviors as well as osmoregulation. The VT-induced migration appears to be a submissive response of subordinate mudskippers to escape from competitive and dehydrating land. Together with implications of VT in aggression, mudskippers may bridge the multiple functions of neurohypophysial hormones. Interestingly, cortisol, an important hormone for seawater adaptation and stress response in teleosts, also stimulates the migration toward water, mediated possibly via the mineralocorticoid receptor. The corticosteroid system that is responsive to external stressors can accelerate emergence of migration to alternative habitats. In this review, we suggest this unique teleost as an important model to deepen insights into the behavioral roles of these hormones in relation to osmoregulation.
Collapse
Affiliation(s)
- Yukitoshi Katayama
- Physiology Section, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Tatsuya Sakamoto
- Ushimado Marine Institute, Faculty of Science, Okayama University, Setouchi, Japan
| | - Keiko Takanami
- Ushimado Marine Institute, Faculty of Science, Okayama University, Setouchi, Japan
- Mouse Genomics Resource Laboratory, National Institute of Genetics, Mishima, Japan
| | - Yoshio Takei
- Physiology Section, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
11
|
Laloux T, Junqueira B, Maistriaux LC, Ahmed J, Jurkiewicz A, Chaumont F. Plant and Mammal Aquaporins: Same but Different. Int J Mol Sci 2018; 19:E521. [PMID: 29419811 PMCID: PMC5855743 DOI: 10.3390/ijms19020521] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 02/06/2023] Open
Abstract
Aquaporins (AQPs) constitute an ancient and diverse protein family present in all living organisms, indicating a common ancient ancestor. However, during evolution, these organisms appear and evolve differently, leading to different cell organizations and physiological processes. Amongst the eukaryotes, an important distinction between plants and animals is evident, the most conspicuous difference being that plants are sessile organisms facing ever-changing environmental conditions. In addition, plants are mostly autotrophic, being able to synthesize carbohydrates molecules from the carbon dioxide in the air during the process of photosynthesis, using sunlight as an energy source. It is therefore interesting to analyze how, in these different contexts specific to both kingdoms of life, AQP function and regulation evolved. This review aims at highlighting similarities and differences between plant and mammal AQPs. Emphasis is given to the comparison of isoform numbers, their substrate selectivity, the regulation of the subcellular localization, and the channel activity.
Collapse
Affiliation(s)
- Timothée Laloux
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la Neuve, Belgium.
| | - Bruna Junqueira
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la Neuve, Belgium.
| | - Laurie C Maistriaux
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la Neuve, Belgium.
| | - Jahed Ahmed
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la Neuve, Belgium.
| | - Agnieszka Jurkiewicz
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la Neuve, Belgium.
| | - François Chaumont
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la Neuve, Belgium.
| |
Collapse
|
12
|
Mancera JM, Martínez-Rodríguez G, Skrzynska AK, Martos-Sitcha JA. Osmoregulatory role of vasotocinergic and isotocinergic systems in the gilthead sea bream (Sparus aurata L). Gen Comp Endocrinol 2018; 257:177-183. [PMID: 28065737 DOI: 10.1016/j.ygcen.2017.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/03/2016] [Accepted: 01/02/2017] [Indexed: 12/12/2022]
Abstract
Gilthead sea bream, Sparus aurata L., is an important fish species for the Mediterranean aquaculture and is considered a good model for studying the osmoregulatory process, due to its capacity to cope with great changes in environmental salinity (5-60‰). Our group studied the osmoregulatory role of different endocrine systems in this species, focusing on the vasotocinergic and isotocinergic systems over several years. For this purpose, the cDNAs coding for pro-vasotocin (pro-vt), pro-isotocin (pro-it), two arginine vasotocin (AVT) receptors (avtr v1a2- and v2-types) and one IT receptor (itr) were cloned. Acclimation to different environmental salinities induced a direct lineal relationship between plasma AVT levels and salinity, with no changes in plasma IT values. In addition, higher values in vasotocinergic, isotocinergic and stress pathways (pro-vt and pro-it gene expression, AVT and IT storage and plasma cortisol levels) in both hypo- and/or hyper-osmotic transfers, suggest an interaction between cortisol and AVT/IT pathways. Moreover, gene expression of specific receptors, as well as the use of different in vitro techniques, demonstrated an important osmoregulatory orchestration in different organs. In addition, individuals intraperitoneally injected with AVT and transferred to different environmental salinities enhanced plasma cortisol levels and/or gill Na+, K+-ATPase activity. These effects could be related to the energy repartitioning process occurring during osmotic adaptation of S. aurata to extreme environmental salinities, which could be mediated not only by plasma cortisol but also by AVT. Finally, our results indicated a very important role of the vasotocinergic and/or isotocinergic systems in both osmoregulatory and non-osmoregulatory organs.
Collapse
Affiliation(s)
- Juan Miguel Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, Spain
| | - Gonzalo Martínez-Rodríguez
- Department of Marine Biology and Aquaculture, Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Spain
| | - Arleta Krystyna Skrzynska
- Department of Biology, Faculty of Marine and Environmental Sciences, Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, Spain
| | - Juan Antonio Martos-Sitcha
- Department of Biology, Faculty of Marine and Environmental Sciences, Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, Spain; Department of Marine Biology and Aquaculture, Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Spain.
| |
Collapse
|
13
|
Elkins EA, Walti KA, Newberry KE, Lema SC. Identification of an oxytocinase/vasopressinase-like leucyl-cystinyl aminopeptidase (LNPEP) in teleost fish and evidence for hypothalamic mRNA expression linked to behavioral social status. Gen Comp Endocrinol 2017; 250:58-69. [PMID: 28596078 DOI: 10.1016/j.ygcen.2017.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/03/2017] [Accepted: 06/04/2017] [Indexed: 02/06/2023]
Abstract
The vasotocin/vasopressin and isotocin/mesotocin/oxytocin family of nonapeptides regulate social behaviors and physiological functions associated with reproductive physiology and osmotic balance. While experimental and correlative studies provide evidence for these nonapeptides as modulators of behavior across all classes of vertebrates, mechanisms for nonapeptide inactivation in regulating these functions have been largely overlooked. Leucyl-cystinyl aminopeptidase (LNPEP) - also known as vasopressinase, oxytocinase, placental leucine aminopeptidase (P-LAP), and insulin-regulated aminopeptidase (IRAP) - is a membrane-bound zinc-dependent metalloexopeptidase enzyme that inactivates vasopressin, oxytocin, and select other cyclic polypeptides. In humans, LNPEP plays a key role in the clearance of oxytocin during pregnancy. However, the evolutionary diversity, expression distribution, and functional roles of LNPEP remain unresolved for other vertebrates. Here, we isolated and sequenced a full-length cDNA encoding a LNPEP-like polypeptide of 1033 amino acids from the ovarian tissue of Amargosa pupfish, Cyprinodon nevadensis. This deduced polypeptide exhibited high amino acid identity to human LNPEP both in the protein's active domain that includes the peptide binding site and zinc cofactor binding motif (53.1% identity), and in an intracellular region that distinguishes LNPEP from other aminopeptidases (70.3% identity). Transcripts encoding this LNPEP enzyme (lnpep) were detected at highest relative abundance in the gonads, hypothalamus, forebrain, optic tectum, gill and skeletal muscle of adult pupfish. Further evaluation of lnpep transcript abundance in the brain of sexually-mature pupfish revealed that lnpep mRNAs were elevated in the hypothalamus of socially subordinate females and males, and at lower abundance in the telencephalon of socially dominant males compared to dominant females. These findings provide evidence of an association between behavioral social status and hypothalamic lnpep transcript abundance and suggest that variation in the rate of VT/IT peptide inactivation by LNPEP may be a contributing component in the mechanism whereby nonapeptides regulate social behavior.
Collapse
Affiliation(s)
- Emma A Elkins
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Kayla A Walti
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Kathryn E Newberry
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| |
Collapse
|
14
|
Ruiz-Jarabo I, Gregório SF, Gaetano P, Trischitta F, Fuentes J. High rates of intestinal bicarbonate secretion in seawater tilapia (Oreochromis mossambicus). Comp Biochem Physiol A Mol Integr Physiol 2017; 207:57-64. [PMID: 28238831 DOI: 10.1016/j.cbpa.2017.02.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/13/2017] [Accepted: 02/20/2017] [Indexed: 01/07/2023]
Abstract
Osmoregulation in fish is a complex process that requires the orchestrated cooperation of many tissues. In fish facing hyperosmotic environments, the intestinal absorption of some monovalent ions and the secretion of bicarbonate are key processes to favor water absorption. In the present study, we showed that bicarbonate levels in the intestinal fluid are several fold higher in seawater than in freshwater acclimated tilapia (Oreochromis mossambicus). In addition, we analyzed gene expression of the main molecular mechanisms involved in HCO3- movements i.e. slc26a6, slc26a3, slc4a4 and v-type H-ATPase sub C in the intestine of tilapia acclimated to both seawater and freshwater. Our results show an anterior/posterior functional regionalization of the intestine in tilapia in terms of expression patterns, which is affected by environmental salinity mostly in the anterior and mid intestine. Analysis of bicarbonate secretion using pH-Stat in tissues mounted in Ussing chambers reveals high rates of bicarbonate secretion in tilapia acclimated to seawater from anterior intestine to rectum ranging between ~900 and ~1700nmolHCO3-cm-2h-1. However, a relationship between the expression of slc26a6, slc26a3, slc4a4 and the rate of bicarbonate secretion seems to be compromised in the rectum. In this region, the low expression of the bicarbonate transporters could not explain the high bicarbonate secretion rates here described. However, we postulate that the elevated v-type H-ATPase mRNA expression in the rectum could be involved in this process.
Collapse
Affiliation(s)
- I Ruiz-Jarabo
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - S F Gregório
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - P Gaetano
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, Messina, Italy
| | - F Trischitta
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, Messina, Italy
| | - J Fuentes
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
15
|
Ishibashi K, Morishita Y, Tanaka Y. The Evolutionary Aspects of Aquaporin Family. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 969:35-50. [PMID: 28258564 DOI: 10.1007/978-94-024-1057-0_2] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aquaporins (AQPs ) are a family of transmembrane proteins present in almost all species including virus. They are grossly divided into three subfamilies based on the sequence around a highly conserved pore-forming NPA motif: (1) classical water -selective AQP (CAQP), (2) glycerol -permeable aquaglyceroporin (AQGP) and (3) AQP super-gene channel, superaquaporin (SAQP). AQP is composed of two tandem repeats of conserved three transmembrane domains and a NPA motif. AQP ancestors probably started in prokaryotes by the duplication of half AQP genes to be diversified into CAQPs or AQGPs by evolving a subfamily-specific carboxyl-terminal NPA motif. Both AQP subfamilies may have been carried over to unicellular eukaryotic ancestors, protists and further to multicellular organisms. Although fungus lineage has kept both AQP subfamilies, the plant lineage has lost AQGP after algal ancestors with extensive diversifications of CAQPs into PIP, TIP, SIP, XIP, HIP and LIP with a possible horizontal transfer of NIP from bacteria. Interestingly, the animal lineage has obtained new SAQP subfamily with highly deviated NPA motifs, especially at the amino-terminal halves in both prostomial and deuterostomial animals. The prostomial lineage has lost AQGP after hymenoptera, while the deuterostomial lineage has kept all three subfamilies up to the vertebrate with diversified CAQPs (AQP0, 1, 2, 4, 5, 6, 8) and AQGPs (AQP3, 7, 9, 10) with limited SAQPs (AQP11, 12) in mammals. Whole-genome duplications, local gene duplications and horizontal gene transfers may have produced the AQP diversity with adaptive selections and functional alternations in response to environment changes. With the above evolutionary perspective in mind, the function of each AQP could be speculated by comparison among species to get new insights into physiological roles of AQPs . This evolutionary guidance in AQP research will lead to deeper understandings of water and solute homeostasis.
Collapse
Affiliation(s)
- Kenichi Ishibashi
- Division of Pathophysiology, Meiji Pharmaceutical University, Kiyose, Tokyo, 204-8588, Japan.
| | - Yoshiyuki Morishita
- Division of Nephrology, Saitama Medical Center, Jichi Medical University, 1-847 Ohmiya, Saitama-City, Saitama, 330-8503, Japan
| | - Yasuko Tanaka
- Division of Pathophysiology, Meiji Pharmaceutical University, Kiyose, Tokyo, 204-8588, Japan
| |
Collapse
|
16
|
Ruhr IM, Takei Y, Grosell M. The role of the rectum in osmoregulation and the potential effect of renoguanylin on SLC26a6 transport activity in the Gulf toadfish (Opsanus beta). Am J Physiol Regul Integr Comp Physiol 2016; 311:R179-91. [PMID: 27030664 DOI: 10.1152/ajpregu.00033.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/28/2016] [Indexed: 01/14/2023]
Abstract
Teleosts living in seawater continually absorb water across the intestine to compensate for branchial water loss to the environment. The present study reveals that the Gulf toadfish (Opsanus beta) rectum plays a comparable role to the posterior intestine in ion and water absorption. However, the posterior intestine appears to rely more on SLC26a6 (a HCO3 (-)/Cl(-) antiporter) and the rectum appears to rely on NKCC2 (SLC12a1) for the purposes of solute-coupled water absorption. The present study also demonstrates that the rectum responds to renoguanylin (RGN), a member of the guanylin family of peptides that alters the normal osmoregulatory processes of the distal intestine, by inhibited water absorption. RGN decreases rectal water absorption more greatly than in the posterior intestine and leads to net Na(+) and Cl(-) secretion, and a reversal of the absorptive short-circuit current (ISC). It is hypothesized that maintaining a larger fluid volume within the distal segments of intestinal tract facilitates the removal of CaCO3 precipitates and other solids from the intestine. Indeed, the expression of the components of the Cl(-)-secretory response, apical CFTR, and basolateral NKCC1 (SLC12a2), are upregulated in the rectum of the Gulf toadfish after 96 h in 60 ppt, an exposure that increases CaCO3 precipitate formation relative to 35 ppt. Moreover, the downstream intracellular effects of RGN appear to directly inhibit ion absorption by NKCC2 and anion exchange by SLC26a6. Overall, the present findings elucidate key electrophysiological differences between the posterior intestine and rectum of Gulf toadfish and the potent regulatory role renoguanylin plays in osmoregulation.
Collapse
Affiliation(s)
- Ilan M Ruhr
- Department of Marine Biology and Ecology, The Rosenstiel School of Marine and Atmospheric Science, The University of Miami, Miami, Florida; and
| | - Yoshio Takei
- Department of Marine Bioscience, The Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Martin Grosell
- Department of Marine Biology and Ecology, The Rosenstiel School of Marine and Atmospheric Science, The University of Miami, Miami, Florida; and
| |
Collapse
|
17
|
Abstract
In this review, we provide a brief synopsis of the evolution and functional diversity of the aquaporin gene superfamily in prokaryotic and eukaryotic organisms. Based upon the latest data, we discuss the expanding list of molecules shown to permeate the central pore of aquaporins, and the unexpected diversity of water channel genes in Archaea and Bacteria. We further provide new insight into the origin by horizontal gene transfer of plant glycerol-transporting aquaporins (NIPs), and the functional co-option and gene replacement of insect glycerol transporters. Finally, we discuss the origins of four major grades of aquaporins in Eukaryota, together with the increasing repertoires of aquaporins in vertebrates.
Collapse
Affiliation(s)
- Roderick Nigel Finn
- Department of Biology, Bergen High Technology Centre, University of Bergen, Norway; Institute of Marine Research, Nordnes, 5817 Bergen, Norway; and
| | - Joan Cerdà
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), 08003 Barcelona, Spain
| |
Collapse
|
18
|
Sakamoto T, Nishiyama Y, Ikeda A, Takahashi H, Hyodo S, Kagawa N, Sakamoto H. Neurohypophysial Hormones Regulate Amphibious Behaviour in the Mudskipper Goby. PLoS One 2015; 10:e0134605. [PMID: 26230718 PMCID: PMC4521927 DOI: 10.1371/journal.pone.0134605] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 07/12/2015] [Indexed: 12/15/2022] Open
Abstract
The neurohypophysial hormones, arginine vasotocin and isotocin, regulate both hydromineral balance and social behaviors in fish. In the amphibious mudskipper, Periophthalmus modestus, we previously found arginine-vasotocin-specific regulation of aggressive behavior, including migration of the submissive subordinate into water. This migration also implies the need for adaptation to dehydration. Here, we examined the effects of arginine vasotocin and isotocin administration on the amphibious behavior of individual mudskippers in vivo. The mudskippers remained in the water for an increased period of time after 1-8 h of intracerebroventricular (ICV) injection with 500 pg/g arginine vasotocin or isotocin. The 'frequency of migration' was decreased after ICV injection of arginine vasotocin or isotocin, reflecting a tendency to remain in the water. ICV injections of isotocin receptor antagonist with arginine vasotocin or isotocin inhibited all of these hormonal effects. In animals kept out of water, mRNA expression of brain arginine vasotocin and isotocin precursors increased 3- and 1.5-fold, respectively. Given the relatively wide distribution of arginine vasotocin fibres throughout the mudskipper brain, induction of arginine vasotocin and isotocin under terrestrial conditions may be involved also in the preference for an aquatic habitat as ligands for brain isotocin receptors.
Collapse
Affiliation(s)
- Tatsuya Sakamoto
- Ushimado Marine Institute, Faculty of Science, Okayama University, Ushimado, Setouchi, 701-4303, Japan
| | - Yudai Nishiyama
- Ushimado Marine Institute, Faculty of Science, Okayama University, Ushimado, Setouchi, 701-4303, Japan
| | - Aoi Ikeda
- Ushimado Marine Institute, Faculty of Science, Okayama University, Ushimado, Setouchi, 701-4303, Japan
| | - Hideya Takahashi
- Ushimado Marine Institute, Faculty of Science, Okayama University, Ushimado, Setouchi, 701-4303, Japan
| | - Susumu Hyodo
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan
| | - Nao Kagawa
- Department of Life Science, Faculty of Science and Technology, Kinki University, Higashiosaka, Osaka, 577-8502, Japan
| | - Hirotaka Sakamoto
- Ushimado Marine Institute, Faculty of Science, Okayama University, Ushimado, Setouchi, 701-4303, Japan
| |
Collapse
|