1
|
Kröner L, Lötters S, Hopp MT. Insights into caudate amphibian skin secretions with a focus on the chemistry and bioactivity of derived peptides. Biol Chem 2024; 0:hsz-2024-0035. [PMID: 38766708 DOI: 10.1515/hsz-2024-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
Amphibians are well-known for their ability to produce and secrete a mixture of bioactive substances in specialized skin glands for the purpose of antibiotic self-protection and defense against predators. Some of these secretions contain various small molecules, such as the highly toxic batrachotoxin, tetrodotoxin, and samandarine. For some time, the presence of peptides in amphibian skin secretions has attracted researchers, consisting of a diverse collection of - to the current state of knowledge - three to 104 amino acid long sequences. From these more than 2000 peptides many are known to exert antimicrobial effects. In addition, there are some reports on amphibian skin peptides that can promote wound healing, regulate immunoreactions, and may serve as antiparasitic and antioxidative substances. So far, the focus has mainly been on skin peptides from frogs and toads (Anura), eclipsing the research on skin peptides of the ca. 700 salamanders and newts (Caudata). Just recently, several novel observations dealing with caudate peptides and their structure-function relationships were reported. This review focuses on the chemistry and bioactivity of caudate amphibian skin peptides and their potential as novel agents for clinical applications.
Collapse
Affiliation(s)
- Lorena Kröner
- Department of Chemistry, Institute for Integrated Natural Sciences, 38899 University of Koblenz , D-56070 Koblenz, Germany
| | - Stefan Lötters
- Department of Biogeography, University of Trier, D-54286 Trier, Germany
| | - Marie-T Hopp
- Department of Chemistry, Institute for Integrated Natural Sciences, 38899 University of Koblenz , D-56070 Koblenz, Germany
| |
Collapse
|
2
|
Pereira KE, Bletz MC, McCartney JA, Woodhams DC, Woodley SK. Effects of exogenous elevation of corticosterone on immunity and the skin microbiome of eastern newts ( Notophthalmus viridescens). Philos Trans R Soc Lond B Biol Sci 2023; 378:20220120. [PMID: 37305906 PMCID: PMC10258667 DOI: 10.1098/rstb.2022.0120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/15/2022] [Indexed: 06/13/2023] Open
Abstract
The amphibian chytrid fungus, Batrachochytrium salamandrivorans (Bsal) threatens salamander biodiversity. The factors underlying Bsal susceptibility may include glucocorticoid hormones (GCs). The effects of GCs on immunity and disease susceptibility are well studied in mammals, but less is known in other groups, including salamanders. We used Notophthalmus viridescens (eastern newts) to test the hypothesis that GCs modulate salamander immunity. We first determined the dose required to elevate corticosterone (CORT; primary GC in amphibians) to physiologically relevant levels. We then measured immunity (neutrophil lymphocyte ratios, plasma bacterial killing ability (BKA), skin microbiome, splenocytes, melanomacrophage centres (MMCs)) and overall health in newts following treatment with CORT or an oil vehicle control. Treatments were repeated for a short (two treatments over 5 days) or long (18 treatments over 26 days) time period. Contrary to our predictions, most immune and health parameters were similar for CORT and oil-treated newts. Surprisingly, differences in BKA, skin microbiome and MMCs were observed between newts subjected to short- and long-term treatments, regardless of treatment type (CORT, oil vehicle). Taken together, CORT does not appear to be a major factor contributing to immunity in eastern newts, although more studies examining additional immune factors are necessary. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.
Collapse
Affiliation(s)
- Kenzie E. Pereira
- Department of Biology, Duquesne University, Pittsburgh, PA 15282, USA
| | - Molly C. Bletz
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Julia A. McCartney
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Douglas C. Woodhams
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Sarah K. Woodley
- Department of Biology, Duquesne University, Pittsburgh, PA 15282, USA
| |
Collapse
|
3
|
Pereira KE, Deslouches JT, Deslouches B, Woodley SK. In Vitro Investigation of the Antibacterial Activity of Salamander Skin Peptides. Curr Microbiol 2023; 80:214. [PMID: 37195436 DOI: 10.1007/s00284-023-03320-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 05/02/2023] [Indexed: 05/18/2023]
Abstract
Given the current and future costs of antibiotic-resistant bacteria to human health and economic productivity, there is an urgent need to develop new antimicrobial compounds. Antimicrobial peptides are a promising alternative to conventional antibiotics and other antimicrobials. Amphibian skin is a rich source of bioactive compounds, but the antibacterial properties of salamander skin peptides have been neglected. Here, we examined the in vitro ability of skin peptides from 9 species of salamander representing 6 salamander families to inhibit the growth of ESKAPE pathogens, which are bacteria that have developed resistance to conventional antibiotics. We also examined whether the skin peptides caused lysis of human red blood cells. Skin peptides from Amphiuma tridactylum had the greatest antimicrobial properties, completely inhibiting the growth of all bacterial strains except for Enterococcus faecium. Likewise, skin peptides from Cryptobranchus alleganiensis completely inhibited the growth of several of the bacterial strains. In contrast, skin peptide mixtures from Ambystoma maculatum, Desmognathus fuscus, Eurycea bislineata, E. longicauda, Necturus beyeri, N. maculosus, and Siren intermedia did not completely inhibit bacterial growth even at the highest concentrations. Finally, none of the skin peptide mixtures caused lysis of human red blood cells. Together, we demonstrate that salamander skin produces peptides with potent antibacterial properties. It remains to elucidate the peptide sequences and their antibacterial mechanisms.
Collapse
Affiliation(s)
- Kenzie E Pereira
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
| | | | - Berthony Deslouches
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah K Woodley
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Rollins-Smith LA. The importance of antimicrobial peptides (AMPs) in amphibian skin defense. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 142:104657. [PMID: 36754220 DOI: 10.1016/j.dci.2023.104657] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/20/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Antimicrobial peptides (AMPs) are produced for defense in nearly all taxa from simple bacteria to complex mammalian species. Some amphibian families have developed this defensive strategy to a high level of sophistication by loading the AMPs into specialized granular glands within the dermis. Enervated by the sympathetic nervous system, the granular glands are poised to deliver an array of AMPs to cleanse the wound and facilitate healing. There have been a number of excellent review publications in recent years that describe amphibian AMPs with an emphasis on their possible uses for human medicine. Instead, my aim here is to review what is known about the nature of amphibian AMPs, the diversity of amphibian AMPs, regulation of their production, and to provide the accumulated evidence that they do, indeed, play an important role in the protection of amphibian skin, vital for survival. While much has been learned about amphibian AMPs, there are still important gaps in our understanding of peptide synthesis, storage, and functions.
Collapse
Affiliation(s)
- Louise A Rollins-Smith
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
5
|
Hardman RH, Reinert LK, Irwin KJ, Oziminski K, Rollins-Smith L, Miller DL. Disease state associated with chronic toe lesions in hellbenders may alter anti-chytrid skin defenses. Sci Rep 2023; 13:1982. [PMID: 36737574 PMCID: PMC9898527 DOI: 10.1038/s41598-023-28334-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Hellbenders (Cryptobranchus alleganiensis) are large, aquatic salamanders from the eastern United States. Both subspecies, eastern and Ozark hellbenders, have experienced declines resulting in federal listing of Ozark hellbenders. The globally distributed chytrid fungus, Batrachochytrium dendrobatidis (Bd) has been detected in both subspecies, and Batrachochytrium salamandrivorans (Bsal) poses a new threat if introduced into North America. Ozark hellbenders also suffer a high prevalence of toe lesions of unknown etiology, with changes in host immunocompetence hypothesized to contribute. Antimicrobial peptides (AMPs) secreted from dermal granular glands may play a role in hellbender health. We collected skin secretions from free-ranging hellbenders and enriched them for small cationic peptides used for growth inhibition assays against Bd and Bsal. Generalized linear mixed models revealed the presence of active toe lesions as the strongest and only significant predictor of decreased Bd inhibition by skin peptides. We also found skin secretions were more inhibitory of Bsal than Bd. MALDI-TOF mass spectrometry revealed candidate peptides responsible for anti-chytrid activity. Results support the hypothesis that hellbender skin secretions are important for innate immunity against chytrid pathogens, and decreased production or release of skin peptides may be linked to other sub-lethal effects of disease associated with toe lesions.
Collapse
Affiliation(s)
- Rebecca H Hardman
- Department of Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, 37996, USA. .,Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, St. Petersburg, FL, 33701, USA.
| | - Laura K Reinert
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Kelly J Irwin
- Arkansas Game and Fish Commission, Benton, AR, 72015, USA
| | - Kendall Oziminski
- Department of Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, 37996, USA
| | - Louise Rollins-Smith
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Debra L Miller
- Department of Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, 37996, USA.,School of Natural of Resources, University of Tennessee, Knoxville, Tennessee, 37996, USA
| |
Collapse
|
6
|
Basanta MD, Anaya‐Morales SL, Martínez‐Ugalde E, González Martínez TM, Ávila‐Akerberg VD, Trejo MV, Rebollar EA. Metamorphosis and seasonality are major determinants of chytrid infection in a paedomorphic salamander. Anim Conserv 2022. [DOI: 10.1111/acv.12824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M. D. Basanta
- Centro de Ciencias Genómicas Universidad Nacional Autónoma de México Cuernavaca Morelos Mexico
- Department of Biology University of Nevada Reno Reno NV USA
| | - S. L. Anaya‐Morales
- Centro de Ciencias Genómicas Universidad Nacional Autónoma de México Cuernavaca Morelos Mexico
| | - E. Martínez‐Ugalde
- Centro de Ciencias Genómicas Universidad Nacional Autónoma de México Cuernavaca Morelos Mexico
| | - T. M. González Martínez
- Facultad de Ciencias Universidad Nacional Autónoma de México, Ciudad Universitaria Ciudad de México Mexico
| | - V. D. Ávila‐Akerberg
- Instituto de Ciencias Agropecuarias y Rurales Universidad Autónoma del Estado de México Toluca Estado de México Mexico
| | - M. V. Trejo
- Facultad de Ciencias Universidad Nacional Autónoma de México, Ciudad Universitaria Ciudad de México Mexico
| | - E. A. Rebollar
- Centro de Ciencias Genómicas Universidad Nacional Autónoma de México Cuernavaca Morelos Mexico
| |
Collapse
|
7
|
Inhibitory Bacterial Diversity and Mucosome Function Differentiate Susceptibility of Appalachian Salamanders to Chytrid Fungal Infection. Appl Environ Microbiol 2022; 88:e0181821. [PMID: 35348389 PMCID: PMC9040618 DOI: 10.1128/aem.01818-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mucosal defenses are crucial in animals for protection against pathogens and predators. Host defense peptides (antimicrobial peptides, AMPs) as well as skin-associated microbes are key components of mucosal immunity, particularly in amphibians. We integrate microbiology, molecular biology, network-thinking, and proteomics to understand how host and microbially derived products on amphibian skin (referred to as the mucosome) serve as pathogen defenses. We studied defense mechanisms against chytrid pathogens, Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal), in four salamander species with different Batrachochytrium susceptibilities. Bd infection was quantified using qPCR, mucosome function (i.e., ability to kill Bd or Bsal zoospores in vitro), skin bacterial communities using 16S rRNA gene amplicon sequencing, and the role of Bd-inhibitory bacteria in microbial networks across all species. We explored the presence of candidate-AMPs in eastern newts and red-backed salamanders. Eastern newts had the highest Bd prevalence and mucosome function, while red-back salamanders had the lowest Bd prevalence and mucosome function, and two-lined salamanders and seal salamanders were intermediates. Salamanders with highest Bd infection intensity showed greater mucosome function. Bd infection prevalence significantly decreased as putative Bd-inhibitory bacterial richness and relative abundance increased on hosts. In co-occurrence networks, some putative Bd-inhibitory bacteria were found as hub-taxa, with red-backs having the highest proportion of protective hubs and positive associations related to putative Bd-inhibitory hub bacteria. We found more AMP candidates on salamanders with lower Bd susceptibility. These findings suggest that salamanders possess distinct innate mechanisms that affect chytrid fungi. IMPORTANCE How host mucosal defenses interact, and influence disease outcome is critical in understanding host defenses against pathogens. A more detailed understanding is needed of the interactions between the host and the functioning of its mucosal defenses in pathogen defense. This study investigates the variability of chytrid susceptibility in salamanders and the innate defenses each species possesses to mediate pathogens, thus advancing the knowledge toward a deeper understanding of the microbial ecology of skin-associated bacteria and contributing to the development of bioaugmentation strategies to mediate pathogen infection and disease. This study improves the understanding of complex immune defense mechanisms in salamanders and highlights the potential role of the mucosome to reduce the probability of Bd disease development and that putative protective bacteria may reduce likelihood of Bd infecting skin.
Collapse
|
8
|
Kadekaru S, Shimoda H, Kuwabara K, Une Y. Spontaneous multiple cutaneous mixed tumors in Japanese giant salamander Andrias japonicus. DISEASES OF AQUATIC ORGANISMS 2021; 146:157-164. [PMID: 34672265 DOI: 10.3354/dao03627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We examined 7 cutaneous mixed tumors in 2 wild-captured Japanese giant salamanders Andrias japonicus. The tumors were either already present and/or increased in size, or newly occurred during capativity. We sampled the 7 tumors from these animals and 3 verrucose protrusions from 3 unaffected animals, as controls, and examined them pathologically and virologically. The tumors (5 mm to 4 cm in size) were papillary protrusions or pendulated on the skin surface. The cut surface of the tumors was white, lobulated, partially hard, and contained mucus. All tumors presented similar histological characteristics of a hyaline structure and exhibited biphasic proliferation, with neoplastic epithelial cells partially composing the pseudo-ductal structure and staining positive for cytokeratin AE1/AE3. Vimentin 3B4-positive blast-like mesenchymal cells proliferated to fill the gaps in the epithelial components. Transition from unique mucous gland to neoplastic tissue was observed. The hyaline structure was stained blue by AZAN stain, Alcian blue-periodic acid-Schiff (PAS) double stain, and toluidine blue (TB) stain of pH 7.0, but was unstained by TB with pH values of 4.1 and 2.5. The mucus in the neoplastic tissue and in the mucous gland in verrucose protrusions was stained blue by Alcian blue-PAS double stain; TB staining at pH 7.0, 4.1, and 2.5 revealed metachromasy. No virus was detected in the tumors. The 7 tumors were diagnosed as cutaneous mixed tumors, and it was confirmed that the neoplastic cells originated from the mucous gland in the dermis. The biological behavior and pathological development of tumors should be elucidated because the tumors have the potential to negatively affect A. japonicus.
Collapse
Affiliation(s)
- Sho Kadekaru
- The Laboratory of Veterinary Pathology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari 794-8555, Japan
| | | | | | | |
Collapse
|
9
|
Vasconcelos IAD, Souza JOD, de Castro JS, Santana CJCD, Magalhães ACM, Castro MDS, Pires Júnior OR. Salamanders and caecilians, neglected from the chemical point of view. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1977326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | | | | | - Carlos José Correia de Santana
- Department of Physiological Sciences, University of Brasilia, Brasilia, Brazil
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | | | - Mariana de Souza Castro
- Department of Physiological Sciences, University of Brasilia, Brasilia, Brazil
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | | |
Collapse
|
10
|
An Evaluation of Immersive and Handling Methods for Collecting Salamander Skin Peptides. J HERPETOL 2021. [DOI: 10.1670/20-122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Winter is coming-Temperature affects immune defenses and susceptibility to Batrachochytrium salamandrivorans. PLoS Pathog 2021; 17:e1009234. [PMID: 33600433 PMCID: PMC7891748 DOI: 10.1371/journal.ppat.1009234] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 12/08/2020] [Indexed: 12/24/2022] Open
Abstract
Environmental temperature is a key factor driving various biological processes, including immune defenses and host-pathogen interactions. Here, we evaluated the effects of environmental temperature on the pathogenicity of the emerging fungal pathogen, Batrachochytrium salamandrivorans (Bsal), using controlled laboratory experiments, and measured components of host immune defense to identify regulating mechanisms. We found that adult and juvenile Notophthalmus viridescens died faster due to Bsal chytridiomycosis at 14°C than at 6 and 22°C. Pathogen replication rates, total available proteins on the skin, and microbiome composition likely drove these relationships. Temperature-dependent skin microbiome composition in our laboratory experiments matched seasonal trends in wild N. viridescens, adding validity to these results. We also found that hydrophobic peptide production after two months post-exposure to Bsal was reduced in infected animals compared to controls, perhaps due to peptide release earlier in infection or impaired granular gland function in diseased animals. Using our temperature-dependent susceptibility results, we performed a geographic analysis that revealed N. viridescens populations in the northeastern United States and southeastern Canada are at greatest risk for Bsal invasion, which shifted risk north compared to previous assessments. Our results indicate that environmental temperature will play a key role in the epidemiology of Bsal and provide evidence that temperature manipulations may be a viable disease management strategy. In 2010, a new skin-eating fungus, Batrachochytrium salamandrivorans (Bsal), was discovered killing salamanders in the Netherlands. Since then, the pathogen has spread to other European countries. Bsal is believed to be from Asia and is being translocated through the international trade of amphibians. To our knowledge, Bsal has not arrived to North America. As a proactive strategy for disease control, we evaluated how a range of environmental temperatures in North America could affect invasion risk of Bsal into a widely distributed salamander species, the eastern newt (Notophthalmus viridescens). Our results show that northeastern USA, southeastern Canada, and the higher elevations of the Appalachian Mountains have the greatest likelihood of Bsal invasion, when temperature-dependent susceptibility is included in risk analyses. Changes in eastern newt susceptibility to Bsal infection associated with temperature are likely an interaction between pathogen replication rate and host immune defenses, including changes in skin microbiome composition and the host’s ability to produce Bsal-killing proteins on the skin. Our study provides new insights into how latitude, elevation and season can impact the epidemiology of Bsal, and suggests that strategies that manipulate microclimate of newt habitats could be useful in managing Bsal outbreaks and that climate change will impact Bsal invasion probability.
Collapse
|
12
|
Woodley SK, Staub NL. Pheromonal communication in urodelan amphibians. Cell Tissue Res 2021; 383:327-345. [PMID: 33427952 DOI: 10.1007/s00441-020-03408-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/15/2020] [Indexed: 01/24/2023]
Abstract
Pheromonal communication is an ancient and pervasive sensory modality in urodelan amphibians. One family of salamander pheromones (the sodefrin precursor-like factor (SPF) family) originated 300 million years ago, at the origin of amphibians. Although salamanders are often thought of as relatively simple animals especially when compared to mammals, the pheromonal systems are varied and complex with nuanced effects on behavior. Here, we review the function and evolution of pheromonal signals involved in male-female reproductive interactions. After describing common themes of salamander pheromonal communication, we describe what is known about the rich diversity of pheromonal communication in each salamander family. Several pheromones have been described, ranging from simple, invariant molecules to complex, variable blends of pheromones. While some pheromones elicit overt behavioral responses, others have more nuanced effects. Pheromonal signals have diversified within salamander lineages and have experienced rapid evolution. Once receptors have been matched to pheromonal ligands, rapid advance can be made to better understand the olfactory detection and processing of salamander pheromones. In particular, a large number of salamander species deliver pheromones across the skin of females, perhaps reflecting a novel mode of pheromonal communication. At the end of our review, we list some of the many intriguing unanswered questions. We hope that this review will inspire a new generation of scientists to pursue work in this rewarding field.
Collapse
Affiliation(s)
- Sarah K Woodley
- Department of Biological Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA.
| | - Nancy L Staub
- Biology Department, Gonzaga University, Spokane, WA, 99203, USA
| |
Collapse
|
13
|
Pereira KE, Woodley SK. Skin defenses of North American salamanders against a deadly salamander fungus. Anim Conserv 2021. [DOI: 10.1111/acv.12666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- K. E. Pereira
- Department of Biological Sciences Duquesne University Pittsburgh PA USA
| | - S. K. Woodley
- Department of Biological Sciences Duquesne University Pittsburgh PA USA
| |
Collapse
|
14
|
Arun D, Sandhya S, Akbarsha MA, Oommen OV, Divya L. An insight into the skin glands, dermal scales and secretions of the caecilian amphibian Ichthyophis beddomei. Saudi J Biol Sci 2020; 27:2683-2690. [PMID: 32994727 PMCID: PMC7499274 DOI: 10.1016/j.sjbs.2020.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 11/17/2022] Open
Abstract
The caecilian amphibians are richly endowed with cutaneous glands, which produce secretory materials that facilitate survival in the hostile subterranean environment. Although India has a fairly abundant distribution of caecilians, there are only very few studies on their skin and secretion. In this background, the skin of Ichthyophis beddomei from the Western Ghats of Kerala, India, was subjected to light and electron microscopic analyses. There are two types of dermal glands, mucous and granular. The mucous gland has a lumen, which is packed with a mucous. The mucous-producing cells are located around the lumen. In the granular gland, a lumen is absent; the bloated secretory cells, filling the gland, are densely packed with granules of different sizes which are elegantly revealed in TEM. There is a lining of myo-epithelial cells in the peripheral regions of the glands. Small flat disk-like dermal scales, dense with squamulae, are embedded in pockets in the dermis, distributed among the cutaneous glands. 1-4 scales of various sizes are present in each scale pocket. Scanning electron microscopic observation of the skin surface revealed numerous glandular openings. The skin gland secretions, exuded through the pores, contain fatty acids, alcohols, steroid, hydrocarbons, terpene, aldehyde and a few unknown compounds.
Collapse
Affiliation(s)
- Damodaran Arun
- Department of Zoology, Central University of Kerala, Kasaragod, Kerala, India
| | | | | | - Oommen V. Oommen
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Lekha Divya
- Department of Zoology, Central University of Kerala, Kasaragod, Kerala, India
- Corresponding author at: Department of Zoology, Central University of Kerala, Kasaragod, Kerala, India.
| |
Collapse
|
15
|
DiRenzo GV, Chen R, Ibsen K, Toothman M, Miller AJ, Gershman A, Mitragotri S, Briggs CJ. Investigating the potential use of an ionic liquid (1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide) as an anti-fungal treatment against the amphibian chytrid fungus, Batrachochytrium dendrobatidis. PLoS One 2020; 15:e0231811. [PMID: 32302369 PMCID: PMC7164615 DOI: 10.1371/journal.pone.0231811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/01/2020] [Indexed: 11/19/2022] Open
Abstract
The disease chytridiomycosis, caused by the pathogenic chytrid fungus, Batrachochytrium dendrobatidis (Bd), has contributed to global amphibian declines. Bd infects the keratinized epidermal tissue in amphibians and causes hyperkeratosis and excessive skin shedding. In individuals of susceptible species, the regulatory function of the amphibian’s skin is disrupted resulting in an electrolyte depletion, osmotic imbalance, and eventually death. Safe and effective treatments for chytridiomycosis are urgently needed to control chytrid fungal infections and stabilize populations of endangered amphibian species in captivity and in the wild. Currently, the most widely used anti-Bd treatment is itraconazole. Preparations of itraconazole formulated for amphibian use has proved effective, but treatment involves short baths over seven to ten days, a process which is logistically challenging, stressful, and causes long-term health effects. Here, we explore a novel anti-fungal therapeutic using a single application of the ionic liquid, 1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMP-NTf2), for the treatment of chytridiomycosis. BMP-NTf2 was found be effective at killing Bd in vitro at low concentrations (1:1000 dilution). We tested BMP-NTf2 in vivo on two amphibian species, one that is relatively tolerant of chytridiomycosis (Pseudacris regilla) and one that is highly susceptible (Dendrobates tinctorius). A toxicity trial revealed a surprising interaction between Bd infection status and the impact of BMP-NTf2 on D. tinctorius survival. Uninfected D. tinctorius tolerated BMP-NTf2 (mean ± SE; 96.01 ± 9.00 μl/g), such that only 1 out of 30 frogs died following treatment (at a dose of 156.95 μL/g), whereas, a lower dose (mean ± SE; 97.45 ± 3.52 μL/g) was not tolerated by Bd-infected D. tinctorius, where 15 of 23 frogs died shortly upon BMP-NTf2 application. Those that tolerated the BMP-NTf2 application did not exhibit Bd clearance. Thus, BMP-NTf2 application, under the conditions tested here, is not a suitable option for clearing Bd infection in D. tinctorius. However, different results were obtained for P. regilla. Two topical applications of BMP-NTf2 on Bd-infected P. regilla (using a lower BMP-NTf2 dose than on D. tinctorius, mean ± SE; 9.42 ± 1.43 μL/g) reduced Bd growth, although the effect was lower than that obtained by daily doses of itracanozole (50% frogs exhibited complete clearance on day 16 vs. 100% for itracanozole). Our findings suggest that BMP-NTf2 has the potential to treat Bd infection, however the effect depends on several parameters. Further optimization of dose and schedule are needed before BMP-NTf2 can be considered as a safe and effective alternative to more conventional antifungal agents, such as itraconazole.
Collapse
Affiliation(s)
- Graziella V. DiRenzo
- Department of Ecology, Evolution, & Marine Biology, University of California, Santa Barbara, CA, United States of America
- * E-mail:
| | - Renwei Chen
- Center for Bioengineering, University of California, Santa Barbara, CA, United States of America
| | - Kelly Ibsen
- Center for Bioengineering, University of California, Santa Barbara, CA, United States of America
- Department of Chemical Engineering, University of California, Santa Barbara, CA, United States of America
- School of Engineering and Applied Sciences, Harvard University Cambridge, Cambridge, MA, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States of America
| | - Mary Toothman
- Department of Ecology, Evolution, & Marine Biology, University of California, Santa Barbara, CA, United States of America
| | - Abigail J. Miller
- Department of Ecology, Evolution, & Marine Biology, University of California, Santa Barbara, CA, United States of America
| | - Ariel Gershman
- Department of Ecology, Evolution, & Marine Biology, University of California, Santa Barbara, CA, United States of America
| | - Samir Mitragotri
- Center for Bioengineering, University of California, Santa Barbara, CA, United States of America
- Department of Chemical Engineering, University of California, Santa Barbara, CA, United States of America
- School of Engineering and Applied Sciences, Harvard University Cambridge, Cambridge, MA, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States of America
| | - Cheryl J. Briggs
- Department of Ecology, Evolution, & Marine Biology, University of California, Santa Barbara, CA, United States of America
| |
Collapse
|
16
|
Knight K. Skin secretions protect some salamanders from lethal fungal infection. J Exp Biol 2018. [DOI: 10.1242/jeb.185819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|