1
|
Zhu M, Miao S, Zhou W, Elnesr SS, Dong X, Zou X. MAPK, AKT/FoxO3a and mTOR pathways are involved in cadmium regulating the cell cycle, proliferation and apoptosis of chicken follicular granulosa cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112091. [PMID: 33706141 DOI: 10.1016/j.ecoenv.2021.112091] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
The occurrence of cadmium (Cd) in feed is a major problem in animal health and production. Studies have confirmed that Cd depresses egg production of laying hens, which is closely related to follicular atresia. This study aimed to assess the toxic impacts of Cd on the ovarian tissue, and to examine the mechanism of Cd-induced granulosa cell proliferation and apoptosis. Results from the nitric oxide (NO) and malondialdehyde (MDA) content, total superoxide dismutase (T-SOD), glutathione peroxide (GSH-Px), total nitric oxide synthase (T-NOS) and adenosine triphosphatase (ATPase) activities, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay, and hematoxylin-eosin (H & E) staining indicated that excess Cd induced oxidative stress, granulosa cell apoptosis and follicular atresia in the layer ovary. Low-dose Cd exposure (1 μM) induced the granulosa cell proliferation, upregulated the mRNA levels of RSK1 and RHEB, activated FoxO3a, AKT, ERK1/2, mTOR and p70S6K1 phosphorylation, and promoted cell cycle progression from phase G1 to S. However, high-dose Cd exposure (15 μM) induced reactive oxygen species (ROS) generation and cell apoptosis, upregulated the mRNA levels of the inflammatory factors, ASK1, JNK, p38 and TAK1, downregulated the expressions of RSK1 and RHEB genes, and inhibited the phosphorylation of ERK1/2, mTOR and p70S6K1 proteins, and the cell cycle progression. Rapamycin pre-treatment completely blocked the phosphorylation of mTOR and p70S6K1 proteins, and the cell cycle progression induced by 1 μM Cd, and accelerated 15 μM Cd-induced cell apoptosis and cell cycle arrest. The microRNA sequencing result showed that 15 μM Cd induced differential expression of microRNA genes, which may regulate AKT, ERK1/2 and mTOR signaling and cell cycle progression by regulating the activity of G proteins and cell cycle-related proteins. Conclusively, these results indicated that Cd can cause the ovarian damage and follicular atresia, and regulate cell cycle, cell proliferation or apoptosis of granulosa cells through MAPK, AKT/FoxO3a and mTOR pathways in laying hens.
Collapse
Affiliation(s)
- Mingkun Zhu
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China; School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Sasa Miao
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Wenting Zhou
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Shaaban Saad Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, 63514 Fayoum, Egypt
| | - Xinyang Dong
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xiaoting Zou
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
2
|
Lv H, Tang Y, Zhang H, Li S, Fan Z. Astragalus polysaccharide supplementation improves production performance, egg quality, serum biochemical index and gut microbiota in Chongren hens. Anim Sci J 2021; 92:e13550. [PMID: 33899985 DOI: 10.1111/asj.13550] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 11/29/2022]
Abstract
This research aimed to determine whether the astragalus polysaccharide (AP) can improve the production performance and gut microbiota in Chongren hens.120 Chongren hens (240-d old) were randomly allocated into 4 treatments with 30 hens and fed with a control basal diet (CON) or CON supplemented with the different levels of AP (100, 200, and 400 mg/kg) for 56 d. The egg production and feed conversion ratio were decreased (p < .05) with the levels of AP. The yolk weight, yolk color, eggshell thickness, eggshell redness index and egg shell yellowness were increased (p < .05). AP supplementation increased CAT and T-AOC and SOD, and decreased MDA (p < .05). Supplementation of AP decreased IL-2, IL-6 and TNF-α levels (p < .05), but increased the IL-4 level in the liver (p < .05). The villus heights of duodenum, jejunum ileum, the crypt depth and V/C in the jejunum were increased (p < .05). Dietary supplementation of 200 mg/kg AP increased (P relative abundances of Firmicutes and Lactobacteriaceae in the cecum of Chongren hens. In conclusion, addition of AP improved the production performance, egg quality, antioxidant function, and intestinal morphology in hens, which might be associated with the gut microbiota.
Collapse
Affiliation(s)
- Hongwei Lv
- Jiangxi Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Nanchang, China.,College of Animal Science and Technology, Hunan agricultural University, Changsha, China.,Hunan Research Center for Poultry Safety Production Engineering, Changsha, China
| | - Yanqiang Tang
- Jiangxi Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Nanchang, China
| | - Haihan Zhang
- College of Animal Science and Technology, Hunan agricultural University, Changsha, China.,Hunan Research Center for Poultry Safety Production Engineering, Changsha, China
| | - Siming Li
- Jiangxi Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Nanchang, China
| | - Zhiyong Fan
- College of Animal Science and Technology, Hunan agricultural University, Changsha, China.,Hunan Research Center for Poultry Safety Production Engineering, Changsha, China
| |
Collapse
|
3
|
Jiang J, Qi L, Dai H, Hu C, Lv Z, Wei Q, Shi F. Dietary stevioside supplementation improves laying performance and eggshell quality through increasing estrogen synthesis, calcium level and antioxidant capacity of reproductive organs in aged breeder hens. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
4
|
Wang H, Gao W, Huang L, Shen JJ, Liu Y, Mo CH, Yang L, Zhu YW. Mineral requirements in ducks: an update. Poult Sci 2020; 99:6764-6773. [PMID: 33248592 PMCID: PMC7705048 DOI: 10.1016/j.psj.2020.09.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/03/2020] [Accepted: 09/11/2020] [Indexed: 11/17/2022] Open
Abstract
Mineral nutrition plays a critical role in growth and bone mineralization in meat ducks as well as reproductive performance in duck layers and duck breeders. In addition to improving production performance parameters, minerals are also essential to support several enzymatic systems to enhancing antioxidant ability and immune function. This review explores the biological function and metabolism of minerals in the body, as well as mineral feeding strategy of various species of ducks. Topics range from mineral requirement to the physiological role of macroelements such as calcium and phosphorus and microelements such as zinc and selenium, etc. As with the improvement of genetic evolution and upgrade of rearing system in duck production, mineral requirements and electrolyte balance are urgent to be re-evaluated using sensitive biomarkers for the modern duck breed characterized by the rapid growth rate and inadequate bone development and mineralization. For duck breeders, mineral nutrition is not only required for maximal egg production performance but also for maintaining normal embryonic development and offspring's performance. Therefore, the proper amounts of bioavailable minerals need to be supplemented to maintain the mineral nutritional state of duck species during all phases of life. In addition, more positive effects of high doses microelements supplementations have been revealed for modern meat ducks subjected to various stresses in commercial production. The nutritional factors of mineral sources, supplemental enzymes, and antinutritional factors from unconventional ingredients should be emphasized to improve the effectiveness of mineral nutrition in duck feed formulation. Organic mineral sources and phytase enzymes have been adopted to reduce the antagonistic action between mineral and antinutritional factors. Therefore, special and accurate database of mineral requirements should be established for special genotypes of ducks under different rearing conditions, including rearing factors, environmental stresses and diets supplemented with organic sources, phytase and VD3.
Collapse
Affiliation(s)
- H Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510000, China
| | - W Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510000, China
| | - L Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510000, China
| | - J J Shen
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510000, China
| | - Y Liu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510000, China
| | - C H Mo
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510000, China
| | - L Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510000, China.
| | - Y W Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510000, China.
| |
Collapse
|
5
|
The synergistic interaction of thermal stress coupled with overstocking strongly modulates the transcriptomic activity and immune capacity of rainbow trout (Oncorhynchus mykiss). Sci Rep 2020; 10:14913. [PMID: 32913268 PMCID: PMC7483466 DOI: 10.1038/s41598-020-71852-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 08/24/2020] [Indexed: 12/30/2022] Open
Abstract
The objective of the present study is to identify and evaluate informative indicators for the welfare of rainbow trout exposed to (A) a water temperature of 27 °C and (B) a stocking density of 100 kg/m3 combined with a temperature of 27 °C. The spleen-somatic and condition index, haematocrit and the concentrations of haemoglobin, plasma cortisol and glucose revealed non-significant differences between the two stress groups and the reference group 8 days after the onset of the experiments. The transcript abundance of almost 1,500 genes was modulated at least twofold in in the spleen of rainbow trout exposed to a critical temperature alone or a critical temperature combined with crowding as compared to the reference fish. The number of differentially expressed genes was four times higher in trout that were simultaneously challenged with high temperature and crowding, compared to trout challenged with high temperature alone. Based on these sets of differentially expressed genes, we identified unique and common tissue- and stress type-specific pathways. Furthermore, our subsequent immunologic analyses revealed reduced bactericidal and inflammatory activity and a significantly altered blood-cell composition in challenged versus non-challenged rainbow trout. Altogether, our data demonstrate that heat and overstocking exert synergistic effects on the rainbow trout’s physiology, especially on the immune system.
Collapse
|
6
|
Gou Z, Fan Q, Li L, Jiang Z, Lin X, Cui X, Wang Y, Zheng C, Jiang S. Effects of dietary iron on reproductive performance of Chinese Yellow broiler breeder hens during the egg-laying period. Poult Sci 2020; 99:3921-3929. [PMID: 32731979 PMCID: PMC7597980 DOI: 10.3382/ps/pez006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/11/2019] [Indexed: 01/01/2023] Open
Abstract
The objective of this study was to investigate the effects of dietary iron (Fe) on reproductive performance of Chinese Yellow broiler breeder hens during the egg-laying period. A total of 480, 55-wk-old hens were balanced for laying rate and then randomly allotted into 5 groups, each with 6 replicates (8 cages for each replicate with 2 birds per cage). The trial was for 10 wk. Birds were fed diet with 44, 58, 72, 86, or 100 mg/kg Fe contained feed. Laying performance, biochemical indices and reproductive hormones in plasma, egg quality, ovarian and oviductal variables, tibial breaking strength, and hatching performance were determined. The key performance variables hematocrit, hatchability of live embryos, and tibial breaking strength were selected for analysis by quadratic polynomial (QP) and broken-line (BL) regressions to better determine optimal dietary Fe level. Qualified egg (excluding those with double-yolk, soft-shell, cracked, very small malformed, etc.) rate tended to decrease with the lowest and highest dietary Fe levels. Hematocrit was affected (P = 0.003) by dietary Fe, along with linear (P = 0.017) and quadratic (P = 0.002) effect. There was a significant effect (P = 0.034) of dietary Fe level on tibial breaking strength of breeder hens with a quadratic (P = 0.044) effect. Breeder hens fed inadequate (44 mg/kg diet) or excess (100 mg/kg) Fe both had lower (P < 0.05) tibial breaking strength compared to that of hens fed 86 mg/kg Fe. Hatchability of live embryos was affected (P = 0.004) by diet; with both linear (P = 0.014) and quadratic (P = 0.001) effects. Maximal hatching of live embryos occurred with diets of breeder hens containing 72 mg/kg Fe. From the QP and BL models fitted to hematocrit, tibial breaking strength, and hatchability variables, the optimal dietary Fe level for Chinese Yellow broiler breeder hens in the laying period was 70-90 mg/kg. The daily Fe fed (allowance) was about 8-11 mg.
Collapse
Affiliation(s)
- Zhongyong Gou
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P. R. China
| | - Qiuli Fan
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P. R. China
| | - Long Li
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P. R. China
| | - Zongyong Jiang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P. R. China
| | - Xiajing Lin
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P. R. China
| | - Xiaoyan Cui
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P. R. China
| | - Yibing Wang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P. R. China
| | - Chuntian Zheng
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P. R. China
| | - Shouqun Jiang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P. R. China.
| |
Collapse
|
7
|
Zhu M, Li H, Miao L, Li L, Dong X, Zou X. Dietary cadmium chloride impairs shell biomineralization by disrupting the metabolism of the eggshell gland in laying hens. J Anim Sci 2020; 98:5715281. [PMID: 31974567 DOI: 10.1093/jas/skaa025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 01/23/2020] [Indexed: 01/29/2023] Open
Abstract
In this study, we identified cadmium (Cd) as a potential endocrine disruptor that impairs laying performance, egg quality, and eggshell deposition and induces oxidative stress and inflammation in the eggshell glands of laying hens. A total of 480 38-wk-old laying hens were randomly assigned into 5 groups that were fed a basal diet (control) or a basal diet supplemented with Cd (provided as CdCl2·2.5 H2O) at 7.5, 15, 30, and 60 mg Cd per kg feed for 9 wk. The results showed that, when compared with the control group, a low dose of dietary Cd (7.5 mg/kg) had positive effects on egg quality by improving albumen height, Haugh unit, yolk color, and shell thickness at the third or ninth week. However, with the increase in the dose and duration of Cd exposure, the laying performance, egg quality, and activities of eggshell gland antioxidant enzymes (catalase [CAT], glutathione peroxide [GSH-Px]), and ATPase (Na+/K+-ATPase, Ca2+-ATPase, and Mg2+-ATPase) deteriorated, and the activity of total nitric oxide synthase (T-NOS) and the level of malondialdehyde (MDA) increased significantly (P < 0.05). The histopathology and real-time quantitative PCR results showed that Cd induced endometrial epithelial cell proliferation accompanied by upregulation of the mRNA levels of progesterone receptor (PgR) and epidermal growth factor receptor (EGFR), downregulation of the mRNA levels of estrogen receptor α (ERα) and interleukin 6 (IL6), and inflammation of the eggshell gland accompanied by significantly increased expression of complement C3 and pro-inflammatory cytokine tumor necrosis factor α (TNFα) (P < 0.05). In addition, the ultrastructure of the eggshell showed that dietary supplementation with 7.5 mg/kg Cd increased the palisade layer and total thickness of the shell, but with the increase in dietary Cd supplementation (30 and 60 mg/kg) the thickness of the palisade layer and mammillary layer decreased significantly (P < 0.05), and the outer surface of the eggshell became rougher. Correspondingly, the expression of calbindin 1 (CALB1), ovocalyxin-32 (OCX-32), ovocalyxin-36 (OCX-36), osteopontin (SPP1), and ovocledidin-17 (OC-17) decreased significantly (P < 0.05) with increasing dietary Cd supplementation. Conclusively, the present study demonstrates that dietary supplementation with Cd negatively affects laying performance, egg quality, and eggshell deposition by disturbing the metabolism of eggshell glands in laying hens but has a positive effect on egg quality at low doses.
Collapse
Affiliation(s)
- Mingkun Zhu
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Huaiyu Li
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Liping Miao
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Lanlan Li
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Xinyang Dong
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Xiaoting Zou
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
8
|
Dietary calcium deficiency suppresses follicle selection in laying ducks through mechanism involving cyclic adenosine monophosphate-mediated signaling pathway. Animal 2020; 14:2100-2108. [PMID: 32367795 DOI: 10.1017/s1751731120000907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ovarian follicle selection is a natural biological process in the pre-ovulatory hierarchy in birds that drives growing follicles to be selected within the ovulatory cycle. Follicle selection in birds is strictly regulated, involving signaling pathways mediated by dietary nutrients, gonadotrophic hormones and paracrine factors. This study aimed to test the hypothesis that dietary Ca may participate in regulating follicle selection in laying ducks through activating the signaling pathway of cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)/extracellular signal-regulated kinase (ERK), possibly mediated by gonadotrophic hormones. Female ducks at 22 weeks of age were initially fed one of two Ca-deficient diets (containing 1.8% or 0.38% Ca) or a Ca-adequate control diet (containing 3.6% Ca) for 67 days (depletion period), then all birds were fed the Ca-adequate diet for an additional 67 days (repletion period). Compared with the Ca-adequate control, ducks fed 0.38% Ca during the depletion period had significantly decreased (P < 0.05) numbers of hierarchical follicles and total ovarian weight, which were accompanied by reduced egg production. Plasma concentration of FSH was decreased by the diet containing 1.8% Ca but not by that containing 0.38%. The ovarian content of cAMP was increased with the two Ca-deficient diets, and phosphorylation of PKA and ERK1/2 was increased with 0.38% dietary Ca. Transcripts of ovarian estradiol receptor 2 and luteinizing hormone receptor (LHR) were reduced in the ducks fed the two Ca-deficient diets (P < 0.05), while those of the ovarian follicle stimulating hormone receptor (FSHR) were decreased in the ducks fed 0.38% Ca. The transcript abundance of ovary gap junction proteins, A1 and A4, was reduced with the Ca-deficient diets (P < 0.05). The down-regulation of gene expression of gap junction proteins and hormone receptors, the increased cAMP content and the suppressed hierarchical follicle numbers were reversed by repletion of dietary Ca. These results indicate that dietary Ca deficiency negatively affects follicle selection of laying ducks, independent of FSH, but probably by activating cAMP/PKA/ERK1/2 signaling pathway.
Collapse
|
9
|
Ma Y, Yao J, Zhou S, Mi Y, Li J, Zhang C. Improvement of eggshell quality by dietary N-carbamylglutamate supplementation in laying chickens. Poult Sci 2020; 99:4085-4095. [PMID: 32731996 PMCID: PMC7597934 DOI: 10.1016/j.psj.2020.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/17/2020] [Accepted: 04/03/2020] [Indexed: 01/07/2023] Open
Abstract
Egg quality defects seriously reduce the quality grade and increase egg breakage in egg marketing activities. In this study, the effect of N-carbamylglutamate (NCG) on eggshell quality was investigated by evaluating calcium absorption and calcification in laying hens. A total of 30 newly hatched female Hy-Line chicks were randomly assigned to the control group (basal diet) and treatment group (basal diet supplemented with 1% NCG). At 25 wk, eggs from each group were obtained to assess egg quality parameters. Blood samples were collected for analysis of mineral, hormone, and amino acids levels at 16 h after laying egg. Uterine tissues were removed and fixed in 4% neutral paraformaldehyde solution or kept in liquid nitrogen for mineral determination, quantitative PCR, and Western blot. Results showed that the egg quality (eggshell thickness, strength and percentage, egg specific gravity, and eggshell effective thickness) was significantly increased while effective thickness of mastoid layer, width of mastoid gap, and mammillary knobs were significantly decreased by dietary NCG supplementation (P < 0.05). The levels of minerals (Ca, P, Fe, Mg, Na, K) in eggshell, plasma, and uterus were remarkably elevated (P < 0.05). Meanwhile, the concentrations of calcium metabolism-related hormones (17β-estradiol, parathyroid hormone, and calcitonin) were increased in the NCG group (P < 0.05). Moreover, expression of calbindin 1, carbonic anhydrase 2, ovalbumin, ovotransferrin, ovocleidin-17, ovocleidin-116, and clusterin mRNAs, as well as calbindin 1 and ATP2A1 proteins in uterus, duodenum, and kidney, was all upregulated in hens fed with NCG (P < 0.05). In addition, the number of blood vessels in the uterus, height of uterine mucosal folds, villus length in endometrium, and areas of uterine mucosal folds were significantly increased in the NCG group (P < 0.05). In conclusion, dietary 1% NCG supplementation during 0 to 25 wk can improve eggshell quality through changes in endometrial morphology, expression of calcium metabolism-related genes, and secretion of related hormones to promote eggshell formation in the laying hens.
Collapse
|
10
|
Dietary Cadmium Chloride Supplementation Impairs Renal Function and Bone Metabolism of Laying Hens. Animals (Basel) 2019; 9:ani9110998. [PMID: 31752407 PMCID: PMC6912261 DOI: 10.3390/ani9110998] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/04/2019] [Accepted: 11/15/2019] [Indexed: 11/17/2022] Open
Abstract
This study was conducted to evaluate the toxic effects of cadmium (Cd) on the kidney function and bone development in laying hens. A total of 480 Hy-line laying hens aged 38 weeks were randomly allocated into five treatments, each of which included six replicates of 16 birds. The concentrations of Cd in the diets of the five groups were 0.47, 7.58, 15.56, 30.55, and 60.67 mg/kg. Results showed that serum calcium (Ca) levels decreased significantly in the 60.67 mg Cd/kg diet group (p < 0.05). The activities of serum alkaline phosphatase (ALP) and bone ALP (BALP) decreased significantly in the 15.56, 30.55 and 60.67 mg Cd/kg diet groups (p < 0.05). The levels of parathyroid hormone (PTH) increased significantly in the 30.55 and 60.67 mg Cd/kg diet groups, and the estradiol (E2), 1,25-(OH)2-D3 and calcitonin (CT) decreased significantly with the increase of dietary Cd supplementation (p < 0.05). Histological results presented enlargements of renal tubules and tubular fibrosis in the kidney and decreased trabecular bone in the tibia. Tartrate-resistant acidic phosphatase (TRAP) staining results of tibia showed that osteoclast was significantly increased at the relatively high dose of dietary Cd (p < 0.05). In addition, the renal function indicators of blood urea nitrogen (BUN), urea acid (UA), and creatinine were significantly increased in Cd supplemented groups compared with the control group (p < 0.05). Low dose Cd exposure induced antioxidant defenses accompanying the increase in activities of catalase (CAT), glutathione peroxidase (GSH-Px), and the levels of glutathione (GSH) in renal tissue. At the same time, with the increased Cd levels, the activities of CAT, GSH-Px decreased significantly, and the level of malondialdehyde (MDA) increased significantly (p < 0.05). The activities of Na+/K+-ATPase and Ca2+/Mg2+-ATPase decreased significantly in the relatively high levels of dietary Cd (p < 0.05). These results suggest that Cd can damage renal function and induce disorders in bone metabolism of laying hens.
Collapse
|
11
|
Estimation of calcium requirements for optimal productive and reproductive performance, eggshell and tibial quality in egg-type duck breeders. Animal 2019; 13:2207-2215. [PMID: 31062683 DOI: 10.1017/s1751731119000648] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Optimizing the dietary calcium (Ca) level is essential to maximize the eggshell quality, egg production and bone formation in poultry. This study aimed to establish the Ca requirements of egg-type duck breeders from 23 to 57 weeks of age on egg production, eggshell, incubation, tibial, plasma and ovary-related indices, as well as the expression of matrix protein-related genes. Totally, 450 Longyan duck breeders aged 21 weeks of age were allotted randomly into five treatments, each with six replicates of 15 individually caged birds. The data collection started from 23 weeks of age and continued over the following 35 weeks. The five groups corresponded to five dietary treatments containing either 2.8%, 3.2%, 3.6%, 4.0% or 4.4% Ca. The tested dietary Ca levels increased (linear, P <0.01) egg production and egg mass, and linearly improved (P <0.01) the feed conversion ratio (FCR). Increasing the dietary Ca levels from 2.8% to 4.4% increased (P <0.01) the eggshell thickness and eggshell content. The tested Ca levels showed a quadratic effect on eggshell thickness and ovarian weight (P <0.01); the highest values were obtained with the Ca levels 4.0% and 3.6%, respectively. Dietary Ca levels affected the small yellow follicles (SYF) number and SYF weight/ovarian weight, and the linear response (P <0.01) was significant vis-à-vis SYF number. In addition, dietary Ca levels increased (P <0.05) the tibial dry weight, breaking strength, mineral density and ash content. Plasma and tibial phosphorus concentration exhibited a quadratic (P <0.01) response to dietary Ca levels. Plasma calcitonin concentration linearly (P <0.01) increased as dietary Ca levels increased. The relative expression of carbonic anhydrase 2 in the uterus rose (P <0.01) with the increment of dietary Ca levels, and the highest value was obtained with 3.2% Ca. In conclusion, Longyan duck breeders fed a diet with 4.0% Ca had superior eggshell and tibial quality, while those fed a diet with 3.6% Ca had the heaviest ovarian weights. The regression model indicated that the dietary Ca levels 3.86%, 3.48% and 4.00% are optimal levels to obtain maximum eggshell thickness, ovarian weight and tibial mineral density, respectively.
Collapse
|
12
|
Park JA, Sohn SH. The Influence of Hen Aging on Eggshell Ultrastructure and Shell Mineral Components. Korean J Food Sci Anim Resour 2018; 38:1080-1091. [PMID: 30479513 PMCID: PMC6238045 DOI: 10.5851/kosfa.2018.e41] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 11/29/2022] Open
Abstract
The eggshell, which is a complex and highly ordered structure, is very important factor for food safety and egg marketing. This study investigated the changes in eggshell structure and shell components in relationship to hen age. For this study, we examined the histological change of the endometrium of the 30-, 60-, and 72-wk-old commercial layers, and analyzed the ultrastructure and ionic composition of their eggshells. The results showed that histological deformation, fibrosis, atrophy and elimination of micro-villi in the uterus endometrium were found through microscopic observation that was associated with increasing hen age. Concentration of blood-ion components such as Ca2+, Na+, K+, and Cl- ions did not change with age. Along with the results from the ultrastructure analysis of the eggshell, the palisade layer ratio and the density of mammillary knobs were significantly decreased in older hens. In addition, the type B mammillary knobs were frequently observed with increasing hen age. In the mineral element assay from the eggshell, Ca2+, S2-, and Co2+ significantly decreased with increasing hen age, whereas Na+, K+, and V2+ significantly increased. Therefore, the damages of endometrial tissue inhibit the processes of ion transmission and the crystallization of eggshell formation, resulting in a large and non-uniform mammillary knob formation. This means the conditions of endometrial cells affect the formation of the eggshell structure. In conclusion, hen aging causes the weakness of the eggshell and degrades the eggshell quality.
Collapse
Affiliation(s)
| | - Sea-Hwan Sohn
- Department of Animal Science and Biotechnology, Gyeongnam National
University of Science and Technology, Jinju 52725,
Korea
| |
Collapse
|
13
|
Nutritional requirements of meat-type and egg-type ducks: what do we know? J Anim Sci Biotechnol 2018; 9:1. [PMID: 29372052 PMCID: PMC5769293 DOI: 10.1186/s40104-017-0217-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 12/13/2017] [Indexed: 12/31/2022] Open
Abstract
The demand for duck meat, duck eggs, and associated products is increasing each year. Classic and modern selection programs have been applied to enhance the economic traits of ducks to satisfy the requirements of consumers and enhance the incomes of producers. The nutritional requirements of unselected ducks may not be adequate, however, to fulfill the potential productivity performance of modern birds, including both meat-type and egg-type ducks. In particular, an imbalanced diet is associated with low productive performance and signs of nutritional deficiency (if insufficient nutrients are supplied), as well as with high feed costs and manure problems that reflect flock health and welfare (if excessive nutrients are supplied). Thus, the main aim of this review is to summarize the results of previous studies that estimated the nutrient requirements of meat-type and egg-type ducks in order to evaluate current knowledge and to identify further issues that need to be addressed. In addition, the results obtained in previous studies are compared in order to understand how to lower commercial feed costs, fulfill the genetic potential of selected ducks, protect the environment from pollution, and satisfy the welfare and health needs of ducks.
Collapse
|
14
|
Long L, Wu SG, Yuan F, Zhang HJ, Wang J, Qi GH. Effects of dietary octacosanol supplementation on laying performance, egg quality, serum hormone levels, and expression of genes related to the reproductive axis in laying hens. Poult Sci 2017; 96:894-903. [PMID: 27665009 DOI: 10.3382/ps/pew316] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/29/2016] [Indexed: 11/20/2022] Open
Abstract
This experiment was conducted to evaluate the effects of dietary octacosanol supplementation on laying performance, egg quality, serum hormone levels, and gene expression related to reproductive axis in laying hens to confirm the reproduction-promoting function of octacosanol. In total, 360 Hy-Line Brown (67-wk-old) laying hens were randomly assigned to one of three treatments with 0, 5, and 10 mg octacosanol (extracted from rice bran, purity >92%)/kg feed. The feeding trial lasted for 10 weeks. The results showed that the dietary addition of 5 and 10 mg/kg octacosanol improved feed efficiency by 4.9% and 3.4% (P < 0.01), increased the albumen height by 20.5% and 13.3% (P < 0.01), the Haugh unit score by 12.9% and 8.7% (P < 0.01), and the eggshell strength by 39.5% and 24.5% (P < 0.01), respectively, compared with the control diet. Dietary octacosanol addition significantly affected serum triiodothyronine, estradiol, follicle-stimulating hormone levels (P < 0.05), and progesterone and luteinizing hormone level (P < 0.01). Compared with the control, dietary addition of octacosanol at 5 mg/kg promoted the follicle-stimulating hormone receptor (FSHR) mRNA expression in different-sized follicles, and significantly increased the FSHR mRNA expression of granulosa cells from the F2 and F3 follicles (P < 0.05). Dietary supplementation with both 5 and 10 mg/kg octacosanol promoted the mRNA expression of luteinizing hormone receptor and prolactin receptor in different-sized follicles, and significantly up-regulated the expression levels in F1 granulosa cells (P < 0.05). The ovarian weight was significantly increased with the dietary addition of 5 mg/kg octacosanol (P < 0.05). The numbers of small yellow follicles and large white follicles were increased with the addition of dietary 5 and 10 mg/kg octacosanol (P < 0.01). This study provides evidence that octacosanol has the capacity to improve reproductive performance, indicating that it is a potentially effective feed additive in egg production.
Collapse
Affiliation(s)
- L Long
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Tianjin Naer Biotechnology Co., Ltd., Tianjin 300457, China
| | - S G Wu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - F Yuan
- Tianjin Naer Biotechnology Co., Ltd., Tianjin 300457, China
| | - H J Zhang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - J Wang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - G H Qi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|