1
|
Wang Y, Liu Y, Wang Y, Zhang A, Xie W, Zhang H, Weng Q, Xu M. Investigation of seasonal changes in lipid synthesis and metabolism-related genes in the oviduct of Chinese brown frog (<em>Rana dybowskii</em>). Eur J Histochem 2023; 67:3890. [PMID: 38116875 PMCID: PMC10773197 DOI: 10.4081/ejh.2023.3890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023] Open
Abstract
A peculiar physiological characteristic of the Chinese brown frog (Rana dybowskii) is that its oviduct dilates during pre-brumation rather than during the breeding season. This research aimed to examine the expression of genes connected with lipid synthesis and metabolism in the oviduct of R. dybowskii during both the breeding season and pre-brumation. We observed significant changes in the weight and size of the oviduct between the breeding season and pre-brumation. Furthermore, compared to the breeding season, pre-brumation exhibited significantly lower triglyceride content and a marked increase in free fatty acid content. Immunohistochemical results revealed the spatial distribution of triglyceride synthase (Dgat1), triglyceride hydrolase (Lpl and Hsl), fatty acid synthase (Fasn), and fatty acid oxidases (Cpt1a, Acadl, and Hadh) in oviductal glandular cells and epithelial cells during both the breeding season and pre-brumation. While the mRNA levels of triglycerides and free fatty acid synthesis genes (dgat1 and fasn) did not show a significant difference between the breeding season and pre-brumation, the mRNA levels of genes involved in triglycerides and free fatty acid metabolism (lpl, cpt1a, acadl, acox and hadh) were considerably higher during pre-brumation. Furthermore, the R. dybowskii oviduct's transcriptomic and metabolomic data confirmed differential expression of genes and metabolites enriched in lipid metabolism signaling pathways during both the breeding season and pre-brumation. Overall, these results suggest that alterations in lipid synthesis and metabolism during pre-brumation may potentially influence the expanding size of the oviduct, contributing to the successful overwintering of R. dybowskii.
Collapse
Affiliation(s)
- Yankun Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Yuning Liu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Yawei Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Ao Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Wenqian Xie
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Haolin Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Qiang Weng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Meiyu Xu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| |
Collapse
|
2
|
McCue MD. CO 2 scrubbing, zero gases, Keeling plots, and a mathematical approach to ameliorate the deleterious effects of ambient CO 2 during 13 C breath testing in humans and animals. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9639. [PMID: 37817343 DOI: 10.1002/rcm.9639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/17/2023] [Accepted: 08/26/2023] [Indexed: 10/12/2023]
Abstract
13 C breath testing is increasingly used in physiology and ecology research because of what it reveals about the different fuels that animals oxidize to meet their energetic demands. Here I review the practice of 13 C breath testing in humans and other animals and describe the impact that contamination by ambient/background CO2 in the air can have on the accuracy of 13 C breath measurements. I briefly discuss physical methods to avoid sample contamination as well as the Keeling plot approach that researchers have been using for the past two decades to estimate δ13 C from breath samples mixed with ambient CO2 . Unfortunately, Keeling plots are not suited for 13 C breath testing in common situations where (1) a subject's VCO2 is dynamic, (2) ambient [CO2 ] may change, (3) a subject is sensitive to hypercapnia, or (4) in any flow-through indirect calorimetry system. As such, I present a mathematical solution that addresses these issues by using information about the instantaneous [CO2 ] and the δ13 CO2 of ambient air as well as the diluted breath sample to back-calculate the δ13 CO2 in the CO2 exhaled by the animal. I validate this approach by titrating a sample of 13 C-enriched gas into an air stream and demonstrate its ability to provide accurate values across a wide range of breath and air mixtures. This approach allows researchers to instantaneously calculate the δ13 C of exhaled gas of humans or other animals in real time without having to scrub ambient CO2 or rely on estimated values.
Collapse
|
3
|
Dubiner S, Kashi A, Drabkin A, Blinder P, Levin E. Patterns of fatty acid usage in two nocturnal insectivores: the Mediterranean house gecko (Hemidactylus turcicus) and the Etruscan pygmy shrew (Suncus etruscus). J Exp Biol 2023; 226:jeb245963. [PMID: 37675545 PMCID: PMC10656425 DOI: 10.1242/jeb.245963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
Dietary fatty acids (FAs) have been demonstrated to be differentially stored or used as a metabolic fuel, depending on carbon chain length or saturation level. However, intestinal absorption also differs among FAs, potentially biasing conclusions on functional differences and their subsequent implications. We tested dietary FA usage in a nocturnal insectivorous reptile and a nocturnal insectivorous mammal of similar size: the gecko Hemidactylus turcicus and the shrew Suncus etruscus. We compared the relative presence of 13C isotopes in breath and feces following ingestion of three isotopically enriched fatty acids: linoleic acid (a polyunsaturated FA), oleic acid (monounsaturated) and palmitic acid (saturated). Both species oxidized linoleic and oleic acids at much higher levels than palmitic acid. Egestion of palmitic acid in feces was much higher than that of linoleic and oleic acids. The major difference between geckos and shrews was that the latter digested fatty acids much faster, which was best explained by the difference in the metabolic rates of the species. Circadian differences were evident for gecko metabolic and FA oxidation rates, peaking at night; for shrews, peak oxidation was achieved faster at night but rates did not differ. Our study is among the first to integrate oxidation and absorption patterns, as well as metabolic rates and their rhythms, providing important insights into the utilization of different dietary FAs in different species.
Collapse
Affiliation(s)
- Shahar Dubiner
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Amit Kashi
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ariel Drabkin
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Pablo Blinder
- School of Neurobiology, Biochemistry and Biophysics Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School for Neuroscience, Tel Aviv University, 6997801, Israel
| | - Eran Levin
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
4
|
Seltzer R, Domer A, Bouchebti S, Drabkin A, Levin E. The fa(c)ts that matter: Bumble bees differentially allocate and oxidate three common fatty acids in pollen. JOURNAL OF INSECT PHYSIOLOGY 2023; 149:104552. [PMID: 37549842 DOI: 10.1016/j.jinsphys.2023.104552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Pollen serves as a crucial source of protein and lipids for numerous insects. Despite the importance of pollen lipids for nutrient regulation in bees, the digestibility and absorption of different fatty acids (FAs) by bees remain poorly understood. We used 13C labeled fatty acids (FAs) to investigate the absorption and allocation of three common dietary FAs in pollen by bumble bees. Palmitic acid, the most common saturated FA in pollen, was poorly absorbed, even when supplied as tripalmitate, emulsified, or mixed in vegetable oil. In contrast, the essential linoleic acid was absorbed and allocated at the highest rate among the three FAs tested. Oleic acid, a non-essential monounsaturated FA, was absorbed and oxidized at lower rates than linoleic acid. Notably, a feeding rate experiment revealed that different fatty acids did not affect the consumption rate of pollen. This results suggests that the specific FA's absorption efficiency and allocation differ in bumble bees, impacting their utilization. These findings demonstrate the importance of considering the digestibility and absorption of different FAs. Furthermore, the study highlights the influence of pollen lipid composition on the nutritional content for pollinators and raises questions about the utilization of polyunsaturated FAs in insect metabolism.
Collapse
Affiliation(s)
- Rya Seltzer
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Adi Domer
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Sofia Bouchebti
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Ariel Drabkin
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Eran Levin
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel.
| |
Collapse
|
5
|
Lipid metabolism in adaptation to extreme nutritional challenges. Dev Cell 2021; 56:1417-1429. [PMID: 33730548 DOI: 10.1016/j.devcel.2021.02.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/11/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023]
Abstract
Food shortages represent a common challenge for most animal species. As a consequence, many have evolved metabolic strategies encompassing extreme starvation-resistance capabilities, going without food for months or even years. One such strategy is to store substantial levels of fat when food is available and release these energy-rich lipids during periods of dearth. In this review, we provide an overview of the strategies and pathways underlying the extreme capacity for animals to store and mobilize lipids during nutritionally stressful environmental conditions and highlight accompanying resilience phenotypes that allow these animals to develop and tolerate such profound metabolic phenotypes.
Collapse
|
6
|
Omega 3 fatty acids stimulate thermogenesis during torpor in the Arctic Ground Squirrel. Sci Rep 2021; 11:1340. [PMID: 33446684 PMCID: PMC7809411 DOI: 10.1038/s41598-020-78763-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/20/2020] [Indexed: 11/29/2022] Open
Abstract
Omega 3 polyunsaturated fatty acids (PUFAs) influence metabolism and thermogenesis in non-hibernators. How omega 3 PUFAs influence Arctic Ground Squirrels (AGS) during hibernation is unknown. Prior to hibernation we fed AGS chow composed of an omega 6:3 ratio approximately 1:1 (high in omega 3 PUFA, termed Balanced Diet), or an omega 6:3 ratio of 5:1 (Standard Rodent Chow), and measured the influence of diet on core body temperature (Tb), brown adipose tissue (BAT) mass, fatty acid profiles of BAT, white adipose tissue (WAT) and plasma as well as hypothalamic endocannabinoid and endocannabinoid-like bioactive fatty acid amides during hibernation. Results show feeding a diet high in omega 3 PUFAs, with a more balanced omega 6:3 ratio, increases AGS Tb in torpor. We found the diet-induced increase in Tb during torpor is most easily explained by an increase in the mass of BAT deposits of Balanced Diet AGS. The increase in BAT mass is associated with elevated levels of metabolites DHA and EPA in tissue and plasma suggesting that these omega 3 PUFAs may play a role in thermogenesis during torpor. While we did not observe diet-induced change in endocannabinoids, we do report altered hypothalamic levels of some endocannabinoids, and endocannabinoid-like compounds, during hibernation.
Collapse
|
7
|
Voigt CC, Rosner E, Guglielmo CG, Currie SE. Fatty acid profiles of the European migratory common noctule bat (Nyctalus noctula). Naturwissenschaften 2019; 106:33. [PMID: 31201542 DOI: 10.1007/s00114-019-1627-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 12/21/2022]
Abstract
In animals, fatty acids (FA) are essential as structural components in membranes and for energy storage in adipocytes. Here, we studied the relative proportions of FA in a mammal with extreme changes in metabolic rates. Common noctule bats (Nyctalus noctula) switch from energetically demanding long-distance migration at high metabolic rates to regular torpor with extremely low metabolic rates. We found that composition of FA categories differed between adipose tissue types (white adipose tissue (WAT) vs brown adipose tissue (BAT)) and muscle tissue types (skeletal vs heart), but not between sexes. We found oleic acid to be the most abundant FA in all studied tissues. Concentrations of polyunsaturated FA (PUFA) were not always higher in muscular tissue compared with adipocyte tissue, even though high concentrations of PUFA are considered beneficial for low body temperatures in torpor. In all tissues, we observed a high content in monounsaturated fatty acids (MUFA), possibly to compensate for a low PUFA content in the diet. Ratios of ω6/ω3 were lower in the heart than in skeletal muscles of common noctules. Three FA (palmitic, oleic, and linoleic acid) accounted for about 70% of the FA in adipose tissue, which is similar to proportions observed in migrating birds, yet migrating birds generally have a higher PUFA content in muscle and adipose tissues than bats. Bats seem to contrast with other mammals in having a high MUFA content in all tissues. We conclude that FA profiles of bats differ largely from those of most cursorial mammals and instead are-with the exception of MUFA-similar to those of migrating birds.
Collapse
Affiliation(s)
- Christian C Voigt
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, 10315, Berlin, Germany.
| | - Elisabeth Rosner
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, 10315, Berlin, Germany.,Zoological Institute and Museum, Ernst-Moritz-Arndt-University Greifswald, 17487, Greifswald, Germany
| | - Christopher G Guglielmo
- Department of Biology, Advanced Facility for Avian Research, University of Western Ontario, London, ON, Canada
| | - Shannon E Currie
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, 10315, Berlin, Germany
| |
Collapse
|