1
|
Dyer AG, Greentree AD, Garcia JE, Dyer EL, Howard SR, Barth FG. Einstein, von Frisch and the honeybee: a historical letter comes to light. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:449-456. [PMID: 33970340 PMCID: PMC8222030 DOI: 10.1007/s00359-021-01490-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/04/2022]
Abstract
The work of the Nobel Laureate Karl von Frisch, the founder of this journal, was seminal in many ways. He established the honeybee as a key animal model for experimental behavioural studies on sensory perception, learning and memory, and first correctly interpreted its famous dance communication. Here, we report on a previously unknown letter by the Physicist and Nobel Laureate Albert Einstein that was written in October 1949. It briefly addresses the work of von Frisch and also queries how understanding animal perception and navigation may lead to innovations in physics. We discuss records proving that Einstein and von Frisch met in April 1949 when von Frisch visited the USA to present a lecture on bees at Princeton University. In the historical context of Einstein’s theories and thought experiments, we discuss some more recent discoveries of animal sensory capabilities alien to us humans and potentially valuable for bio-inspired design improvements. We also address the orientation of animals like migratory birds mentioned by Einstein 70 years ago, which pushes the boundaries of our understanding nature, both its biology and physics.
Collapse
Affiliation(s)
- Adrian G Dyer
- School of Media and Communication, RMIT University, Melbourne, VIC, 3001, Australia
- Department of Physiology, Monash University, Clayton, VIC, 3800, Australia
| | - Andrew D Greentree
- ARC Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| | - Jair E Garcia
- School of Media and Communication, RMIT University, Melbourne, VIC, 3001, Australia
| | - Elinya L Dyer
- Department of Computer Science and Software Engineering, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Scarlett R Howard
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3217, Australia
| | - Friedrich G Barth
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Althanstr.14, 1090, Vienna, Austria.
| |
Collapse
|
2
|
Ng L, Garcia JE, Dyer AG. Use of temporal and colour cueing in a symbolic delayed matching task by honey bees. J Exp Biol 2020; 223:jeb224220. [PMID: 32611791 DOI: 10.1242/jeb.224220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/26/2020] [Indexed: 11/20/2022]
Abstract
Honey bees (Apis mellifera) are known for their capacity to learn arbitrary relationships between colours, odours and even numbers. However, it is not known whether bees can use temporal signals as cueing stimuli in a similar way during symbolic delayed matching-to-sample tasks. Honey bees potentially process temporal signals during foraging activities, but the extent to which they can use such information is unclear. Here, we investigated whether free-flying honey bees could use either illumination colour or illumination duration as potential context-setting cues to enable their subsequent decisions for a symbolic delayed matching-to-sample task. We found that bees could use the changing colour context of the illumination to complete the subsequent spatial vision task at a level significantly different from chance expectation, but could not use the duration of either a 1 or 3 s light as a cueing stimulus. These findings suggest that bees cannot use temporal information as a cueing stimulus as efficiently as other signals such as colour, and are consistent with previous field observations suggesting a limited interval timing capacity in honey bees.
Collapse
Affiliation(s)
- Leslie Ng
- Bio-inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, VIC 3001, Australia
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jair E Garcia
- Bio-inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, VIC 3001, Australia
| | - Adrian G Dyer
- Bio-inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, VIC 3001, Australia
- Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
3
|
Wang Y, Wang X, Ge A, Hu L, Du W, Liu BF. A dual-stimulation strategy in a micro-chip for the investigation of mechanical associative learning behavior of C. elegans. Talanta 2020; 215:120900. [PMID: 32312445 DOI: 10.1016/j.talanta.2020.120900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 10/24/2022]
Abstract
During the past decades, few micro-devices for analysis of associative learning behavior have been reported. In this work, an agarose-PDMS hybridized micro-chip was developed to establish a new associative learning model between mechanosensation and food reward in C. elegans. The micro-chip consisted of column arrays which mimicked mechanical stimulation to C. elegans. After trained by pairing bacterial food and mechanical stimuli in the chip, the worms exhibited associative learning behavior and gathered in the regions where there was food during training. The key research findings include: (1) Associative learning behavior of C. elegans could be generated and quantitatively analyzed by this developed micro-chip. (2) Associative learning behavior could be enhanced by extending the training time and developmental stage. (3) Mechanosensation-related genes and neurotransmitters signals had effects on the learning behavior. (4) The associative learning ability could be strengthened by exogenous dopamine in both wild type and mutants. We validated that the design of the micro-chip was useful and convenient for the study of learning behavior based on mechanosensation.
Collapse
Affiliation(s)
- Yu Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xixian Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Single Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Anle Ge
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Single Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Liang Hu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; School of Ophthalmology & Optometry, School of Biomedical Engineering. Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
4
|
Carducci P, Squillace V, Manzi G, Truppa V. Touch improves visual discrimination of object features in capuchin monkeys (Sapajus spp.). Behav Processes 2020; 172:104044. [PMID: 31954810 DOI: 10.1016/j.beproc.2020.104044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/03/2020] [Accepted: 01/13/2020] [Indexed: 11/25/2022]
Abstract
Primates perceive many object features through vision and touch. To date, little is known on how the synergy of these two sensory modalities contributes to enhance object recognition. Here, we investigated in capuchin monkeys (N = 12) whether manipulating objects and retaining tactile information enhanced visual recognition of geometrical object properties on different scales. Capuchins were trained to visually select the rewarded one of two objects differing in size, shape (larger-scale) or surface structure (smaller-scale). Objects were explored in two experimental conditions: the Sight condition prevented capuchins from touching the chosen object; the Sight and Touch condition allowed them to touch the selected object. Our results indicated that tactile information increased the capuchins' learning speed for visual discrimination of object features. Moreover, the capuchins' learning speed was higher in both size and shape discrimination compared to surface discrimination regardless of the availability of tactile input. Overall, our data demonstrated that the acquisition of tactile information about object features was advantageous for the capuchins and allowed them to achieve high levels of visual accuracy faster. This suggests that information from touch potentiated object recognition in the visual modality.
Collapse
Affiliation(s)
- Paola Carducci
- Institute of Cognitive Sciences and Technologies, National Research Council (CNR), Via Ulisse Aldrovandi 16/B, 00197, Rome, Italy; Sapienza University of Rome, Department of Environmental Biology, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Valerio Squillace
- Institute of Cognitive Sciences and Technologies, National Research Council (CNR), Via Ulisse Aldrovandi 16/B, 00197, Rome, Italy
| | - Giorgio Manzi
- Sapienza University of Rome, Department of Environmental Biology, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Valentina Truppa
- Institute of Cognitive Sciences and Technologies, National Research Council (CNR), Via Ulisse Aldrovandi 16/B, 00197, Rome, Italy.
| |
Collapse
|
5
|
Howard SR, Avarguès-Weber A, Garcia JE, Greentree AD, Dyer AG. Symbolic representation of numerosity by honeybees ( Apis mellifera): matching characters to small quantities. Proc Biol Sci 2019; 286:20190238. [PMID: 31161903 DOI: 10.1098/rspb.2019.0238] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The assignment of a symbolic representation to a specific numerosity is a fundamental requirement for humans solving complex mathematical calculations used in diverse applications such as algebra, accounting, physics and everyday commerce. Here we show that honeybees are able to learn to match a sign to a numerosity, or a numerosity to a sign, and subsequently transfer this knowledge to novel numerosity stimuli changed in colour properties, shape and configuration. While honeybees learned the associations between two quantities (two; three) and two signs (N-shape; inverted T-shape), they failed at reversing their specific task of sign-to-numerosity matching to numerosity-to-sign matching and vice versa (i.e. a honeybee that learned to match a sign to a number of elements was not able to invert this learning to match the numerosity of elements to a sign). Thus, while bees could learn the association between a symbol and numerosity, it was linked to the specific task and bees could not spontaneously extrapolate the association to a novel, reversed task. Our study therefore reveals that the basic requirement for numerical symbolic representation can be fulfilled by an insect brain, suggesting that the absence of its spontaneous emergence in animals is not due to cognitive limitation.
Collapse
Affiliation(s)
- Scarlett R Howard
- 1 Bio-inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University , Melbourne, Victoria , Australia.,3 Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS , Toulouse , France
| | - Aurore Avarguès-Weber
- 3 Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS , Toulouse , France
| | - Jair E Garcia
- 1 Bio-inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University , Melbourne, Victoria , Australia
| | - Andrew D Greentree
- 2 ARC Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT University , Melbourne, Victoria , Australia
| | - Adrian G Dyer
- 1 Bio-inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University , Melbourne, Victoria , Australia.,4 Department of Physiology, Monash University , Clayton, Victoria , Australia
| |
Collapse
|
6
|
Nouvian M, Galizia CG. Aversive Training of Honey Bees in an Automated Y-Maze. Front Physiol 2019; 10:678. [PMID: 31231238 PMCID: PMC6558987 DOI: 10.3389/fphys.2019.00678] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/13/2019] [Indexed: 11/13/2022] Open
Abstract
Honeybees have remarkable learning abilities given their small brains, and have thus been established as a powerful model organism for the study of learning and memory. Most of our current knowledge is based on appetitive paradigms, in which a previously neutral stimulus (e.g., a visual, olfactory, or tactile stimulus) is paired with a reward. Here, we present a novel apparatus, the yAPIS, for aversive training of walking honey bees. This system consists in three arms of equal length and at 120° from each other. Within each arm, colored lights (λ = 375, 465 or 520 nm) or odors (here limonene or linalool) can be delivered to provide conditioned stimuli (CS). A metal grid placed on the floor and roof delivers the punishment in the form of mild electric shocks (unconditioned stimulus, US). Our training protocol followed a fully classical procedure, in which the bee was exposed sequentially to a CS paired with shocks (CS+) and to another CS not punished (CS-). Learning performance was measured during a second phase, which took advantage of the Y-shape of the apparatus and of real-time tracking to present the bee with a choice situation, e.g., between the CS+ and the CS-. Bees reliably chose the CS- over the CS+ after only a few training trials with either colors or odors, and retained this memory for at least a day, except for the shorter wavelength (λ = 375 nm) that produced mixed results. This behavior was largely the result of the bees avoiding the CS+, as no evidence was found for attraction to the CS-. Interestingly, trained bees initially placed in the CS+ spontaneously escaped to a CS- arm if given the opportunity, even though they could never do so during the training. Finally, honey bees trained with compound stimuli (color + odor) later avoided either components of the CS+. Thus, the yAPIS is a fast, versatile and high-throughput way to train honey bees in aversive paradigms. It also opens the door for controlled laboratory experiments investigating bimodal integration and learning, a field that remains in its infancy.
Collapse
Affiliation(s)
- Morgane Nouvian
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - C. Giovanni Galizia
- Department of Biology, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| |
Collapse
|
7
|
Harris G, Wu T, Linfield G, Choi MK, Liu H, Zhang Y. Molecular and cellular modulators for multisensory integration in C. elegans. PLoS Genet 2019; 15:e1007706. [PMID: 30849079 PMCID: PMC6426271 DOI: 10.1371/journal.pgen.1007706] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 03/20/2019] [Accepted: 01/23/2019] [Indexed: 12/19/2022] Open
Abstract
In the natural environment, animals often encounter multiple sensory cues that are simultaneously present. The nervous system integrates the relevant sensory information to generate behavioral responses that have adaptive values. However, the neuronal basis and the modulators that regulate integrated behavioral response to multiple sensory cues are not well defined. Here, we address this question using a behavioral decision in C. elegans when the animal is presented with an attractive food source together with a repulsive odorant. We identify specific sensory neurons, interneurons and neuromodulators that orchestrate the decision-making process, suggesting that various states and contexts may modulate the multisensory integration. Among these modulators, we characterize a new function of a conserved TGF-β pathway that regulates the integrated decision by inhibiting the signaling from a set of central neurons. Interestingly, we find that a common set of modulators, including the TGF-β pathway, regulate the integrated response to the pairing of different foods and repellents. Together, our results provide mechanistic insights into the modulatory signals regulating multisensory integration. The present study characterizes the modulation of a behavioral decision in C. elegans when the worm is presented with a food lawn that is paired with a repulsive smell. We show that multiple specific sensory neurons and interneurons play roles in making the decision. We also identify several modulatory molecules that are essential for the integrated decision when the animal faces a choice between the cues of opposing valence. We further show that many of these factors, which often represent different states and contexts, are common for behavioral decisions that integrate sensory information from different types of foods and repellents. Overall, our results reveal the molecular and cellular basis for integration of simultaneously present attractive and repulsive cues to fine-tune decision-making.
Collapse
Affiliation(s)
- Gareth Harris
- Department of Organismic and Evolutionary Biology, Center for Brain Sciences, Harvard University, Cambridge, MA, United States of America
- * E-mail: (GH); (YZ)
| | - Taihong Wu
- Department of Organismic and Evolutionary Biology, Center for Brain Sciences, Harvard University, Cambridge, MA, United States of America
| | - Gaia Linfield
- Department of Organismic and Evolutionary Biology, Center for Brain Sciences, Harvard University, Cambridge, MA, United States of America
| | - Myung-Kyu Choi
- Department of Organismic and Evolutionary Biology, Center for Brain Sciences, Harvard University, Cambridge, MA, United States of America
| | - He Liu
- Department of Organismic and Evolutionary Biology, Center for Brain Sciences, Harvard University, Cambridge, MA, United States of America
| | - Yun Zhang
- Department of Organismic and Evolutionary Biology, Center for Brain Sciences, Harvard University, Cambridge, MA, United States of America
- * E-mail: (GH); (YZ)
| |
Collapse
|
8
|
Ferner MC, Hodin J, Ng G, Gaylord B. Brief exposure to intense turbulence induces a sustained life-history shift in echinoids. ACTA ACUST UNITED AC 2019; 222:jeb.187351. [PMID: 30573667 DOI: 10.1242/jeb.187351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 12/14/2018] [Indexed: 12/26/2022]
Abstract
In coastal ecosystems, attributes of fluid motion can prompt animal larvae to rise or sink in the water column and to select microhabitats within which they attach and commit to a benthic existence. In echinoid (sea urchin and sand dollar) larvae living along wave-exposed shorelines, intense turbulence characteristic of surf zones can cause individuals to undergo an abrupt life-history shift characterized by precocious entry into competence - the stage at which larvae will settle and complete metamorphosis in response to local cues. However, the mechanistic details of this turbulence-triggered onset of competence remain poorly defined. Here, we evaluate in a series of laboratory experiments the time course of this turbulence effect, both the rapidity with which it initiates and whether it perdures. We found that larvae become competent with turbulence exposures as brief as 30 s, with longer exposures inducing a greater proportion of larvae to become competent. Intriguingly, larvae can remember such exposures for a protracted period (at least 24 h), a pattern reminiscent of long-term potentiation. Turbulence also induces short-term behavioral responses that last less than 30 min, including cessation of swimming, that facilitate sinking and thus contact of echinoid larvae with the substratum. Together, these results yield a novel perspective on how larvae find their way to suitable adult habitat at the critical settlement transition, and also open new experimental opportunities to elucidate the mechanisms by which planktonic animals respond to fluid motion.
Collapse
Affiliation(s)
- Matthew C Ferner
- San Francisco Bay National Estuarine Research Reserve and Estuary & Ocean Science Center, San Francisco State University, Tiburon, CA 94920, USA
| | - Jason Hodin
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
| | - Gabriel Ng
- Bodega Marine Laboratory and Department of Evolution and Ecology, University of California at Davis, Bodega Bay, CA 94923, USA
| | - Brian Gaylord
- Bodega Marine Laboratory and Department of Evolution and Ecology, University of California at Davis, Bodega Bay, CA 94923, USA
| |
Collapse
|
9
|
Garcia JE, Shrestha M, Dyer AG. Flower signal variability overwhelms receptor-noise and requires plastic color learning in bees. Behav Ecol 2018. [DOI: 10.1093/beheco/ary127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jair E Garcia
- Bio-Inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, Victoria, Australia
| | - Mani Shrestha
- Bio-Inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, Victoria, Australia
- APIS Lab, Faculty of Information Technology, Monash University, Clayton, Victoria, Australia
| | - Adrian G Dyer
- Bio-Inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, Victoria, Australia
- Department of Physiology, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
10
|
Guiraud M, Roper M, Chittka L. High-Speed Videography Reveals How Honeybees Can Turn a Spatial Concept Learning Task Into a Simple Discrimination Task by Stereotyped Flight Movements and Sequential Inspection of Pattern Elements. Front Psychol 2018; 9:1347. [PMID: 30123157 PMCID: PMC6086205 DOI: 10.3389/fpsyg.2018.01347] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/13/2018] [Indexed: 11/23/2022] Open
Abstract
Honey bees display remarkable visual learning abilities, providing insights regarding visual information processing in a miniature brain. It was discovered that bees can solve a task that is generally viewed as spatial concept learning in primates, specifically the concept of “above” and “below.” In these works, two pairs of visual stimuli were shown in the two arms of a Y-maze. Each arm displayed a “referent” shape (e.g., a cross, or a horizontal line) and a second geometric shape that appeared either above or below the referent. Bees learning the “concept of aboveness” had to choose the arm of the Y-maze in which a shape–any shape–occurred above the referent, while those learning the “concept of belowness” had to pick the arm in which there was an arbitrary item beneath the referent. Here, we explore the sequential decision-making process that allows bees to solve this task by analyzing their flight trajectories inside the Y-maze. Over 368 h of high-speed video footage of the bees' choice strategies were analyzed in detail. In our experiments, many bees failed the task, and, with the possible exception of a single forager, bees as a group failed to reach significance in picking the correct arm from the decision chamber of the maze. Of those bees that succeeded in choosing correctly, most required a close-up inspection of the targets. These bees typically employed a close-up scan of only the bottom part of the pattern before taking the decision of landing on a feeder. When rejecting incorrect feeders, they repeatedly scanned the pattern features, but were still, on average, faster at completing the task than the non-leaners. This shows that solving a concept learning task could actually be mediated by turning it into a more manageable discrimination task by some animals, although one individual in this study appeared to have gained the ability (by the end of the training) to solve the task in a manner predicted by concept learning.
Collapse
Affiliation(s)
- Marie Guiraud
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Mark Roper
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom.,Drone Development Lab, Ben Thorns Ltd, Colchester, United Kingdom
| | - Lars Chittka
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom.,Wissenschaftskolleg, Institute of Advanced Study, Berlin, Germany
| |
Collapse
|
11
|
Bauer D, Wegener J, Bienefeld K. Recognition of mite-infested brood by honeybee (Apis mellifera) workers may involve thermal sensing. J Therm Biol 2018; 74:311-316. [PMID: 29801643 DOI: 10.1016/j.jtherbio.2018.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 02/22/2018] [Accepted: 04/24/2018] [Indexed: 01/25/2023]
Abstract
Hygienic behavior, i.e. the removal of diseased or damaged brood by worker honey bees (Apis mellifera), is seen as one of the principal behavioral elements of this species' social immunity. Identification of the stimuli that trigger it would be helpful in searching for biochemical and molecular markers of this important breeding trait. While many studies at the genomic, transcriptomic, and behavioral level have pointed to the implication of chemical cues, we here hypothesized that thermal cues are alternatively/additionally involved. To test this hypothesis, we first measured whether infestation by the mite Varroa destructor (a condition known to induce hygienic behavior) leads to a thermal gradient between affected and unaffected brood. We found that infested brood cells were between 0.03 and 0.19 °C warmer than uninfested controls. Next, we tested whether artificially heating an area of a brood comb would increase the removal of infested or uninfested brood as compared to an unheated control area, and found that this was not the case. Finally, we investigated whether the heating of individual brood cells, as opposed to comb areas, would influence brood removal from cells adjacent to the heated one. This was the case for uninfested, though not for infested cells. We conclude that infestation by V. destructor leads to a heating of brood cells that should be perceivable by bees, and that small-scale temperature gradients can influence brood removal. This makes it appear possible that thermal cues play a role in triggering hygienic behavior of honey bees directed at varroa-infested larvae/pupae, although our results are insufficient to prove such an involvement.
Collapse
Affiliation(s)
- Daniel Bauer
- Bee Research Institute, F.-Engels-Straße 32, 16540 Hohen Neuendorf, Germany.
| | - Jakob Wegener
- Bee Research Institute, F.-Engels-Straße 32, 16540 Hohen Neuendorf, Germany.
| | - Kaspar Bienefeld
- Bee Research Institute, F.-Engels-Straße 32, 16540 Hohen Neuendorf, Germany.
| |
Collapse
|