1
|
Dudley JS, Hannaford P, Dowland SN, Lindsay LA, Thompson MB, Murphy CR, Van Dyke JU, Whittington CM. Structural changes to the brood pouch of male pregnant seahorses (Hippocampus abdominalis) facilitate exchange between father and embryos. Placenta 2021; 114:115-123. [PMID: 34517263 DOI: 10.1016/j.placenta.2021.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/10/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Embryonic growth and development require efficient respiratory gas exchange. Internal incubation of developing young thus presents a significant physiological challenge, because respiratory gas diffusion to embryos is impeded by the additional barrier of parental tissue between the embryo and the environment. Therefore, live-bearing species exhibit a variety of adaptations facilitating respiratory gas exchange between the parent (usually the mother) and embryos. Syngnathid fishes are the only vertebrates to exhibit male pregnancy, allowing comparative studies of the biology and evolution of internal incubation of embryos, independent of the female reproductive tract. Here, we examine the fleshy, sealed, seahorse brood pouch, and provide the first quantification of structural changes to this gestational organ across pregnancy. METHODS We used histological analysis and morphometrics to quantify the surface area for exchange across the brood pouch epithelium, and the structure of the vascular bed of the brood pouch. RESULTS We show dramatic remodelling of gestational tissues as pregnancy progresses, including an increase in tortuosity of the gestational epithelium, an increase in capillary density, and a decrease in diffusion distance between capillaries and the pouch lumen. DISCUSSION These changes produce an increased surface area and expansion of the vascular bed of the placenta that likely facilitates respiratory gas exchange. These changes mirror the remodelling of gestational tissue in viviparous amniotes and elasmobranchs, and provide further evidence of the convergence of adaptations to support pregnancy in live-bearing animals.
Collapse
Affiliation(s)
- J S Dudley
- The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW, Australia; Macquarie University, Department of Biological Sciences, Faculty of Science and Engineering, Macquarie Park, NSW, Australia
| | - P Hannaford
- The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW, Australia
| | - S N Dowland
- The University of Sydney, School of Medical Sciences (Anatomy and Histology), Sydney, NSW, Australia
| | - L A Lindsay
- The University of Sydney, School of Medical Sciences (Anatomy and Histology), Sydney, NSW, Australia
| | - M B Thompson
- The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW, Australia
| | - C R Murphy
- The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW, Australia; The University of Sydney, School of Medical Sciences (Anatomy and Histology), Sydney, NSW, Australia
| | - J U Van Dyke
- La Trobe University, Department of Pharmacy and Biomedical Sciences, School of Molecular Sciences, Wodonga, Victoria, Australia
| | - C M Whittington
- The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW, Australia.
| |
Collapse
|
2
|
Whittington CM, Friesen CR. The evolution and physiology of male pregnancy in syngnathid fishes. Biol Rev Camb Philos Soc 2020; 95:1252-1272. [PMID: 32372478 DOI: 10.1111/brv.12607] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 12/24/2022]
Abstract
The seahorses, pipefishes and seadragons (Syngnathidae) are among the few vertebrates in which pregnant males incubate developing embryos. Syngnathids are popular in studies of sexual selection, sex-role reversal, and reproductive trade-offs, and are now emerging as valuable comparative models for the study of the biology and evolution of reproductive complexity. These fish offer the opportunity to examine the physiology, behavioural implications, and evolutionary origins of embryo incubation, independent of the female reproductive tract and female hormonal milieu. Such studies allow us to examine flexibility in regulatory systems, by determining whether the pathways underpinning female pregnancy are also co-opted in incubating males, or whether novel pathways have evolved in response to the common challenges imposed by incubating developing embryos and releasing live young. The Syngnathidae are also ideal for studies of the evolution of reproductive complexity, because they exhibit multiple parallel origins of complex reproductive phenotypes. Here we assay the taxonomic distribution of syngnathid parity mode, examine the selective pressures that may have led to the emergence of male pregnancy, describe the biology of syngnathid reproduction, and highlight pressing areas for future research. Experimental tests of a range of hypotheses, including many generated with genomic tools, are required to inform overarching theories about the fitness implications of pregnancy and the evolution of male pregnancy. Such information will be widely applicable to our understanding of fundamental reproductive and evolutionary processes in animals.
Collapse
Affiliation(s)
- Camilla M Whittington
- The University of Sydney, School of Life and Environmental Sciences, Sydney, New South Wales, 2006, Australia.,The University of Sydney, Sydney School of Veterinary Science, Sydney, New South Wales, 2006, Australia
| | - Christopher R Friesen
- The University of Wollongong, School of Earth, Atmospheric and Life Sciences, Faculty of Science, Medicine and Health, Wollongong, New South Wales, 2522, Australia.,Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, New South Wales, 2522, Australia
| |
Collapse
|
3
|
Nygård M, Kvarnemo C, Ahnesjö I, Braga Goncalves I. Pipefish embryo oxygenation, survival, and development: egg size, male size, and temperature effects. Behav Ecol 2019; 30:1451-1460. [PMID: 31592213 PMCID: PMC6776002 DOI: 10.1093/beheco/arz101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/15/2019] [Accepted: 06/08/2019] [Indexed: 01/27/2023] Open
Abstract
In animals with uniparental care, the quality of care provided by one sex can deeply impact the reproductive success of both sexes. Studying variation in parental care quality within a species and which factors may affect it can, therefore, shed important light on patterns of mate choice and other reproductive decisions observed in nature. Using Syngnathus typhle, a pipefish species with extensive uniparental male care, with embryos developing inside a brood pouch during a lengthy pregnancy, we assessed how egg size (which correlates positively with female size), male size, and water temperature affect brooding traits that relate to male care quality, all measured on day 18, approximately 1/3, of the brooding period. We found that larger males brooded eggs at lower densities, and their embryos were heavier than those of small males independent of initial egg size. However, large males had lower embryo survival relative to small males. We found no effect of egg size or of paternal size on within-pouch oxygen levels, but oxygen levels were significantly higher in the bottom than the middle section of the pouch. Males that brooded at higher temperatures had lower pouch oxygen levels presumably because of higher embryo developmental rates, as more developed embryos consume more oxygen. Together, our results suggest that small and large males follow distinct paternal strategies: large males positively affect embryo size whereas small males favor embryo survival. As females prefer large mates, offspring size at independence may be more important to female fitness than offspring survival during development.
Collapse
Affiliation(s)
- Malin Nygård
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Charlotta Kvarnemo
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.,The Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
| | - Ingrid Ahnesjö
- Department of Ecology and Genetics/Animal Ecology, Uppsala University, Norbyvägen, Uppsala, Sweden
| | | |
Collapse
|
4
|
Courtney Jones SK, Munn AJ, Byrne PG. Effect of captivity on morphology: negligible changes in external morphology mask significant changes in internal morphology. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172470. [PMID: 29892434 PMCID: PMC5990819 DOI: 10.1098/rsos.172470] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/04/2018] [Indexed: 05/19/2023]
Abstract
Captive breeding programmes are increasingly relied upon for threatened species management. Changes in morphology can occur in captivity, often with unknown consequences for reintroductions. Few studies have examined the morphological changes that occur in captive animals compared with wild animals. Further, the effect of multiple generations being maintained in captivity, and the potential effects of captivity on sexual dimorphism remain poorly understood. We compared external and internal morphology of captive and wild animals using house mouse (Mus musculus) as a model species. In addition, we looked at morphology across two captive generations, and compared morphology between sexes. We found no statistically significant differences in external morphology, but after one generation in captivity there was evidence for a shift in the internal morphology of captive-reared mice; captive-reared mice (two generations bred) had lighter combined kidney and spleen masses compared with wild-caught mice. Sexual dimorphism was maintained in captivity. Our findings demonstrate that captive breeding can alter internal morphology. Given that these morphological changes may impact organismal functioning and viability following release, further investigation is warranted. If the morphological change is shown to be maladaptive, these changes would have significant implications for captive-source populations that are used for reintroduction, including reduced survivorship.
Collapse
Affiliation(s)
- Stephanie K. Courtney Jones
- Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Adam J. Munn
- Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia
- School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney New South Wales 2052, Australia
| | - Phillip G. Byrne
- Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
5
|
Sagebakken G, Kvarnemo C, Ahnesjö I. Nutritional state – a survival kit for brooding pipefish fathers. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
6
|
Beemelmanns A, Roth O. Grandparental immune priming in the pipefish Syngnathus typhle. BMC Evol Biol 2017; 17:44. [PMID: 28173760 PMCID: PMC5297188 DOI: 10.1186/s12862-017-0885-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/16/2017] [Indexed: 11/10/2022] Open
Abstract
Background Phenotypic changes in response to environmental influences can persist from one generation into the next. In many systems parental parasite experience influences offspring immune responses, known as transgenerational immune priming (TGIP). TGIP in vertebrates is mainly maternal and short-term, supporting the adaptive immune system of the offspring during its maturation. However, if fathers and offspring have a close physical connection, evolution of additional paternal immune priming can be adaptive. Biparental TGIP may result in maximized immunological protection. Here, we investigate multigenerational biparental TGIP in the sex-role reversed pipefish Syngnathus typhle by exposing grandparents to an immune challenge with heat-killed bacteria and assessing gene expression (44 target genes) of the F2-generation. Results Grandparental immune challenge induced gene expression of immune genes in one-week-old grandoffspring. Similarly, genes mediating epigenetic regulation including DNA-methylation and histone modifications were involved in grandparental immune priming. While grand-maternal impact was strong on genes of the complement component system, grand-paternal exposure changed expression patterns of genes mediating innate immune defense. Conclusion In a system with male pregnancy, grandparents influenced the immune system of their grandoffspring in a sex-specific manner, demonstrating multigenerational biparental TGIP. The involvement of epigenetic effects suggests that TGIP via the paternal line may not be limited to the pipefish system that displays male pregnancy. While the benefits and costs of grandparental TGIP depend on the temporal heterogeneity of environmental conditions, multigenerational TGIP may affect host-parasite coevolution by dampening the amplitude of Red Queen Dynamics. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0885-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anne Beemelmanns
- Evolutionary Ecology of Marine Fishes, Helmholtz-Centre for Ocean Research Kiel (GEOMAR), Düsternbrooker Weg 20, 24105, Kiel, Germany
| | - Olivia Roth
- Evolutionary Ecology of Marine Fishes, Helmholtz-Centre for Ocean Research Kiel (GEOMAR), Düsternbrooker Weg 20, 24105, Kiel, Germany.
| |
Collapse
|
7
|
The genome of the Gulf pipefish enables understanding of evolutionary innovations. Genome Biol 2016; 17:258. [PMID: 27993155 PMCID: PMC5168715 DOI: 10.1186/s13059-016-1126-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/05/2016] [Indexed: 11/10/2022] Open
Abstract
Background Evolutionary origins of derived morphologies ultimately stem from changes in protein structure, gene regulation, and gene content. A well-assembled, annotated reference genome is a central resource for pursuing these molecular phenomena underlying phenotypic evolution. We explored the genome of the Gulf pipefish (Syngnathus scovelli), which belongs to family Syngnathidae (pipefishes, seahorses, and seadragons). These fishes have dramatically derived bodies and a remarkable novelty among vertebrates, the male brood pouch. Results We produce a reference genome, condensed into chromosomes, for the Gulf pipefish. Gene losses and other changes have occurred in pipefish hox and dlx clusters and in the tbx and pitx gene families, candidate mechanisms for the evolution of syngnathid traits, including an elongated axis and the loss of ribs, pelvic fins, and teeth. We measure gene expression changes in pregnant versus non-pregnant brood pouch tissue and characterize the genomic organization of duplicated metalloprotease genes (patristacins) recruited into the function of this novel structure. Phylogenetic inference using ultraconserved sequences provides an alternative hypothesis for the relationship between orders Syngnathiformes and Scombriformes. Comparisons of chromosome structure among percomorphs show that chromosome number in a pipefish ancestor became reduced via chromosomal fusions. Conclusions The collected findings from this first syngnathid reference genome open a window into the genomic underpinnings of highly derived morphologies, demonstrating that de novo production of high quality and useful reference genomes is within reach of even small research groups. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-1126-6) contains supplementary material, which is available to authorized users.
Collapse
|
8
|
Wildman DE. IFPA award in placentology lecture: Phylogenomic origins and evolution of the mammalian placenta. Placenta 2016; 48 Suppl 1:S31-S39. [PMID: 27105828 DOI: 10.1016/j.placenta.2016.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/01/2016] [Accepted: 04/05/2016] [Indexed: 01/11/2023]
Abstract
The placenta has had the most dynamic evolutionary history of all mammalian organs. It has undergone massive shifts in anatomy, physiology, and the way in which uterine and fetal tissue interact with one another during pregnancy. The human placenta is arguably the best studied amongst mammals, yet much about its function during pregnancy is not understood. The purpose of this paper is to outline the evolutionary history of the placenta, and to point out major gaps in the current state of knowledge. I also propose novel theoretical, experimental, and computational approaches that are likely to provide insight into the normal process of placentation and the role the placenta plays in the great obstetrical syndromes.
Collapse
Affiliation(s)
- Derek E Wildman
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA; Department of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA.
| |
Collapse
|
9
|
Tsuboi M, Lim ACO, Ooi BL, Yip MY, Chong VC, Ahnesjö I, Kolm N. Brain size evolution in pipefishes and seahorses: the role of feeding ecology, life history and sexual selection. J Evol Biol 2016; 30:150-160. [PMID: 27748990 DOI: 10.1111/jeb.12995] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 09/15/2016] [Accepted: 10/14/2016] [Indexed: 01/25/2023]
Abstract
Brain size varies greatly at all taxonomic levels. Feeding ecology, life history and sexual selection have been proposed as key components in generating contemporary diversity in brain size across vertebrates. Analyses of brain size evolution have, however, been limited to lineages where males predominantly compete for mating and females choose mates. Here, we present the first original data set of brain sizes in pipefishes and seahorses (Syngnathidae) a group in which intense female mating competition occurs in many species. After controlling for the effect of shared ancestry and overall body size, brain size was positively correlated with relative snout length. Moreover, we found that females, on average, had 4.3% heavier brains than males and that polyandrous species demonstrated more pronounced (11.7%) female-biased brain size dimorphism. Our results suggest that adaptations for feeding on mobile prey items and sexual selection in females are important factors in brain size evolution of pipefishes and seahorses. Most importantly, our study supports the idea that sexual selection plays a major role in brain size evolution, regardless of on which sex sexual selection acts stronger.
Collapse
Affiliation(s)
- M Tsuboi
- Department of Ecology and Genetics/Animal Ecology, Uppsala University, Uppsala, Sweden
| | - A C O Lim
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,Save Our Seahorses Malaysia, Petaling Jaya, Selangor, Malaysia
| | - B L Ooi
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,Save Our Seahorses Malaysia, Petaling Jaya, Selangor, Malaysia
| | - M Y Yip
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,Save Our Seahorses Malaysia, Petaling Jaya, Selangor, Malaysia
| | - V C Chong
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - I Ahnesjö
- Department of Ecology and Genetics/Animal Ecology, Uppsala University, Uppsala, Sweden
| | - N Kolm
- Department of Zoology/Ethology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
10
|
Sagebakken G, Ahnesjö I, Kvarnemo C. Costs and Benefits to Pregnant Male Pipefish Caring for Broods of Different Sizes. PLoS One 2016; 11:e0156484. [PMID: 27243937 PMCID: PMC4886961 DOI: 10.1371/journal.pone.0156484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 05/16/2016] [Indexed: 11/20/2022] Open
Abstract
Trade-offs between brood size and offspring size, offspring survival, parental condition or parental survival are classic assumptions in life history biology. A reduction in brood size may lessen these costs of care, but offspring mortality can also result in an energetic gain, if parents are able to utilize the nutrients from the demised young. Males of the broad-nosed pipefish (Syngnathus typhle) care for the offspring by brooding embryos in a brood pouch. Brooding males can absorb nutrients that emanate from embryos, and there is often a reduction in offspring number over the brooding period. In this study, using two experimentally determined brood sizes (partially and fully filled brood pouches), we found that full broods resulted in larger number of developing offspring, despite significantly higher absolute and relative embryo mortality, compared to partial broods. Male survival was also affected by brood size, with males caring for full broods having poorer survival, an effect that together with the reduced embryo survival was found to negate the benefit of large broods. We found that embryo mortality was lower when the brooding males were in good initial condition, that embryos in broods with low embryo mortality weighed more, and surprisingly, that males in higher initial condition had embryos of lower weight. Brood size, however, did not affect embryo weight. Male final condition, but not initial condition, correlated with higher male survival. Taken together, our results show costs and benefits of caring for large brood sizes, where the numerical benefits come with costs in terms of both embryo survival and survival of the brooding father, effects that are often mediated via male condition.
Collapse
Affiliation(s)
- Gry Sagebakken
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Ingrid Ahnesjö
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Charlotta Kvarnemo
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
11
|
Braga Goncalves I, Ahnesjö I, Kvarnemo C. The evolutionary puzzle of egg size, oxygenation and parental care in aquatic environments. Proc Biol Sci 2016; 282:20150690. [PMID: 26290070 DOI: 10.1098/rspb.2015.0690] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Offspring fitness generally improves with increasing egg size. Yet, eggs of most aquatic organisms are small. A common but largely untested assumption is that larger embryos require more oxygen than they can acquire through diffusion via the egg surface, constraining egg size evolution. However, we found no detrimental effects of large egg size on embryo growth and survival under hypoxic conditions. We tested this in the broad-nosed pipefish, Syngnathus typhle, whose males provide extensive care (nourishment, osmoregulation and oxygenation) to their young in a brood pouch on their bodies. We took advantage of this species' pronounced variation in egg size, correlating positively with female size, and tested the effect of hypoxia (40% dissolved oxygen) versus fully oxygenated (100%) water on embryo size and survival of large versus small eggs after 18 days of paternal brooding. Egg size did not affect embryo survival, regardless of O2 treatment. While hypoxia affected embryo size negatively, both large and small eggs showed similar reductions in growth. Males in hypoxia ventilated more and males with large eggs swam more, but neither treatment affected their position in the water column. Overall, our results call into question the most common explanation for constrained egg size evolution in aquatic environments.
Collapse
Affiliation(s)
- Ines Braga Goncalves
- Institute of Evolutionary Biology and Environmental Studies, Animal Behaviour, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, Gothenburg 40530, Sweden
| | - Ingrid Ahnesjö
- Department of Ecology and Genetics/Animal Ecology, Uppsala University, Norbyvägen 18D, Uppsala 75236, Sweden
| | - Charlotta Kvarnemo
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, Gothenburg 40530, Sweden
| |
Collapse
|
12
|
Braga Goncalves I, Ahnesjö I, Kvarnemo C. Evolutionary ecology of pipefish brooding structures: embryo survival and growth do not improve with a pouch. Ecol Evol 2016; 6:3608-3620. [PMID: 27231531 PMCID: PMC4864203 DOI: 10.1002/ece3.2139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/16/2016] [Accepted: 03/21/2016] [Indexed: 12/03/2022] Open
Abstract
For animals that reproduce in water, many adaptations in life‐history traits such as egg size, parental care, and behaviors that relate to embryo oxygenation are still poorly understood. In pipefishes, seahorses and seadragons, males care for the embryos either in some sort of brood pouch, or attached ventrally to the skin on their belly or tail. Typically, egg size is larger in the brood pouch group and it has been suggested that oxygen supplied via the pouch buffers the developing embryos against hypoxia and as such is an adaptation that has facilitated the evolution of larger eggs. Here, using four pipefish species, we tested whether the presence or absence of brood pouch relates to how male behavior, embryo size, and survival are affected by hypoxia, with normoxia as control. Two of our studied species Entelurus aequoreus and Nerophis ophidion (both having small eggs) have simple ventral attachment of eggs onto the male trunk, and the other two, Syngnathus typhle (large eggs) and S. rostellatus (small eggs), have fully enclosed brood pouches on the tail. Under hypoxia, all species showed lower embryo survival, while species with brood pouches suffered greater embryo mortality compared to pouchless species, irrespective of oxygen treatment. Behaviorally, species without pouches spent more time closer to the surface, possibly to improve oxygenation. Overall, we found no significant benefits of brood pouches in terms of embryo survival and size under hypoxia. Instead, our results suggest negative effects of large egg size, despite the protection of brood pouches.
Collapse
Affiliation(s)
- Ines Braga Goncalves
- Department of Evolutionary Biology and Environmental Studies, Animal Behaviour University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland.,Department of Biological and Environmental Sciences University of Gothenburg PO Box 463 40530 Gothenburg Sweden
| | - Ingrid Ahnesjö
- Department of Ecology and Genetics/Animal Ecology Uppsala University Norbyvägen 18D 75236 Uppsala Sweden
| | - Charlotta Kvarnemo
- Department of Biological and Environmental Sciences University of Gothenburg PO Box 463 40530 Gothenburg Sweden
| |
Collapse
|
13
|
Tsuboi M, Shoji J, Sogabe A, Ahnesjö I, Kolm N. Within species support for the expensive tissue hypothesis: a negative association between brain size and visceral fat storage in females of the Pacific seaweed pipefish. Ecol Evol 2016; 6:647-55. [PMID: 26865955 PMCID: PMC4739565 DOI: 10.1002/ece3.1873] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/19/2015] [Accepted: 11/23/2015] [Indexed: 11/11/2022] Open
Abstract
The brain is one of the most energetically expensive organs in the vertebrate body. Consequently, the high cost of brain development and maintenance is predicted to constrain adaptive brain size evolution (the expensive tissue hypothesis, ETH). Here, we test the ETH in a teleost fish with predominant female mating competition (reversed sex roles) and male pregnancy, the pacific seaweed pipefish Syngnathus schlegeli. The relative size of the brain and other energetically expensive organs (kidney, liver, heart, gut, visceral fat, and ovary/testis) was compared among three groups: pregnant males, nonpregnant males and egg producing females. Brood size in pregnant males was unrelated to brain size or the size of any other organ, whereas positive relationships were found between ovary size, kidney size, and liver size in females. Moreover, we found that the size of energetically expensive organs (brain, heart, gut, kidney, and liver) as well as the amount of visceral fat did not differ between pregnant and nonpregnant males. However, we found marked differences in relative size of the expensive organs between sexes. Females had larger liver and kidney than males, whereas males stored more visceral fat than females. Furthermore, in females we found a negative correlation between brain size and the amount of visceral fat, whereas in males, a positive trend between brain size and both liver and heart size was found. These results suggest that, while the majority of variation in the size of various expensive organs in this species likely reflects that individuals in good condition can afford to allocate resources to several organs, the cost of the expensive brain was visible in the visceral fat content of females, possibly due to the high costs associated with female egg production.
Collapse
Affiliation(s)
- Masahito Tsuboi
- Department of Ecology and Genetics/Animal Ecology Evolutionary Biology Centre Uppsala University Norbyvägen 18D SE-75236 Uppsala Sweden
| | - Jun Shoji
- Center for Field Science of the Seto Inland Sea Hiroshima University 5-8-1, Minatomachi 725-0024 Takehara City Hiroshima Japan
| | - Atsushi Sogabe
- Department of Biology Faculty of Agriculture and Life Science Hirosaki University 1-1, Bunkyo-cho 036-8560 Hirosaki Aomori Japan
| | - Ingrid Ahnesjö
- Department of Ecology and Genetics/Animal Ecology Evolutionary Biology Centre Uppsala University Norbyvägen 18D SE-75236 Uppsala Sweden
| | - Niclas Kolm
- Department of Zoology/Ethology Stockholm University Svante Arrhenius väg 18B SE-10691 Stockholm Sweden
| |
Collapse
|
14
|
Knight K. Pipefish fathers do not boost embryos’ oxygen. J Exp Biol 2015. [DOI: 10.1242/jeb.125195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|