1
|
Masagué S, Cano A, Asparch Y, Barrozo RB, Minoli S. Sensory discrimination between aversive salty and bitter tastes in an haematophagous insect. Eur J Neurosci 2020; 51:1867-1880. [PMID: 32048391 DOI: 10.1111/ejn.14702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 12/31/2022]
Abstract
Sensory aversion is essential for avoiding prospective dangers. We studied the chemical perception of aversive compounds of different gustatory modalities (salty, bitter) in the haematophagous bug, Rhodnius prolixus. Over a walking arena, insects avoided a substrate embedded with 1M NaCl or KCl if provided with water as an alternative. However, no preferences were expressed when both salts were opposed to each other. A pre-exposure to amiloride interfered with the repellency of NaCl and KCl equally, suggesting that amiloride-sensitive receptors are involved in the detection of both salts. Discriminative experiments were then performed to determine whether R. prolixus can distinguish between these salts. An aversive operant conditioning involving either NaCl or KCl modulated the repellency of the conditioned salt, but also of the novel salt. Repellency levels of both salts were rigid to a chemical pre-exposure to any of both salts. When gustatory modalities were crossed by presenting as a choice NaCl and a bitter molecule as caffeine (Caf), no innate preferences were expressed. Aversive operant conditionings with either NaCl or Caf rendered unspecific changes in the repellency of both compounds. A chemical pre-exposure to Caf modulated the response to Caf but not to NaCl, suggesting the existence of two independent neural pathways for the detection of salts and bitter compounds. Overall results suggest that R. prolixus cannot discriminate molecules of the same gustatory modality (i.e. salty), but can distinguish between salty and bitter tastes. The potential use of aversive gustatory stimuli as a complement of commercially available olfactory repellents is discussed.
Collapse
Affiliation(s)
- Santiago Masagué
- Laboratorio Fisiología de Insectos, Instituto Biodiversidad Biología Experimental Aplicada, CONICET - UBA, Departamento Biodiversidad Biología Experimental, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Agustina Cano
- Laboratorio Fisiología de Insectos, Instituto Biodiversidad Biología Experimental Aplicada, CONICET - UBA, Departamento Biodiversidad Biología Experimental, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Yamila Asparch
- Laboratorio Fisiología de Insectos, Instituto Biodiversidad Biología Experimental Aplicada, CONICET - UBA, Departamento Biodiversidad Biología Experimental, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Romina B Barrozo
- Laboratorio Fisiología de Insectos, Instituto Biodiversidad Biología Experimental Aplicada, CONICET - UBA, Departamento Biodiversidad Biología Experimental, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sebastian Minoli
- Laboratorio Fisiología de Insectos, Instituto Biodiversidad Biología Experimental Aplicada, CONICET - UBA, Departamento Biodiversidad Biología Experimental, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
2
|
Vinauger C. Vector cognition and neurobiology. CURRENT OPINION IN INSECT SCIENCE 2019; 34:68-72. [PMID: 31247420 DOI: 10.1016/j.cois.2019.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
The processing and integration of sensory information are central to the ability of disease vector insects to find their hosts, and eventually transmit diseases. Deciphering the underlying mechanisms and the modulation of their behavioral responses to host cues is likely to reveal molecular pathways and neural processes, which could then be targeted for reducing the transmission rates of pathogens. In addition, the double role of prey and predator played by hosts imposes unique challenges on vectors, making them an underexploited model to study the evolution of sensory neurobiology and of cognitive processes in miniature brains. Here, I review the most recent advances on the cognitive abilities of triatomine bugs and mosquitoes, with a particular emphasis on their ability to learn and remember information.
Collapse
Affiliation(s)
- Clément Vinauger
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
3
|
Minoli S, Cano A, Pontes G, Magallanes A, Roldán N, Barrozo RB. Learning Spatial Aversion Is Sensory-Specific in the Hematophagous Insect Rhodnius prolixus. Front Psychol 2018; 9:989. [PMID: 30038588 PMCID: PMC6047214 DOI: 10.3389/fpsyg.2018.00989] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/28/2018] [Indexed: 12/04/2022] Open
Abstract
Even though innate behaviors are essential for assuring quick responses to expected stimuli, experience-dependent behavioral plasticity confers an advantage when unexpected conditions arise. As being rigidly responsive to too many stimuli can be biologically expensive, adapting preferences to time-dependent relevant environmental conditions provide a cheaper and wider behavioral reactivity. According to their specific life habits, animals prioritize different sensory modalities to maximize environment exploitation. Besides, when mediating learning processes, the salience of a stimulus usually plays a relevant role in determining the intensity of an association. Then, sensory prioritization might reflect an heterogeneity in the cognitive abilities of an individual. Here, we analyze in the kissing bug Rhodnius prolixus if stimuli from different sensory modalities generate different cognitive capacities under an operant aversive paradigm. In a 2-choice walking arena, by registering the spatial distribution of insects over an experimental arena, we evaluated firstly the innate responses of bugs confronted to mechanical (rough substrate), visual (green light), thermal (32°C heated plate), hygric (humidified substrate), gustatory (sodium chloride), and olfactory (isobutyric acid) stimuli. In further experimental series bugs were submitted to an aversive operant conditioning by pairing each stimulus with a negative reinforcement. Subsequent tests allowed us to analyze if the innate behaviors were modulated by such previous aversive experience. In our experimental setup mechanical and visual stimuli were neutral, the thermal cue was attractive, and the hygric, gustatory and olfactory ones were innately aversive. After the aversive conditioning, responses to the mechanical, the visual, the hygric and the gustatory stimuli were modulated while responses to the thermal and the olfactory stimuli remained rigid. We present evidences that the spatial learning capacities of R. prolixus are dependent on the sensory modality of the conditioned stimulus, regardless their innate valence (i.e., neutral, attractive, or aversive). These differences might be given by the biological relevance of the stimuli and/or by evolutionary aspects of the life traits of this hematophagous insect.
Collapse
Affiliation(s)
- Sebastian Minoli
- Laboratorio de Fisiología de Insectos, Instituto de Biodiversidad y Biología Experimental y Aplicada-CONICET, Buenos Aires, Argentina
- Departamento de Biodiversidad y Biología Experimental-FCEN, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Gina Pontes
- Laboratorio de Fisiología de Insectos, Instituto de Biodiversidad y Biología Experimental y Aplicada-CONICET, Buenos Aires, Argentina
- Departamento de Biodiversidad y Biología Experimental-FCEN, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Amorina Magallanes
- Laboratorio de Fisiología de Insectos, Instituto de Biodiversidad y Biología Experimental y Aplicada-CONICET, Buenos Aires, Argentina
- Departamento de Biodiversidad y Biología Experimental-FCEN, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nahuel Roldán
- Laboratorio de Fisiología de Insectos, Instituto de Biodiversidad y Biología Experimental y Aplicada-CONICET, Buenos Aires, Argentina
- Departamento de Biodiversidad y Biología Experimental-FCEN, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Romina B. Barrozo
- Laboratorio de Fisiología de Insectos, Instituto de Biodiversidad y Biología Experimental y Aplicada-CONICET, Buenos Aires, Argentina
- Departamento de Biodiversidad y Biología Experimental-FCEN, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
4
|
|
5
|
Mengoni SL, Lorenzo-Figueiras AN, Minoli SA. Experience-dependent modulation of the attraction to faeces in the kissing bug Triatoma infestans. JOURNAL OF INSECT PHYSIOLOGY 2017; 98:23-28. [PMID: 27840288 DOI: 10.1016/j.jinsphys.2016.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 06/06/2023]
Abstract
Triatoma infestans is the main vector of the Chagas disease in Latin America. These nocturnal bugs spend most of the daylight hours aggregated with conspecifics inside crevices in roofs and walls. Around the entrances of the shelters T. infestans deposits faeces that contain chemical cues that attract conspecifics. In this work we investigated whether attraction to faeces can be modulated by experience in this insect species. First, we analyzed if the attraction of nymphs to faeces is innate or acquired through previous sensory experiences. Results show that after hatching, 1st instar nymphs are attracted to faeces even if they had never been in contact with them before, thus indicating that this attraction is innate. Second, we studied if attraction to faeces can be influenced by the presence of con-specifics. No differences were found in the attraction to faeces of nymphs released alone or in groups, suggesting that attraction to faeces is independent of the presence of other individuals. Third, we examined if the innate response to faeces of nymphs can be modulated by experience. After pre-exposing nymphs to faeces during 24h, insects were no longer attracted to faeces. Finally, by pairing the presence of faeces with an aversive mechanical disturbance, nymphs switched from attraction to avoidance of faeces. These results show that although faeces attraction has a strong innate component, it can be modulated by experience. The learning and memory capacities of triatomines have been studied only recently, and our work is the first report on the effects of experience in the aggregation context.
Collapse
Affiliation(s)
- Sofía L Mengoni
- DBBE Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IBBEA, CONICET-UBA, CP: 1428 Buenos Aires, Argentina.
| | - Alicia N Lorenzo-Figueiras
- DBBE Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IBBEA, CONICET-UBA, CP: 1428 Buenos Aires, Argentina.
| | - Sebastián A Minoli
- DBBE Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IBBEA, CONICET-UBA, CP: 1428 Buenos Aires, Argentina.
| |
Collapse
|
6
|
Ons S. Neuropeptides in the regulation of Rhodnius prolixus physiology. JOURNAL OF INSECT PHYSIOLOGY 2017; 97:77-92. [PMID: 27210592 DOI: 10.1016/j.jinsphys.2016.05.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 04/19/2016] [Accepted: 05/18/2016] [Indexed: 06/05/2023]
Abstract
In the kissing bug Rhodnius prolixus, events such as diuresis, antidiuresis, development and reproduction are triggered by blood feeding. Hence, these events can be accurately timed, facilitating physiological experiments. This, combined with its relatively big size, makes R. prolixus an excellent model in insect neuroendocrinological studies. The importance of R. prolixus as a Chagas' disease vector as much as an insect model has motivated the sequencing of its genome in recent years, facilitating genetic and molecular studies. Most crucial physiological processes are regulated by the neuroendocrine system, composed of neuropeptides and their receptors. The identification and characterization of neuropeptides and their receptors could be the first step to find targets for new insecticides. The sequences of 41 neuropeptide precursor genes and the receptors for most of them were identified in the R. prolixus genome. Functional information about many of these molecules was obtained, whereas many neuroendocrine systems are still unstudied in this model species. This review addresses the knowledge available to date regarding the structure, distribution, expression and physiological effects of neuropeptides in R. prolixus, and points to future directions in this research field.
Collapse
Affiliation(s)
- Sheila Ons
- Laboratory of Insects Neurobiology, National Center for Genomic Studies, Faculty of Exact Sciences, National University of La Plata, Bvd 120 1459, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
7
|
Traverso L, Sierra I, Sterkel M, Francini F, Ons S. Neuropeptidomics in Triatoma infestans. Comparative transcriptomic analysis among triatomines. ACTA ACUST UNITED AC 2016; 110:83-98. [PMID: 27993629 DOI: 10.1016/j.jphysparis.2016.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 01/02/2023]
Abstract
Chagas' disease, affecting up to 6-7 million people worldwide, is transmitted to humans through the feces of triatomine kissing bugs. From these, Rhodnius prolixus, Triatoma dimidiata, Triatoma infestans and Triatoma pallidipennis are important vectors distributed throughout the Latin American subcontinent. Resistance to pyrethroids has been developed by some triatomine populations, especially T. infestans, obstructing their control. Given their role in the regulation of physiological processes, neuroendocrine-derived factors have been proposed as a source of molecular targets for new-generation insecticides. However, the involvement of neuropeptides in insecticide metabolism and resistance in insects has been poorly studied. In the present work, the sequences of 20 neuropeptide precursor genes in T. infestans, 16 in T. dimidiata, and 13 in T. pallidipennis detected in transcriptomic databases are reported, and a comparative analysis in triatomines is presented. A total of 59 neuropeptides were validated by liquid chromatography-tandem mass spectrometry in brain and nervous ganglia from T. infestans, revealing the existence of differential post-translational modifications, extended and truncated forms. The results suggest a high sequence conservation in some neuropeptide systems in triatomines, whereas remarkable differences occur in several others within the core domains. Comparisons of the basal expression levels for several neuropeptide precursor genes between pyrethroid sensitive and resistant population of T. infestans are also presented here, in order to introduce a proof of concept to test the involvement of neuropeptides in insecticide resistance. From the precursors tested, NVP and ITG peptides are significantly higher expressed in the resistant population. To our knowledge, this is the first report to associate differential neuropeptide expression with insecticide resistance. The information provided here contributes to creating conditions to widely extend functional and genetic studies involving neuropeptides in triatomines.
Collapse
Affiliation(s)
- Lucila Traverso
- Laboratory of Insect Neurobiology, Regional Center for Genomic Studies, Faculty of Exact Sciences, National University of La Plata, Bvd 120 N(o). 1459, CP: 1900, La Plata, Argentina
| | - Ivana Sierra
- Laboratory of Insect Neurobiology, Regional Center for Genomic Studies, Faculty of Exact Sciences, National University of La Plata, Bvd 120 N(o). 1459, CP: 1900, La Plata, Argentina
| | - Marcos Sterkel
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, bloco D. Prédio do CCS, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil
| | - Flavio Francini
- Center of Experimental and Applied Endocrinology, CONICET-CCT La Plata, National University of La Plata, 60 and 120 Street, CP: 1900, La Plata, Argentina
| | - Sheila Ons
- Laboratory of Insect Neurobiology, Regional Center for Genomic Studies, Faculty of Exact Sciences, National University of La Plata, Bvd 120 N(o). 1459, CP: 1900, La Plata, Argentina.
| |
Collapse
|
8
|
Learning and Memory in Disease Vector Insects. Trends Parasitol 2016; 32:761-771. [PMID: 27450224 DOI: 10.1016/j.pt.2016.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/16/2016] [Accepted: 06/16/2016] [Indexed: 11/21/2022]
Abstract
Learning and memory plays an important role in host preference and parasite transmission by disease vector insects. Historically there has been a dearth of standardized protocols that permit testing their learning abilities, thus limiting discussion on the potential epidemiological consequences of learning and memory to a largely speculative extent. However, with increasing evidence that individual experience and associative learning can affect processes such as oviposition site selection and host preference, it is timely to review the recently acquired knowledge, identify research gaps and discuss the implication of learning in disease vector insects in perspective with control strategies.
Collapse
|