1
|
Vornanen M. Feeling the heat: source–sink mismatch as a mechanism underlying the failure of thermal tolerance. J Exp Biol 2020; 223:223/16/jeb225680. [DOI: 10.1242/jeb.225680] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
ABSTRACT
A mechanistic explanation for the tolerance limits of animals at high temperatures is still missing, but one potential target for thermal failure is the electrical signaling off cells and tissues. With this in mind, here I review the effects of high temperature on the electrical excitability of heart, muscle and nerves, and refine a hypothesis regarding high temperature-induced failure of electrical excitation and signal transfer [the temperature-dependent deterioration of electrical excitability (TDEE) hypothesis]. A central tenet of the hypothesis is temperature-dependent mismatch between the depolarizing ion current (i.e. source) of the signaling cell and the repolarizing ion current (i.e. sink) of the receiving cell, which prevents the generation of action potentials (APs) in the latter. A source–sink mismatch can develop in heart, muscles and nerves at high temperatures owing to opposite effects of temperature on source and sink currents. AP propagation is more likely to fail at the sites of structural discontinuities, including electrically coupled cells, synapses and branching points of nerves and muscle, which impose an increased demand of inward current. At these sites, temperature-induced source–sink mismatch can reduce AP frequency, resulting in low-pass filtering or a complete block of signal transmission. In principle, this hypothesis can explain a number of heat-induced effects, including reduced heart rate, reduced synaptic transmission between neurons and reduced impulse transfer from neurons to muscles. The hypothesis is equally valid for ectothermic and endothermic animals, and for both aquatic and terrestrial species. Importantly, the hypothesis is strictly mechanistic and lends itself to experimental falsification.
Collapse
Affiliation(s)
- Matti Vornanen
- Department of Environmental and Biological Sciences , University of Eastern Finland, 80101 Joensuu, Finland
| |
Collapse
|
2
|
Hamood AW, Marder E. Consequences of acute and long-term removal of neuromodulatory input on the episodic gastric rhythm of the crab Cancer borealis. J Neurophysiol 2015; 114:1677-92. [PMID: 26156388 DOI: 10.1152/jn.00536.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/06/2015] [Indexed: 01/04/2023] Open
Abstract
For decades, the episodic gastric rhythm of the crustacean stomatogastric nervous system (STNS) has served as an important model system for understanding the generation of rhythmic motor behaviors. Here we quantitatively describe many features of the gastric rhythm of the crab Cancer borealis under several conditions. First, we analyzed spontaneous gastric rhythms produced by freshly dissected preparations of the STNS, including the cycle frequency and phase relationships among gastric units. We find that phase is relatively conserved across frequency, similar to the pyloric rhythm. We also describe relationships between these two rhythms, including a significant gastric/pyloric frequency correlation. We then performed continuous, days-long extracellular recordings of gastric activity from preparations of the STNS in which neuromodulatory inputs to the stomatogastric ganglion were left intact and also from preparations in which these modulatory inputs were cut (decentralization). This allowed us to provide quantitative descriptions of variability and phase conservation within preparations across time. For intact preparations, gastric activity was more variable than pyloric activity but remained relatively stable across 4-6 days, and many significant correlations were found between phase and frequency within animals. Decentralized preparations displayed fewer episodes of gastric activity, with altered phase relationships, lower frequencies, and reduced coordination both among gastric units and between the gastric and pyloric rhythms. Together, these results provide insight into the role of neuromodulation in episodic pattern generation and the extent of animal-to-animal variability in features of spontaneously occurring gastric rhythms.
Collapse
Affiliation(s)
- Albert W Hamood
- Volen Center and Biology Department, Brandeis University, Waltham, Massachusetts
| | - Eve Marder
- Volen Center and Biology Department, Brandeis University, Waltham, Massachusetts
| |
Collapse
|
3
|
Soofi W, Goeritz ML, Kispersky TJ, Prinz AA, Marder E, Stein W. Phase maintenance in a rhythmic motor pattern during temperature changes in vivo. J Neurophysiol 2014; 111:2603-13. [PMID: 24671541 DOI: 10.1152/jn.00906.2013] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Central-pattern-generating neural circuits function reliably throughout an animal's life, despite constant molecular turnover and environmental perturbations. Fluctuations in temperature pose a problem to the nervous systems of poikilotherms because their body temperature follows the ambient temperature, thus affecting the temperature-dependent dynamics of various subcellular components that constitute neuronal circuits. In the crustacean stomatogastric nervous system, the pyloric circuit produces a triphasic rhythm comprising the output of the pyloric dilator, lateral pyloric, and pyloric constrictor neurons. In vitro, the phase relationships of these neurons are maintained over a fourfold change in pyloric frequency as temperature increases from 7°C to 23°C. To determine whether these temperature effects are also found in intact crabs, in the presence of sensory feedback and neuromodulator-rich environments, we measured the temperature dependence of the pyloric frequency and phases in vivo by implanting extracellular electrodes into Cancer borealis and Cancer pagurus and shifting tank water temperature from 11°C to 26°C. Pyloric frequency in the intact crab increased significantly with temperature (Q10 = 2-2.5), while pyloric phases were generally conserved. For a subset of the C. borealis experiments, animals were subsequently dissected and the stomatogastric ganglion subjected to a similar temperature ramp in vitro. We found that the maximal frequency attained at high temperatures in vivo is lower than it is under in vitro conditions. Our results demonstrate that, over a wide temperature range, the phases of the pyloric rhythm in vivo are generally preserved, but that the frequency range is more restricted than it is in vitro.
Collapse
Affiliation(s)
- Wafa Soofi
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Marie L Goeritz
- Department of Biology and Volen Center, Brandeis University, Waltham, Massachusetts
| | - Tilman J Kispersky
- Department of Biology and Volen Center, Brandeis University, Waltham, Massachusetts
| | - Astrid A Prinz
- Department of Biology, Emory University, Atlanta, Georgia
| | - Eve Marder
- Department of Biology and Volen Center, Brandeis University, Waltham, Massachusetts
| | - Wolfgang Stein
- School of Biological Sciences, Illinois State University, Normal, Illinois; and Institute for Neurobiology, Ulm University, Ulm, Germany
| |
Collapse
|
4
|
Kvarta MD, Harris-Warrick RM, Johnson BR. Neuromodulator-evoked synaptic metaplasticity within a central pattern generator network. J Neurophysiol 2012; 108:2846-56. [PMID: 22933725 PMCID: PMC3545119 DOI: 10.1152/jn.00586.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 08/27/2012] [Indexed: 12/18/2022] Open
Abstract
Synapses show short-term activity-dependent dynamics that alter the strength of neuronal interactions. This synaptic plasticity can be tuned by neuromodulation as a form of metaplasticity. We examined neuromodulator-induced metaplasticity at a graded chemical synapse in a model central pattern generator (CPG), the pyloric network of the spiny lobster stomatogastric ganglion. Dopamine, serotonin, and octopamine each produce a unique motor pattern from the pyloric network, partially through their modulation of synaptic strength in the network. We characterized synaptic depression and its amine modulation at the graded synapse from the pyloric dilator neuron to the lateral pyloric neuron (PD→LP synapse), driving the PD neuron with both long square pulses and trains of realistic waveforms over a range of presynaptic voltages. We found that the three amines can differentially affect the amplitude of graded synaptic transmission independently of the synaptic dynamics. Low concentrations of dopamine had weak and variable effects on the strength of the graded inhibitory postsynaptic potentials (gIPSPs) but reliably accelerated the onset of synaptic depression and recovery from depression independently of gIPSP amplitude. Octopamine enhanced gIPSP amplitude but decreased the amount of synaptic depression; it slowed the onset of depression and accelerated its recovery during square pulse stimulation. Serotonin reduced gIPSP amplitude but increased the amount of synaptic depression and accelerated the onset of depression. These results suggest that amine-induced metaplasticity at graded chemical synapses can alter the parameters of synaptic dynamics in multiple and independent ways.
Collapse
Affiliation(s)
- Mark D Kvarta
- Department of Neurobiology and Behavior, S. G. Mudd Hall, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
5
|
Temperature-dependent transitions of burst firing patterns in a model pyramidal neuron. NEUROPHYSIOLOGY+ 2012. [DOI: 10.1007/s11062-012-9296-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
6
|
Johnson BR, Brown JM, Kvarta MD, Lu JYJ, Schneider LR, Nadim F, Harris-Warrick RM. Differential modulation of synaptic strength and timing regulate synaptic efficacy in a motor network. J Neurophysiol 2011; 105:293-304. [PMID: 21047938 PMCID: PMC3023374 DOI: 10.1152/jn.00809.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 10/28/2010] [Indexed: 01/04/2023] Open
Abstract
Neuromodulators modify network output by altering neuronal firing properties and synaptic strength at multiple sites; however, the functional importance of each site is often unclear. We determined the importance of monoamine modulation of a single synapse for regulation of network cycle frequency in the oscillatory pyloric network of the lobster. The pacemaker kernel of the pyloric network receives only one chemical synaptic feedback, an inhibitory synapse from the lateral pyloric (LP) neuron to the pyloric dilator (PD) neurons, which can limit cycle frequency. We measured the effects of dopamine (DA), octopamine (Oct), and serotonin (5HT) on the strength of the LP→PD synapse and the ability of the modified synapse to regulate pyloric cycle frequency. DA and Oct strengthened, whereas 5HT weakened, LP→PD inhibition. Surprisingly, the DA-strengthened LP→PD synapse lost its ability to slow the pyloric oscillations, whereas the 5HT-weakened LP→PD synapse gained a greater influence on the oscillations. These results are explained by monoamine modulation of factors that determine the firing phase of the LP neuron in each cycle. DA acts via multiple mechanisms to phase-advance the LP neuron into the pacemaker's refractory period, where the strengthened synapse has little effect. In contrast, 5HT phase-delays LP activity into a region of greater pacemaker sensitivity to LP synaptic input. Only Oct enhanced LP regulation of cycle period simply by enhancing LP→PD synaptic strength. These results show that modulation of the strength and timing of a synaptic input can differentially affect the synapse's efficacy in the network.
Collapse
Affiliation(s)
- Bruce R Johnson
- Department of Neurobiology and Behavior, Cornell University, S.G. Mudd Hall, Ithaca, NY 14853, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Tang LS, Goeritz ML, Caplan JS, Taylor AL, Fisek M, Marder E. Precise temperature compensation of phase in a rhythmic motor pattern. PLoS Biol 2010; 8. [PMID: 20824168 PMCID: PMC2930868 DOI: 10.1371/journal.pbio.1000469] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 07/20/2010] [Indexed: 11/19/2022] Open
Abstract
Most animal species are cold-blooded, and their neuronal circuits must maintain function despite environmental temperature fluctuations. The central pattern generating circuits that produce rhythmic motor patterns depend on the orderly activation of circuit neurons. We describe the effects of temperature on the pyloric rhythm of the stomatogastric ganglion of the crab, Cancer borealis. The pyloric rhythm is a triphasic motor pattern in which the Pyloric Dilator (PD), Lateral Pyloric (LP), and Pyloric (PY) neurons fire in a repeating sequence. While the frequency of the pyloric rhythm increased about 4-fold (Q(10) approximately 2.3) as the temperature was shifted from 7 degrees C to 23 degrees C, the phase relationships of the PD, LP, and PY neurons showed almost perfect temperature compensation. The Q(10)'s of the input conductance, synaptic currents, transient outward current (I(A)), and the hyperpolarization-activated inward current (I(h)), all of which help determine the phase of LP neuron activity, ranged from 1.8 to 4. We studied the effects of temperature in >1,000 computational models (with different sets of maximal conductances) of a bursting neuron and the LP neuron. Many bursting models failed to monotonically increase in frequency as temperature increased. Temperature compensation of LP neuron phase was facilitated when model neurons' currents had Q(10)'s close to 2. Together, these data indicate that although diverse sets of maximal conductances may be found in identified neurons across animals, there may be strong evolutionary pressure to restrict the Q(10)'s of the processes that contribute to temperature compensation of neuronal circuits.
Collapse
Affiliation(s)
- Lamont S. Tang
- Volen Center and Biology Department, Brandeis University, Waltham, Massachusetts, United States of America
| | - Marie L. Goeritz
- Volen Center and Biology Department, Brandeis University, Waltham, Massachusetts, United States of America
| | - Jonathan S. Caplan
- Volen Center and Biology Department, Brandeis University, Waltham, Massachusetts, United States of America
| | - Adam L. Taylor
- Volen Center and Biology Department, Brandeis University, Waltham, Massachusetts, United States of America
| | - Mehmet Fisek
- Volen Center and Biology Department, Brandeis University, Waltham, Massachusetts, United States of America
| | - Eve Marder
- Volen Center and Biology Department, Brandeis University, Waltham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
8
|
Szabo TM, Brookings T, Preuss T, Faber DS. Effects of temperature acclimation on a central neural circuit and its behavioral output. J Neurophysiol 2008; 100:2997-3008. [PMID: 18922942 DOI: 10.1152/jn.91033.2008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, we address the impact of temperature acclimation on neuronal properties in the Mauthner (M-) system, a brain stem network that initiates the startle-escape behavior in goldfish. The M-cell can be studied at cellular and behavioral levels, since it is uniquely identifiable physiologically within the intact vertebrate brain, and a single action potential in this neuron determines not only whether a startle response will occur but also the direction of the escape. Using animals acclimated to 15 degrees C as a control, 25 degrees C-acclimated fish showed a significant increase in escape probability and a decrease in the ability to discriminate escape directionality. Intracellular recordings demonstrated that M-cells in this population possessed decreased input resistance and reduced strength and duration of inhibitory inputs. In contrast, fish acclimated to 5 degrees C were behaviorally similar to 15 degrees C fish and had increased input resistance, increased strength of inhibitory transmission, and reduced excitatory transmission. We show here that alterations in the balance between excitatory and inhibitory synaptic transmission in the M-cell circuit underlie differences in behavioral responsiveness in acclimated populations. Specifically, during warm acclimation, synaptic inputs are weighted on the side of excitation and fish demonstrate hyperexcitability and reduced left-right discrimination during rapid escapes. In contrast, cold acclimation results in transmission weighted on the side of inhibition and these fish are less excitable and show improved directional discrimination.
Collapse
|
9
|
Klose MK, Chu D, Xiao C, Seroude L, Robertson RM. Heat shock-mediated thermoprotection of larval locomotion compromised by ubiquitous overexpression of Hsp70 in Drosophila melanogaster. J Neurophysiol 2005; 94:3563-72. [PMID: 16093328 DOI: 10.1152/jn.00723.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Maintaining the competence of locomotor circuitry under stressful conditions can benefit organisms by enabling locomotion to more tolerable microhabitats. We show that prior heat shock protects locomotion and the locomotor central pattern generator of larval Drosophila against subsequent hyperthermic stress. We combined molecular genetic, electrophysiological, and behavioral techniques to investigate heat shock-mediated thermoprotection. Prior heat shock increased the distance traveled by larvae during hyperthermia before failure. The frequency of the rhythm of peristaltic locomotor contractions and the velocity of locomotion were both less thermosensitive after heat shock and were less susceptible to failure at high temperatures. Rhythmic coordinated motor patterns, recorded intracellularly as excitatory junction potentials in body wall muscles of dissected preparations, were centrally generated because patterns could still be generated in the absence of sensory feedback (sensory function disrupted with shibire). Prior heat shock protected central circuit operation during hyperthermic stress by increasing the temperature at which it failed. Overexpression of Hsp70 after a heat shock using transgenic flies (traII) did not enhance thermoprotection, as expected, but had deleterious effects on parameters of behavior.
Collapse
Affiliation(s)
- Markus K Klose
- Department of Biology, Queen's University, 3118 Biosciences Complex, Kingston, ON, K7L 3N6, Canada
| | | | | | | | | |
Collapse
|
10
|
|
11
|
Katz PS, Sakurai A, Clemens S, Davis D. Cycle period of a network oscillator is independent of membrane potential and spiking activity in individual central pattern generator neurons. J Neurophysiol 2004; 92:1904-17. [PMID: 15115787 DOI: 10.1152/jn.00864.2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rhythmic motor patterns are thought to arise through the cellular properties and synaptic interactions of neurons in central pattern generator (CPG) circuits. Yet, when examining the CPG underlying the rhythmic escape response of the opisthobranch mollusc, Tritonia diomedea, we found that the cycle period of the fictive swim motor pattern recorded from the isolated nervous system was not altered by changing the resting membrane potential or the level of spiking activity of any of the 3 known CPG cell types: ventral swim interneuron-B (VSI-B), the dorsal swim interneurons (DSIs), and cerebral neuron 2 (C2). Furthermore, tonic firing in one or more DSIs or C2 evoked rhythmic bursting that did not differ from the cycle period of the motor pattern evoked by nerve stimulation, regardless of the firing frequency. In contrast, the CPG produced a large range of cycle periods as a function of temperature. The temperature sensitivity of the fictive motor pattern produced by the isolated nervous system was similar to the temperature sensitivity of the swimming behavior produced by the intact animal. Thus, although the CPG is capable of producing a wide range of cycle periods under the influence of temperature, the membrane potentials and spiking activity of the identified CPG neurons do not determine the periodicity of the motor pattern. This suggests that the timing of activity in this network oscillator may be determined by a mechanism that is independent of the membrane potentials and spike rate of its constituent neurons.
Collapse
Affiliation(s)
- Paul S Katz
- Department of Biology, Georgia State University, MSC 8L0389, 33 Gilmer Street SE, Unit 8, Atlanta, GA 30303-3088, USA.
| | | | | | | |
Collapse
|
12
|
Marder E, Manor Y, Nadim F, Bartos M, Nusbaum MP. Frequency control of a slow oscillatory network by a fast rhythmic input: pyloric to gastric mill interactions in the crab stomatogastric nervous system. Ann N Y Acad Sci 1998; 860:226-38. [PMID: 9928315 DOI: 10.1111/j.1749-6632.1998.tb09052.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The stomatogastic nervous system of the crab, Cancer borealis, produces a slow gastric mill rhythm and a fast pyloric rhythm. When the gastric mill rhythm is not active, stimulation of the modulatory commissural ganglion neuron 1 (MCN1) activates a gastric mill rhythm in which the lateral gastric (LG) neuron fires in antiphase with interneuron 1 (Int1). We present theoretical and experimental data that indicate that the period of the MCN1 activated gastric mill rhythm depends on the strength and time course of the MCN1 evoked slow excitatory synaptic potential (EPSP) in the LG neuron, and on the strength of inhibition of Int 1 by the pacemaker of the pyloric network. This work demonstrates a new mechanism by which a slow network oscillator can be controlled by a much faster oscillatory neuron or network and suggests that modulation of the slow oscillator can occur by direct action on the neurons and synapses of the slow oscillator, or indirectly by actions on the fast oscillator and its synaptic connection with the slow oscillator.
Collapse
Affiliation(s)
- E Marder
- Volen Center and Biology Department, Brandeis University, Waltham, Massachusetts 02254, USA.
| | | | | | | | | |
Collapse
|
13
|
Ayali A, Johnson BR, Harris-Warrick RM. Dopamine modulates graded and spike-evoked synaptic inhibition independently at single synapses in pyloric network of lobster. J Neurophysiol 1998; 79:2063-9. [PMID: 9535968 DOI: 10.1152/jn.1998.79.4.2063] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bath application of dopamine (DA) modifies the rhythmic motor pattern generated by the pyloric network in the stomatogastric ganglion of the spiny lobster, Panulirus interruptus. Synaptic transmission between network members is an important target of DA action. All pyloric neurons employ both graded transmitter release and action-potential-mediated synaptic inhibition. DA was previously shown to alter the graded synaptic strength of every pyloric synapse. In this study, we compared DA's effects on action-potential-mediated and graded synaptic inhibition at output synapses of the lateral pyloric (LP) neuron. At each synapse the postsynaptic cell tested was isolated from other descending and pyloric synaptic inputs. DA caused a reduction in the size of the LP spike-evoked inhibitory postsynaptic potentials (IPSPs) in the pyloric dilator (PD) neuron. The change in IPSP size was significantly and linearly correlated with DA-induced reduction in the input resistance of the postsynaptic PD neuron. In contrast, graded inhibition, tested in the same preparations after superfusing the stomatogastric ganglion (STG) with tetrodotoxin (TTX), was consistently enhanced by DA. DA shifted the amplitude of spike-evoked IPSPs in the same direction as the alteration of the postsynaptic cell input resistance at two additional synapses tested: DA weakened the LP spike-mediated inhibition of the ventricular dilator (VD) and reduced the VD input resistance, while strengthening the LP --> pyloric constrictor (PY) synapse and increasing PY input resistance. As previously reported, graded inhibition was enhanced at these two LP output synapses. We conclude that DA can differentially modulate the spike-evoked and graded components of synapses between members of a central pattern generator network. At the synapses we studied, actions on the presynaptic cell predominate in the modulation of graded transmission, whereas effects on postsynaptic cells predominate in the regulation of spike-evoked IPSPs.
Collapse
Affiliation(s)
- A Ayali
- Section of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
14
|
Lu J, Dalton JF, Stokes DR, Calabrese RL. Functional role of Ca2+ currents in graded and spike-mediated synaptic transmission between leech heart interneurons. J Neurophysiol 1997; 77:1779-94. [PMID: 9114236 DOI: 10.1152/jn.1997.77.4.1779] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We used intracellular recording and single electrode voltage-clamp techniques to explore Ca2+ currents and their relation to graded and spike-mediated synaptic transmissions in leech heart interneurons. Low-threshold Ca2+ currents (activation begins below -50 mV) consist of a rapidly inactivating component (I(CaF)) and a slowly inactivating component (I(CaS)). The apparent inactivation kinetics of I(CaF) appears to be influenced by Ca2+; both the substitution of Ca2+ (5 mM) with Ba2+ (5 mM) in the saline and the intracellular injection of the rapid Ca2+ chelator, bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA), from the recording microelectrode, significantly increase its apparent inactivation time constant. The use of saline with a high concentration of Ba2+ (37.5 mM) permitted exploration of divalent ion currents over a broader activation range, by acting as an effective charge carrier and significantly blocking outward currents. Ramp and pulse voltage-clamp protocols both reveal a rapidly activating and inactivating Ba2+ current (I(BaF)) and a less rapidly activating and slowly inactivating Ba2+ current with a broad activation range (I(BaS)). Low concentrations of Cd2+ (100-150 microM) selectively block I(BaS), without significantly diminishing I(BaF). The current that remains in Cd2+ lacks the characteristic delayed activation peak of I(BaS) and inactivates with two distinct time constants. I(BaF) appears to correspond to a combination of I(CaF) and I(CaS), i.e., to low-threshold Ca2+ currents, that can be described as T-like. I(BaS) appears to correspond to a Ca2+ current with a broad activation range, which can be described as L-like. Cd2+ (100 microM) selectively blocks spike-mediated synaptic transmission between heart interneurons without significantly interfering with low-threshold Ca2+ currents and plateau formation in or graded synaptic transmission between heart interneurons. Blockade of spike-mediated synaptic transmission between reciprocally inhibitory heart interneurons with Cd2+ (150 microM), in otherwise normal saline, prevents the expression of normal oscillations (during which activity in the two neurons consists of alternating bursts), so that the neurons fire tonically. We conclude that graded and spike-mediated synaptic transmission may be relatively independent processes in heart interneurons that are controlled predominantly by different Ca2+ currents. Moreover, spike-mediated synaptic inhibition appears to be required for normal oscillation in these neurons.
Collapse
Affiliation(s)
- J Lu
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
15
|
Xu H, Meldrum Robertson R. Neural parameters contributing to temperature compensation in the flight CPG of the locust,Locusta migratoria. Brain Res 1996. [DOI: 10.1016/0006-8993(96)00635-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Johnson BR, Peck JH, Harris-Warrick RM. Differential modulation of chemical and electrical components of mixed synapses in the lobster stomatogastric ganglion. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1994; 175:233-49. [PMID: 8071898 DOI: 10.1007/bf00215119] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
1. Two pairs of neurons in the pyloric network of the spiny lobster, Panulirus interruptus, communicate through mixed graded chemical and rectifying electrical synapses. The anterior burster (AB) chemically inhibits and is electrically coupled to the ventricular dilator (VD); the lateral pyloric (LP) and pyloric (PY) neurons show reciprocal chemical inhibition and electrical coupling. We examined the effects of dopamine (DA), serotonin (5HT) and octopamine (Oct) on these mixed synapses to determine the plasticity possible with opposing modes of synaptic interaction. 2. Dopamine increased net inhibition at all three pyloric mixed synapses by both reducing electrical coupling and increasing chemical inhibition. This reversed the sign of the net synaptic interaction when electrotonic coupling dominated some mixed synapses, and activated silent chemical components of other mixed synapses. 3. Serotonin weakly enhanced LP-->PY net inhibition, by reducing electrical coupling without altering chemical inhibition. Serotonin reduced AB-->VD electrical coupling, but variability in its effect on the chemical component made the net effect non-significant. 4. Octopamine enhanced LP-->PY and PY-->LP net inhibition by enhancing the chemical inhibitory component without altering electrical coupling. 5. Differential modulation of chemical and electrical components of mixed synapses markedly changes the net synaptic interactions. This contributes to the flexible outputs that modulators evoke from anatomically defined neural networks.
Collapse
Affiliation(s)
- B R Johnson
- Section of Neurobiology and Behavior, S.G., Cornell University, Ithaca, NY 14853
| | | | | |
Collapse
|
17
|
Effects of temperature on properties of flight neurons in the locust. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1994. [DOI: 10.1007/bf00215115] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|