1
|
Li R, Dai X, Zheng J, Larsen RS, Qi Y, Zhang X, Vizueta J, Boomsma JJ, Liu W, Zhang G. Juvenile hormone as a key regulator for asymmetric caste differentiation in ants. Proc Natl Acad Sci U S A 2024; 121:e2406999121. [PMID: 39495909 DOI: 10.1073/pnas.2406999121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/28/2024] [Indexed: 11/06/2024] Open
Abstract
Caste differentiation involves many functional traits that diverge during larval growth and metamorphosis to produce adults irreversibly adapted to reproductive division of labor. Investigating developmental differentiation is important for general biological understanding and has increasingly been explored for social phenotypes that diverge in parallel from similar genotypes. Here, we use Monomorium pharaonis ants to investigate the extent to which canalized worker development can be shifted toward gyne (virgin-queen) phenotypes by juvenile hormone (JH) treatment. We show that excess JH can activate gyne-biased development in workers so that wing-buds, ocelli, antennal and genital imaginal discs, flight muscles, and gyne-like fat bodies and brains emerge after pupation. However, ovary development remained unresponsive to JH treatment, indicating that JH-sensitive germline sequestration happens well before somatic differentiation. Our findings reveal important qualitative restrictions in the extent to which JH treatment can redirect larval development and that these constraints are independent of body size. Our findings corroborate that JH is a key hormone for inducing caste differentiation but show that this process can be asymmetric for higher colony-level germline versus somatic caste differentiation in superorganisms as defined a century ago by Wheeler. We quantified gene expression changes in response to JH treatment throughout development and identified a set of JH-sensitive genes responsible for the emergence of gyne-like somatic traits. Our study suggests that the gonadotropic role of JH in ovary maturation has shifted from the individual level in solitary insects to the colony level in an evolutionary-derived and highly polygynous superorganism like the pharaoh ant.
Collapse
Affiliation(s)
- Ruyan Li
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Xueqin Dai
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Jixuan Zheng
- Centre for Evolutionary and Organismal Biology, Women's Hospital, & Liangzhu Laboratory, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Rasmus Stenbak Larsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Yanmei Qi
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Xiafang Zhang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Joel Vizueta
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Jacobus J Boomsma
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Weiwei Liu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Guojie Zhang
- Centre for Evolutionary and Organismal Biology, Women's Hospital, & Liangzhu Laboratory, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Villum Center for Biodiversity Genomics, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
2
|
Hart T, Lopes LE, Frank DD, Kronauer DJC. Pheromone representation in the ant antennal lobe changes with age. Curr Biol 2024; 34:3233-3240.e4. [PMID: 38876103 PMCID: PMC11265976 DOI: 10.1016/j.cub.2024.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/11/2024] [Accepted: 05/16/2024] [Indexed: 06/16/2024]
Abstract
While the neural basis of age-related decline has been extensively studied,1,2,3 less is known about changes in neural function during the pre-senescent stages of adulthood. Adult neural plasticity is likely a key factor in social insect age polyethism, where individuals perform different tasks as they age and divide labor in an age-dependent manner.4,5,6,7,8,9 Primarily, workers transition from nursing to foraging tasks,5,10 become more aggressive, and more readily display alarm behavior11,12,13,14,15,16 as they get older. While it is unknown how these behavioral dynamics are neurally regulated, they could partially be generated by altered salience of behaviorally relevant stimuli.4,6,7 Here, we investigated how odor coding in the antennal lobe (AL) changes with age in the context of alarm pheromone communication in the clonal raider ant (Ooceraea biroi).17 Similar to other social insects,11,12,16 older ants responded more rapidly to alarm pheromones, the chemical signals for danger. Using whole-AL calcium imaging,18 we then mapped odor representations for five general odorants and two alarm pheromones in young and old ants. Alarm pheromones were represented sparsely at all ages. However, alarm pheromone responses within individual glomeruli changed with age, either increasing or decreasing. Only two glomeruli became sensitized to alarm pheromones with age, while at the same time becoming desensitized to general odorants. Our results suggest that the heightened response to alarm pheromones in older ants occurs via increased sensitivity in these two core glomeruli, illustrating the importance of sensory modulation in social insect division of labor and age-associated behavioral plasticity.
Collapse
Affiliation(s)
- Taylor Hart
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | - Lindsey E Lopes
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Dominic D Frank
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Daniel J C Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA.
| |
Collapse
|
3
|
Silva RBV, Coelho Júnior VG, de Paula Mattos Júnior A, Julidori Garcia H, Siqueira Caixeta Nogueira E, Mazzoni TS, Ramos Martins J, Rosatto Moda LM, Barchuk AR. Farnesol, a component of plant-derived honeybee-collected resins, shows JH-like effects in Apis mellifera workers. JOURNAL OF INSECT PHYSIOLOGY 2024; 154:104627. [PMID: 38373613 DOI: 10.1016/j.jinsphys.2024.104627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Farnesol, a sesquiterpene found in all eukaryotes, precursor of juvenile hormone (JH) in insects, is involved in signalling, communication, and antimicrobial defence. Farnesol is a compound of floral volatiles, suggesting its importance in pollination and foraging behaviour. Farnesol is found in the resin of Baccharis dracunculifolia, from which honeybees elaborate the most worldwide marketable propolis. Bees use propolis to seal cracks in the walls, reinforce the wax combs, and as protection against bacteria and fungi. The introduction within a honeybee hive of a compound with potential hormonal activity can be a challenge to the colony survival, mainly because the transition from within-hive to outside activities of workers is controlled by JH. Here, we tested the hypothesis that exogenous farnesol alters the pacing of developing workers. The first assays showed that low doses of the JH precursor (0.1 and 0.01 µg) accelerate pharate-adult development, with high doses being toxic. The second assay was conducted in adult workers and demonstrated bees that received 0.2 µg farnesol showed more agitated behaviour than the control bees. If farnesol was used by corpora allata (CA) cells as a precursor of JH and this hormone was responsible for the observed behavioural alterations, these glands were expected to be larger after the treatment. Our results on CA measurements after 72 h of treatment showed bees that received farnesol had glands doubled in size compared to the control bees (p < 0.05). Additionally, we expected the expression of JH synthesis, JH degradation, and JH-response genes would be upregulated in the treated bees. Our results showed that indeed, the mean transcript levels of these genes were higher in the treated bees (significant for methyl farnesoate epoxidase and juvenile hormone esterase, p < 0.05). These results suggest farnesol is used in honeybees as a precursor of JH, leading to increasing JH titres, and thus modulating the pacing of workers development. This finding has behavioural and ecological implications, since alterations in the dynamics of the physiological changes associated to aging in young honeybees may significantly impact colony balance in nature.
Collapse
Affiliation(s)
- Raissa Bayker Vieira Silva
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Valdeci Geraldo Coelho Júnior
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Adolfo de Paula Mattos Júnior
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Henrique Julidori Garcia
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Ester Siqueira Caixeta Nogueira
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Talita Sarah Mazzoni
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Juliana Ramos Martins
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Lívia Maria Rosatto Moda
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Angel Roberto Barchuk
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil.
| |
Collapse
|
4
|
Hart T, Lopes LE, Frank DD, Kronauer DJ. Pheromone representation in the ant antennal lobe changes with age. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580193. [PMID: 38405746 PMCID: PMC10888935 DOI: 10.1101/2024.02.13.580193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
While the neural basis of age-related decline has been extensively studied (1-3), less is known about changes in neural function during the pre-senescent stages of adulthood. Adult neural plasticity is likely a key factor in social insect age polyethism, where individuals perform different tasks as they age and divide labor in an age-dependent manner (4-9). Primarily, workers transition from nursing to foraging tasks (5, 10), become more aggressive, and more readily display alarm behavior (11-16) as they get older. While it is unknown how these behavioral dynamics are neurally regulated, they could partially be generated by altered salience of behaviorally relevant stimuli (4, 6, 7). Here, we investigated how odor coding in the antennal lobe (AL) changes with age in the context of alarm pheromone communication in the clonal raider ant (Ooceraea biroi) (17). Similar to other social insects (11, 12, 16), older ants responded more rapidly to alarm pheromones, the chemical signals for danger. Using whole-AL calcium imaging (18), we then mapped odor representations for five general odorants and two alarm pheromones in young and old ants. Alarm pheromones were represented sparsely at all ages. However, alarm pheromone responses within individual glomeruli changed with age, either increasing or decreasing. Only two glomeruli became sensitized to alarm pheromones with age, while at the same time becoming desensitized to general odorants. Our results suggest that the heightened response to alarm pheromones in older ants occurs via increased sensitivity in these two core glomeruli, illustrating the importance of sensory modulation in social insect division of labor and age-associated behavioral plasticity.
Collapse
Affiliation(s)
- Taylor Hart
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Lindsey E. Lopes
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Dominic D. Frank
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Daniel J.C. Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
- Howard Hughes Medical Institute, New York, NY 10065, USA
| |
Collapse
|
5
|
Ren Q, Ma L, Zhang X, Chen L, Mao Z, Li D, Zhang L, Jiang X. Effect of Juvenile Hormone on Worker Behavioral Transition in the Red Imported Fire Ant, Solenopsis invicta (Hymenoptera: Formicidae). INSECTS 2023; 14:934. [PMID: 38132607 PMCID: PMC10743645 DOI: 10.3390/insects14120934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
The division of labor among workers is a defining characteristic of social insects and plays a pivotal role in enhancing the competitive advantage of their colony. Juvenile hormone (JH) has long been hypothesized to be the essential driver in regulating the division of labor due to its ability to accelerate behavioral transitions in social insects, such as honeybees. The regulation of behavioral transitions by JH in the red imported fire ant (RIFA), Solenopsis invicta, a typical social pest, is unclear. Through video capture and analysis, we investigated the effects of the juvenile hormone analogue (JHA) methoprene on brood care, phototaxis behavior, and threat responsiveness of RIFA nurse workers. Our results showed that the JHA application significantly reduced the time and frequency of brood care behavior by nurse workers while increasing their walking distance and activity time in the light area. Additionally, the application of JHA made ants become excited, indicating a significant improvement in their activity level (movement distance, time, and speed). Furthermore, it was observed that the application of JHA did not affect the threat responsiveness of nurse workers towards stimuli (nestmates or non-nestmates). Our study demonstrates that the application of JHA reduced brood care behavior and enhanced phototaxis in nurse workers, which may reveal the role of JH in facilitating behavioral transitions in RIFA from intranidal tasks to extranidal activity. This study provides an experimental basis for further elucidating the mechanism underlying the division of labor in social insects.
Collapse
Affiliation(s)
- Qilin Ren
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China; (Q.R.); (L.M.); (X.Z.)
| | - Lin Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China; (Q.R.); (L.M.); (X.Z.)
| | - Xiaolong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China; (Q.R.); (L.M.); (X.Z.)
| | - Libiao Chen
- Guangxi Green City Pest Control Technology Co., Ltd., Nanning 530007, China;
| | - Zhigang Mao
- Guangxi Beitou Urban Environmental Governance Group Co., Ltd., Nanning 530000, China; (Z.M.); (D.L.)
| | - Dongdong Li
- Guangxi Beitou Urban Environmental Governance Group Co., Ltd., Nanning 530000, China; (Z.M.); (D.L.)
| | - Lei Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China; (Q.R.); (L.M.); (X.Z.)
| | - Xingfu Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China; (Q.R.); (L.M.); (X.Z.)
| |
Collapse
|
6
|
Caminer MA, Libbrecht R, Majoe M, Ho DV, Baumann P, Foitzik S. Task-specific odorant receptor expression in worker antennae indicates that sensory filters regulate division of labor in ants. Commun Biol 2023; 6:1004. [PMID: 37783732 PMCID: PMC10545721 DOI: 10.1038/s42003-023-05273-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/22/2023] [Indexed: 10/04/2023] Open
Abstract
Division of labor (DOL) is a characteristic trait of insect societies, where tasks are generally performed by specialized individuals. Inside workers focus on brood or nest care, while others take risks by foraging outside. Theory proposes that workers have different thresholds to perform certain tasks when confronted with task-related stimuli, leading to specialization and consequently DOL. Workers are presumed to vary in their response to task-related cues rather than in how they perceive such information. Here, we test the hypothesis that DOL instead stems from workers varying in their efficiency to detect stimuli of specific tasks. We use transcriptomics to measure mRNA expression levels in the antennae and brain of nurses and foragers of the ant Temnothorax longispinosus. We find seven times as many genes to be differentially expressed between behavioral phenotypes in the antennae compared to the brain. Moreover, half of all odorant receptors are differentially expressed, with an overrepresentation of the 9-exon gene family upregulated in the antennae of nurses. Nurses and foragers thus apparently differ in the perception of their olfactory environment and task-related signals. Our study supports the hypothesis that antennal sensory filters predispose workers to specialize in specific tasks.
Collapse
Affiliation(s)
- Marcel A Caminer
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Romain Libbrecht
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS, University of Tours, Tours, France
| | - Megha Majoe
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - David V Ho
- Institute of Developmental and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Peter Baumann
- Institute of Developmental and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
- Institute of Molecular Biology, Mainz, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
7
|
Abstract
Eusocial insects exemplify a remarkable system of division of labor within the same colony. This behavioral range, which is sometimes accompanied by morphological or physiological differences, provides an opportunity to study the relationship between complex behaviors and their underlying molecular mechanisms. This is especially true in ants because certain genera have an elaborate caste system and can dramatically change their stereotypical behavior over their lifetime. Recent studies experimentally alter ant behavior over short times, thus opening the study of underlying plasticity pathways. The molecular underpinnings of these behaviors are neuromodulators as well as the regulation of chromatin. Here, we concisely review the current understanding of the relationship between neuromodulators, epigenetics, and social behavior in ants. We discuss future directions in light of experimental limitations of the ant system.
Collapse
Affiliation(s)
- Matan Sorek
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shelley L. Berger
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Ju L, Glastad KM, Sheng L, Gospocic J, Kingwell CJ, Davidson SM, Kocher SD, Bonasio R, Berger SL. Hormonal gatekeeping via the blood-brain barrier governs caste-specific behavior in ants. Cell 2023; 186:4289-4309.e23. [PMID: 37683635 PMCID: PMC10807403 DOI: 10.1016/j.cell.2023.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/10/2023] [Accepted: 08/01/2023] [Indexed: 09/10/2023]
Abstract
Here, we reveal an unanticipated role of the blood-brain barrier (BBB) in regulating complex social behavior in ants. Using scRNA-seq, we find localization in the BBB of a key hormone-degrading enzyme called juvenile hormone esterase (Jhe), and we show that this localization governs the level of juvenile hormone (JH3) entering the brain. Manipulation of the Jhe level reprograms the brain transcriptome between ant castes. Although ant Jhe is retained and functions intracellularly within the BBB, we show that Drosophila Jhe is naturally extracellular. Heterologous expression of ant Jhe into the Drosophila BBB alters behavior in fly to mimic what is seen in ants. Most strikingly, manipulation of Jhe levels in ants reprograms complex behavior between worker castes. Our study thus uncovers a remarkable, potentially conserved role of the BBB serving as a molecular gatekeeper for a neurohormonal pathway that regulates social behavior.
Collapse
Affiliation(s)
- Linyang Ju
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Karl M Glastad
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Lihong Sheng
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Janko Gospocic
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Urology and Institute of Neuropathology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Callum J Kingwell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Shawn M Davidson
- Lewis-Sigler Institute for Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Sarah D Kocher
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Roberto Bonasio
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shelley L Berger
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Starkey J, Hawkings C, Tamborindeguy C. Influence of juvenile hormone analog on behavior in the red imported fire ant, Solenopsis invicta. Sci Rep 2023; 13:14726. [PMID: 37679373 PMCID: PMC10485025 DOI: 10.1038/s41598-023-41540-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 08/28/2023] [Indexed: 09/09/2023] Open
Abstract
Division of labor is a hallmark characteristic of social insect colonies. While it is understood that worker differentiation is regulated through either the queen or her brood, the understanding of the physiology behind task regulation varies within social species. Studies in eusocial insects have shown that juvenile hormone (JH) is associated with division of labor and the onset of foraging tasks. Although, outside of a few key species, this interaction has yet to be elucidated in the red imported fire ant, Solenopsis invicta. In this study, we evaluated the role of a JH analog, S-hydroprene in worker task transition in Solenopsis invicta. S-hydroprene was applied to nurses to observe behavioral changes. S-hyroprene application to nurses did not affect phototaxis, but there was a shift in behavior from internal, nest-based behaviors to external, foraging-based behaviors. These results show that JH may be implicated in worker task transition in S. invicta and may function similarly as it does in other eusocial insects.
Collapse
Affiliation(s)
- Jesse Starkey
- Department of Entomology, Texas A&M University, 412 Heep Center, College Station, TX, 77843, USA
| | - Chloe Hawkings
- Department of Entomology, Texas A&M University, 412 Heep Center, College Station, TX, 77843, USA
- Department of Entomology, Rutgers University, Thompson Hall, New Brunswick, NJ, 08901, USA
| | - Cecilia Tamborindeguy
- Department of Entomology, Texas A&M University, 412 Heep Center, College Station, TX, 77843, USA.
| |
Collapse
|
10
|
Role of juvenile hormone in oogenesis, chemical profile, and behavior of the wasp Mischocyttarus consimilis (Vespidae: Polistinae). CHEMOECOLOGY 2022. [DOI: 10.1007/s00049-022-00378-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Abbot P. Defense in Social Insects: Diversity, Division of Labor, and Evolution. ANNUAL REVIEW OF ENTOMOLOGY 2022; 67:407-436. [PMID: 34995089 DOI: 10.1146/annurev-ento-082521-072638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
All social insects defend their colony from predators, parasites, and pathogens. In Oster and Wilson's classic work, they posed one of the key paradoxes about defense in social insects: Given the universal necessity of defense, why then is there so much diversity in mechanisms? Ecological factors undoubtedly are important: Predation and usurpation have imposed strong selection on eusocial insects, and active defense by colonies is a ubiquitous feature of all social insects. The description of diverse insect groups with castes of sterile workers whose main duty is defense has broadened the purview of social evolution in insects, in particular with respect to caste and behavior. Defense is one of the central axes along which we can begin to organize and understand sociality in insects. With the establishment of social insect models such as the honey bee, new discoveries are emerging regarding the endocrine, neural, and gene regulatory mechanisms underlying defense in social insects. The mechanisms underlying morphological and behavioral defense traits may be shared across diverse groups, providing opportunities for identifying both conserved and novel mechanisms at work. Emerging themes highlight the context dependency of and interaction between factors that regulate defense in social insects.
Collapse
Affiliation(s)
- Patrick Abbot
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA;
| |
Collapse
|
12
|
Chang H, Lee DH. Positive Eusocial Impacts on Ants by Taurine Derivatives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1370:425-432. [DOI: 10.1007/978-3-030-93337-1_40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
13
|
Pandey A, Bloch G. Krüppel-homologue 1 Mediates Hormonally Regulated Dominance Rank in a Social Bee. BIOLOGY 2021; 10:biology10111188. [PMID: 34827180 PMCID: PMC8614866 DOI: 10.3390/biology10111188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/23/2022]
Abstract
Dominance hierarchies are ubiquitous in invertebrates and vertebrates, but little is known on how genes influence dominance rank. Our gaps in knowledge are specifically significant concerning female hierarchies, particularly in insects. To start filling these gaps, we studied the social bumble bee Bombus terrestris, in which social hierarchies among females are common and functionally significant. Dominance rank in this bee is influenced by multiple factors, including juvenile hormone (JH) that is a major gonadotropin in this species. We tested the hypothesis that the JH responsive transcription factor Krüppel homologue 1 (Kr-h1) mediates hormonal influences on dominance behavior. We first developed and validated a perfluorocarbon nanoparticles-based RNA interference protocol for knocking down Kr-h1 expression. We then used this procedure to show that Kr-h1 mediates the influence of JH, not only on oogenesis and wax production, but also on aggression and dominance rank. To the best of our knowledge, this is the first study causally linking a gene to dominance rank in social insects, and one of only a few such studies on insects or on female hierarchies. These findings are important for determining whether there are general molecular principles governing dominance rank across gender and taxa.
Collapse
Affiliation(s)
- Atul Pandey
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: (A.P.); (G.B.)
| | - Guy Bloch
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Correspondence: (A.P.); (G.B.)
| |
Collapse
|
14
|
Oi CA, da Silva RC, Stevens I, Ferreira HM, Nascimento FS, Wenseleers T. Hormonal modulation of reproduction and fertility signaling in polistine wasps. Curr Zool 2021; 67:519-530. [PMID: 34616950 PMCID: PMC8489163 DOI: 10.1093/cz/zoab026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/10/2021] [Indexed: 12/15/2022] Open
Abstract
In social insects, it has been suggested that reproduction and the production of particular fertility-linked cuticular hydrocarbons (CHC) may be under shared juvenile hormone (JH) control, and this could have been key in predisposing such cues to later evolve into full-fledged queen pheromone signals. However, to date, only few studies have experimentally tested this "hormonal pleiotropy" hypothesis. Here, we formally test this hypothesis using data from four species of Polistine wasps, Polistes dominula, Polistes satan, Mischocyttarus metathoracicus, and Mischocyttarus cassununga, and experimental treatments with JH using the JH analogue methoprene and the anti-JH precocene. In line with reproduction being under JH control, our results show that across these four species, precocene significantly decreased ovary development when compared with both the acetone solvent-only control and the methoprene treatment. Consistent with the hormonal pleiotropy hypothesis, these effects on reproduction were further matched by subtle shifts in the CHC profiles, with univariate analyses showing that in P. dominula and P. satan the abundance of particular linear alkanes and mono-methylated alkanes were affected by ovary development and our hormonal treatments. The results indicate that in primitively eusocial wasps, and particularly in Polistes, reproduction and the production of some CHC cues are under joint JH control. We suggest that pleiotropic links between reproduction and the production of such hydrocarbon cues have been key enablers for the origin of true fertility and queen signals in more derived, advanced eusocial insects.
Collapse
Affiliation(s)
- Cintia Akemi Oi
- Laboratory of Socioecology and Social Evolution, KU Leuven, Leuven 3000, Belgium
| | - Rafael Carvalho da Silva
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Universidade de São Paulo-USP, Ribeirão Preto, SP 14040-901, Brazil
| | - Ian Stevens
- Laboratory of Socioecology and Social Evolution, KU Leuven, Leuven 3000, Belgium
| | | | - Fabio Santos Nascimento
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Universidade de São Paulo-USP, Ribeirão Preto, SP 14040-901, Brazil
| | - Tom Wenseleers
- Laboratory of Socioecology and Social Evolution, KU Leuven, Leuven 3000, Belgium
| |
Collapse
|
15
|
Ortiz-Alvarado Y, Fernández-Casas R, Ortiz-Alvarado CA, Diaz-Iglesias E, Rivera-Marchand B. Behavioral flexibility in Wasmannia auropunctata (Hymenoptera: Formicidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:16. [PMID: 34436597 PMCID: PMC8388608 DOI: 10.1093/jisesa/ieab059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Indexed: 06/13/2023]
Abstract
Worker division of labor is a defining trait in social insects. Many species are characterized by having behavioral flexibility where workers perform non-typical tasks for their age depending on the colony's needs. Worker division of labor and behavioral flexibility were examined in the little fire ant Wasmannia auropunctata (Roger, 1863), for which age-related division of labor has been found. Young workers perform nursing duties which include tending of brood and queens, and colony defense, while older workers forage. When nurses were experimentally removed from the colony, foragers were observed carrying out nursing and colony defense duties, yet when foragers were removed nurses did not forage precociously. We also administered juvenile hormone analog, methoprene, to workers. When methoprene was applied, foragers increased their nursing and defense activities while nurses became mainly idle. The behavioral flexibility of foragers of the little fire ant may be evidence of an expansion of worker's repertoires as they age; older workers can perform tasks they have already done in their life while young individuals are not capable of performing tasks ahead of time. This may be an important adaptation associated with the success of this ant as an invasive species.
Collapse
Affiliation(s)
| | - Rafael Fernández-Casas
- Department of Natural Sciences and Mathematics, Inter American University, Bayamon, Puerto Rico
| | | | | | - Bert Rivera-Marchand
- Department of Natural Sciences and Mathematics, Inter American University, Bayamon, Puerto Rico
| |
Collapse
|
16
|
Oi CA, Brown RL, da Silva RC, Wenseleers T. Reproduction and signals regulating worker policing under identical hormonal control in social wasps. Sci Rep 2020; 10:18971. [PMID: 33149171 PMCID: PMC7643062 DOI: 10.1038/s41598-020-76084-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
In social Hymenoptera, fertility and fertility signalling are often under identical hormonal control, and it has been suggested that such hormonal pleiotropies can help to maintain signal honesty. In the common wasp Vespula vulgaris, for example, fertile queens have much higher juvenile hormone (JH) titers than workers, and JH also controls the production of chemical fertility cues present on the females’ cuticle. To regulate reproductive division of labour, queens use these fertility cues in two distinct ways: as queen pheromones that directly suppress the workers’ reproduction as well as to mark queen eggs and enable the workers to recognize and police eggs laid by other workers. Here, we investigated the hormonal pleiotropy hypothesis by testing if experimental treatment with the JH analogue methoprene could enable the workers to lay eggs that evade policing. In support of this hypothesis, we find that methoprene-treated workers laid more eggs, and that the chemical profiles of their eggs were more queen-like, thereby causing fewer of their eggs to be policed compared to in the control. Overall, our results identify JH as a key regulator of both reproduction and the production of egg marking pheromones that mediate policing behaviour in eusocial wasps.
Collapse
Affiliation(s)
- Cintia Akemi Oi
- Laboratory of Socioecology and Social Evolution, KU Leuven, Leuven, Belgium.
| | - Robert L Brown
- Manaaki Whenua - Landcare Research, Lincoln, New Zealand
| | - Rafael Carvalho da Silva
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Universidade de São Paulo - USP, Ribeirão Preto, SP, Brazil
| | - Tom Wenseleers
- Laboratory of Socioecology and Social Evolution, KU Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Tsang SSK, Law STS, Li C, Qu Z, Bendena WG, Tobe SS, Hui JHL. Diversity of Insect Sesquiterpenoid Regulation. Front Genet 2020; 11:1027. [PMID: 33133135 PMCID: PMC7511761 DOI: 10.3389/fgene.2020.01027] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022] Open
Abstract
Insects are arguably the most successful group of animals in the world in terms of both species numbers and diverse habitats. The sesquiterpenoids juvenile hormone, methyl farnesoate, and farnesoic acid are well known to regulate metamorphosis, reproduction, sexual dimorphism, eusociality, and defense in insects. Nevertheless, different insects have evolved with different sesquiterpenoid biosynthetic pathway as well as products. On the other hand, non-coding RNAs such as microRNAs have been implicated in regulation of many important biological processes, and have recently been explored in the regulation of sesquiterpenoid production. In this review, we summarize the latest findings on the diversity of sesquiterpenoids reported in different groups of insects, as well as the recent advancements in the understanding of regulation of sesquiterpenoid production by microRNAs.
Collapse
Affiliation(s)
- Stacey S K Tsang
- Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Sean T S Law
- Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chade Li
- Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhe Qu
- Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Stephen S Tobe
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Jerome H L Hui
- Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
18
|
Pandey A, Motro U, Bloch G. Juvenile hormone interacts with multiple factors to modulate aggression and dominance in groups of orphan bumble bee (Bombus terrestris) workers. Horm Behav 2020; 117:104602. [PMID: 31647921 DOI: 10.1016/j.yhbeh.2019.104602] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023]
Abstract
Juvenile hormone (JH) is a key regulator of insect development and reproduction. Given that JH commonly affects adult insect fertility, it has been hypothesized to also regulate behaviors such as dominance and aggression that are associated with reproduction. We tested this hypothesis in the bumble bee Bombus terrestris for which JH has been shown to be the major gonadotropin. We used the allatoxin Precocene-I (P-I) to reduce hemolymph JH titers and replacement therapy with the natural JH to revert this effect. In small orphan groups of workers with similar body size but mixed treatment, P-I treated bees showed lower aggressiveness, oogenesis, and dominance rank compared with control and replacement therapy treated bees. In similar groups in which all bees were treated similarly, there was a clear dominance hierarchy, even in P-I and replacement therapy treatment groups in which the bees showed similar levels of ovarian activation. In a similar experiment in which bees differed in body size, larger bees were more likely to be dominant despite their similar JH treatment and ovarian state. In the last experiment, we show that JH manipulation does not affect dominance rank in groups that had already established a stable dominance hierarchy. These findings solve previous ambiguities concerning whether or not JH affects dominance in bumble bees. JH positively affects dominance, but bees with similar levels of JH can nevertheless establish dominance hierarchies. Thus, multiple factors including JH, body size, and previous experience affect dominance and aggression in social bumble bees.
Collapse
Affiliation(s)
- Atul Pandey
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Israel
| | - Uzi Motro
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Israel
| | - Guy Bloch
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
19
|
Detrain C, Pereira H, Fourcassié V. Differential responses to chemical cues correlate with task performance in ant foragers. Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2717-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
Verification of mathematical models of response threshold through statistical characterisation of the foraging activity in ant societies. Sci Rep 2019; 9:8845. [PMID: 31222162 PMCID: PMC6586672 DOI: 10.1038/s41598-019-45367-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 06/05/2019] [Indexed: 11/08/2022] Open
Abstract
The concept of response threshold (RT) has been developed to explain task allocation in social insect colonies, wherein individual workers engage in tasks depending on their responsiveness to the task-related stimulus. Moreover, a mathematical model of RT has been proposed to explain data obtained from task allocation experiments; however, its applicability range warrants clarification through adequate quantitative analysis. Hence, we used an automatic measuring system to count passage events between a nest chamber and a foraging arena in five colonies of ants, Camponotus japonicus. The events were measured using radio-frequency identification tags attached to all workers of each colony. Here, we examined the detailed forms of i) labour distribution during foraging among workers in each colony and ii) the persistence of rank-order of foraging among workers. We found that labour distribution was characterized by a generalized gamma-distribution, indicating that only few workers carried out a large part of the workload. The rank-order of foraging activity among workers in each colony was maintained for a month and collapsed within a few months. We compared the obtained data with testable predictions of the RT model. The comparison indicated that proper evaluation of the mathematical model is required based on the obtained data.
Collapse
|
21
|
Hawkings C, Calkins TL, Pietrantonio PV, Tamborindeguy C. Caste-based differential transcriptional expression of hexamerins in response to a juvenile hormone analog in the red imported fire ant (Solenopsis invicta). PLoS One 2019; 14:e0216800. [PMID: 31107891 PMCID: PMC6527210 DOI: 10.1371/journal.pone.0216800] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/29/2019] [Indexed: 01/10/2023] Open
Abstract
The reproductive ground plan hypothesis proposes that gene networks regulating foraging behavior and reproductive female physiology in social insects emerged from ancestral gene and endocrine factor networks. Expression of storage proteins such as vitellogenins and hexamerins is an example of this co-option. Hexamerins, through their role modulating juvenile hormone availability, are involved in caste determination in termites. The genome of the fire ant (Solenopsis invicta) encodes four hexamerin genes, hexamerin-like (LOC105192919, hereafter called hexamerin 1), hexamerin (LOC105204474, hereafter called hexamerin 2), arylphorin subunit alpha-like, and arylphorin subunit beta. In this study, a phylogenetic analysis of the S. invicta hexamerins determined that each predicted protein clustered with one of the orthologous Apis mellifera hexamerins. Gene expression analyses by RT-qPCR revealed differential expression of the hexamerins between queens and workers, and between specific task-allocated workers (nurses and foragers). Queens and nurses had significantly higher expression of all genes when compared to foragers. Hexamerin 1 was expressed at higher levels in queens, while hexamerin 2 and arylphorin subunit beta were expressed at significantly higher levels in nurses. Arylphorin subunit alpha-like showed no significant difference in expression between virgin queens and nurses. Additionally, we analyzed the relationship between the expression of hexamerin genes and S-hydroprene, a juvenile hormone analog. Significant changes in hexamerin expression were recorded in nurses, virgin queens, and foragers 12 h after application of the analog. Hexamerin 1 and arylphorin subunit alpha-like expression were significantly lower after analog application in virgin queens. In foragers, hexamerin 2 and arylphorin subunit beta were significantly lower after analog application, while in nurses expression of all genes were significantly lower after analog application. Our results suggest that in S. invicta hexamerin genes could be associated with reproductive division of labor and task-allocation of workers.
Collapse
Affiliation(s)
- Chloe Hawkings
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Travis L. Calkins
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Patricia V. Pietrantonio
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Cecilia Tamborindeguy
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
22
|
Norman VC, Pamminger T, Nascimento F, Hughes WOH. The role of juvenile hormone in regulating reproductive physiology and dominance in Dinoponera quadriceps ants. PeerJ 2019; 7:e6512. [PMID: 30842903 PMCID: PMC6398374 DOI: 10.7717/peerj.6512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 01/24/2019] [Indexed: 12/18/2022] Open
Abstract
Unequal reproductive output among members of the same sex (reproductive skew) is a common phenomenon in a wide range of communally breeding animals. In such species, reproductive dominance is often acquired during antagonistic interactions between group members that establish a reproductive hierarchy in which only a few individuals reproduce. Rank-specific syndromes of behavioural and physiological traits characterize such hierarchies, but how antagonistic behavioural interactions translate into stable rank-specific syndromes remains poorly understood. The pleiotropic nature of hormones makes them prime candidates for generating such syndromes as they physiologically integrate environmental (social) information, and often affect reproduction and behaviour simultaneously. Juvenile hormone (JH) is one of several hormones that occupy such a central regulatory role in insects and has been suggested to regulate reproductive hierarchies in a wide range of social insects including ants. Here we use experimental manipulation to investigate the effect of JH levels on reproductive physiology and social dominance in high-ranked workers of the eusocial ant Dinoponera quadriceps, a species that has secondarily reverted to queenless, simple societies. We show that JH regulated reproductive physiology, with ants in which JH levels were experimentally elevated having more regressed ovaries. In contrast, we found no evidence of JH levels affecting dominance in social interactions. This could indicate that JH and ovary development are decoupled from dominance in this species, however only high-ranked workers were investigated. The results therefore confirm that the regulatory role of JH in reproductive physiology in this ant species is in keeping with its highly eusocial ancestors rather than its secondary reversion to simple societies, but more investigation is needed to disentangle the relationships between hormones, behaviour and hierarchies.
Collapse
Affiliation(s)
- Victoria C Norman
- School of Biology, University of Leeds, Leeds, United Kingdom.,School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Tobias Pamminger
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Fabio Nascimento
- Departamento de Biologia, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | |
Collapse
|
23
|
Kim HW, Lee DH. Effects of Taurine on Eusociality of Ants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1155:239-248. [DOI: 10.1007/978-981-13-8023-5_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Wang Q, Song W, Zhang J, Lo S. Bi-directional movement characteristics of Camponotus japonicus ants during nest relocation. ACTA ACUST UNITED AC 2018; 221:jeb.181669. [PMID: 30026241 DOI: 10.1242/jeb.181669] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/16/2018] [Indexed: 10/28/2022]
Abstract
Foraging and nest relocation forming a bi-directional traffic of outbound and inbound individuals in one-lane organization are two main activities in an ant's life. In this paper, we conducted an experiment on nest relocation of loaded and unloaded ants, moving back and forth between the old nest and the new one. In the experiment, we observed both uni- and bi-directional traffic flow. The headway-speed relationships indicate that the ants showed the same sensitivity to the distance headway in the two types of flow. For bi-directional traffic flow, head-on encounters and giving-way behavior between ants moving in opposing directions were a common occurrence. It took one unloaded ant 2.61 s to solve a head-on encounter with another unloaded ant. Compared with unloaded ants, loaded ants had a lower moving speed, but were less likely to be impacted by a head-on encounter. In the observation region, both sudden stop and head-on encounters contained two phases: deceleration and acceleration. Our analysis indicates that the relaxation time in the deceleration process is less than that in the acceleration process. The reduction of movement efficiency of encountering two discontinuous ants is larger than that when encountering two successive ants (0.18). This is owing to the absence of head-on encounters with following ants. The bi-directional traffic of ants under experimental conditions investigated in this study may inform future studies of high-efficiency movement in collective behavior and traffic systems.
Collapse
Affiliation(s)
- Qiao Wang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230027, China.,Department of Architectural and Civil Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Weiguo Song
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230027, China
| | - Jun Zhang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230027, China
| | - Siuming Lo
- Department of Architectural and Civil Engineering, City University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
25
|
Pamminger T, Hughes WOH. Testing the reproductive groundplan hypothesis in ants (Hymenoptera: Formicidae). Evolution 2016; 71:153-159. [DOI: 10.1111/evo.13105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/16/2016] [Accepted: 10/20/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Tobias Pamminger
- School of Life Sciences; University of Sussex; Falmer Brighton BN1 9QG United Kingdom
| | - William O. H. Hughes
- School of Life Sciences; University of Sussex; Falmer Brighton BN1 9QG United Kingdom
| |
Collapse
|
26
|
Norman VC, Pamminger T, Hughes WOH. The effects of disturbance threat on leaf-cutting ant colonies: a laboratory study. INSECTES SOCIAUX 2016; 64:75-85. [PMID: 28255181 PMCID: PMC5310565 DOI: 10.1007/s00040-016-0513-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 06/06/2023]
Abstract
The flexibility of organisms to respond plastically to their environment is fundamental to their fitness and evolutionary success. Social insects provide some of the most impressive examples of plasticity, with individuals exhibiting behavioral and sometimes morphological adaptations for their specific roles in the colony, such as large soldiers for nest defense. However, with the exception of the honey bee model organism, there has been little investigation of the nature and effects of environmental stimuli thought to instigate alternative phenotypes in social insects. Here, we investigate the effect of repeated threat disturbance over a prolonged (17 month) period on both behavioral and morphological phenotypes, using phenotypically plastic leaf-cutting ants (Atta colombica) as a model system. We found a rapid impact of threat disturbance on the behavioral phenotype of individuals within threat-disturbed colonies becoming more aggressive, threat responsive, and phototactic within as little as 2 weeks. We found no effect of threat disturbance on morphological phenotypes, potentially, because constraints such as resource limitation outweighed the benefit for colonies of producing larger individuals. The results suggest that plasticity in behavioral phenotypes can enable insect societies to respond to threats even when constraints prevent alteration of morphological phenotypes.
Collapse
Affiliation(s)
- V. C. Norman
- School of Life Sciences, University of Sussex, Brighton, East Sussex BN1 9QG UK
| | - T. Pamminger
- School of Life Sciences, University of Sussex, Brighton, East Sussex BN1 9QG UK
| | - W. O. H. Hughes
- School of Life Sciences, University of Sussex, Brighton, East Sussex BN1 9QG UK
| |
Collapse
|
27
|
Knight K. Juvenile hormone triggers forager switch in leafcutter ants. J Exp Biol 2016. [DOI: 10.1242/jeb.135863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|