1
|
Barrons ZB, Rodrigo-Carranza V, Bertschy M, Hoogkamer W. The Fallacy of Single Trials: The Need for Multiple Trials in Assessing Running Economy Responses in Advanced Footwear Technology. Sports Med 2024; 54:1357-1360. [PMID: 38407747 DOI: 10.1007/s40279-023-01991-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 02/27/2024]
Abstract
In the quest to uncover the underlying mechanisms responsible for the performance-enhancing benefits imparted by advanced footwear technology (AFT), footwear researchers are employing an individual-level approach. In doing so, they hope to unveil individual-specific responses to AFT otherwise masked by a group-level approach. Classifying an individual's response on the basis of running economy (RE) is a logical strategy given that the intended purpose of AFT is to enhance performance; however, caution should be taken when doing so. Metabolic measurement devices are far from perfect, and given the known errors associated with metabolic measurements we would like to reiterate a suggestion first made 40 years ago: when seeking to quantify the interindividual variability of improvement in RE associated with running in AFT, the best practice is to rely on a minimum of two same-day measurements of RE.
Collapse
Affiliation(s)
- Zach B Barrons
- Integrative Locomotion Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, MA, USA.
| | - Victor Rodrigo-Carranza
- Integrative Locomotion Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, MA, USA
- Sports Performance Research Group (GIRD), University of Castilla-La Mancha, Toledo, Spain
| | - Montgomery Bertschy
- Integrative Locomotion Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, MA, USA
| | - Wouter Hoogkamer
- Integrative Locomotion Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
2
|
Rodrigo-Carranza V, Hoogkamer W, González-Ravé JM, Horta-Muñoz S, Serna-Moreno MDC, Romero-Gutierrez A, González-Mohíno F. Influence of different midsole foam in advanced footwear technology use on running economy and biomechanics in trained runners. Scand J Med Sci Sports 2024; 34:e14526. [PMID: 37858294 DOI: 10.1111/sms.14526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/27/2023] [Accepted: 10/08/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Ethylene and vinyl acetate (EVA) and polyether block amide (PEBA) are recently the most widely used materials for advanced footwear technology (AFT) that has been shown to improve running economy (RE). This study investigated the effects of these midsole materials on RE and biomechanics, in both fresh and worn state (after 450 km). METHODS Twenty-two male trained runners participated in this study. Subjects ran four 4-min trials at 13 km‧h-1 with both fresh EVA and PEBA AFT and with the same models with 450 km of wear using a randomized crossover experimental design. We measured energy cost of running (W/kg), spatiotemporal, and neuromuscular parameters. RESULTS There were significant differences in RE between conditions (p = 0.01; n2 = 0.17). There was a significant increase in energy cost in the worn PEBA condition compared with new (15.21 ± 1.01 and 14.87 ± 0.99 W/kg; p < 0.05; ES = 0.54), without differences between worn EVA (15.13 ± 1.14 W/kg; p > 0.05), and new EVA (15.15 ± 1.13 w/kg; ES = 0.02). The increase in energy cost between new and worn was significantly higher for the PEBA shoes (0.32 ± 0.38 W/kg) but without significant increase for the EVA shoes (0.06 ± 0.58 W/kg) (p < 0.01; ES = 0.51) with changes in step frequency and step length. The new PEBA shoes had lower energy cost than the new EVA shoes (p < 0.05; ES = 0.27) with significant differences between conditions in contact time. CONCLUSION There is a clear RE advantage of incorporating PEBA versus EVA in an AFT when the models are new. However, after 450 km of use, the PEBA and EVA shoes had similar RE.
Collapse
Affiliation(s)
- Víctor Rodrigo-Carranza
- Sports Performance Research Group (GIRD), University of Castilla-La Mancha, Toledo, Spain
- Department of Kinesiology, Integrative Locomotion Laboratory, University of Massachusetts, Amherst, Massachusetts, USA
| | - Wouter Hoogkamer
- Department of Kinesiology, Integrative Locomotion Laboratory, University of Massachusetts, Amherst, Massachusetts, USA
| | | | - Sergio Horta-Muñoz
- Universidad de Castilla-La Mancha, Escuela Técnica Superior Ingenieros Industriales de Ciudad Real, Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Ciudad Real, Spain
| | - María Del Carmen Serna-Moreno
- Universidad de Castilla-La Mancha, Escuela Técnica Superior Ingenieros Industriales de Ciudad Real, Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Ciudad Real, Spain
| | - Ana Romero-Gutierrez
- Universidad de Castilla-La Mancha, Escuela Técnica Superior Ingenieros Industriales de Ciudad Real, Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Ciudad Real, Spain
| | - Fernando González-Mohíno
- Sports Performance Research Group (GIRD), University of Castilla-La Mancha, Toledo, Spain
- Facultad de Ciencias de la Vida y de la Naturaleza, Universidad Nebrija, Madrid, Spain
| |
Collapse
|
3
|
Bohm S, Mersmann F, Schroll A, Arampatzis A. Speed-specific optimal contractile conditions of the human soleus muscle from slow to maximum running speed. J Exp Biol 2023; 226:jeb246437. [PMID: 37901934 DOI: 10.1242/jeb.246437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/13/2023] [Indexed: 10/31/2023]
Abstract
The soleus is the main muscle for propulsion during human running but its operating behavior across the spectrum of physiological running speeds is currently unknown. This study experimentally investigated the soleus muscle activation patterns and contractile conditions for force generation, power production and efficient work production (i.e. force-length potential, force-velocity potential, power-velocity potential and enthalpy efficiency) at seven running speeds (3.0 m s-1 to individual maximum). During submaximal running (3.0-6.0 m s-1), the soleus fascicles shortened close to optimal length and at a velocity close to the efficiency maximum, two contractile conditions for economical work production. At higher running speeds (7.0 m s-1 to maximum), the soleus muscle fascicles still operated near optimum length, yet the fascicle shortening velocity increased and shifted towards the optimum for mechanical power production with a simultaneous increase in muscle activation, providing evidence for three cumulative mechanisms to enhance mechanical power production. Using the experimentally determined force-length-velocity potentials and muscle activation as inputs in a Hill-type muscle model, a reduction in maximum soleus muscle force at speeds ≥7.0 m s-1 and a continuous increase in maximum mechanical power with speed were predicted. The reduction in soleus maximum force was associated with a reduced force-velocity potential. The increase in maximum power was explained by an enhancement of muscle activation and contractile conditions until 7.0 m s-1, but mainly by increased muscle activation at high to maximal running speed.
Collapse
Affiliation(s)
- Sebastian Bohm
- Humboldt-Universität zu Berlin, Department of Training and Movement Sciences, 10115 Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Falk Mersmann
- Humboldt-Universität zu Berlin, Department of Training and Movement Sciences, 10115 Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Arno Schroll
- Humboldt-Universität zu Berlin, Department of Training and Movement Sciences, 10115 Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Adamantios Arampatzis
- Humboldt-Universität zu Berlin, Department of Training and Movement Sciences, 10115 Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| |
Collapse
|
4
|
Ashcroft K, Robinson T, Condell J, Penpraze V, White A, Bird SP. An Investigation of Surface EMG Shorts-Derived Training Load during Treadmill Running. SENSORS (BASEL, SWITZERLAND) 2023; 23:6998. [PMID: 37571780 PMCID: PMC10422274 DOI: 10.3390/s23156998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
The purpose of this study was two-fold: (1) to determine the sensitivity of the sEMG shorts-derived training load (sEMG-TL) during different running speeds; and (2) to investigate the relationship between the oxygen consumption, heart rate (HR), rating of perceived exertion (RPE), accelerometry-based PlayerLoadTM (PL), and sEMG-TL during a running maximum oxygen uptake (V˙O2max) test. The study investigated ten healthy participants. On day one, participants performed a three-speed treadmill test at 8, 10, and 12 km·h-1 for 2 min at each speed. On day two, participants performed a V˙O2max test. Analysis of variance found significant differences in sEMG-TL at all three speeds (p < 0.05). A significantly weak positive relationship between sEMG-TL and %V˙O2max (r = 0.31, p < 0.05) was established, while significantly strong relationships for 8 out of 10 participants at the individual level (r = 0.72-0.97, p < 0.05) were found. Meanwhile, the accelerometry PL was not significantly related to %V˙O2max (p > 0.05) and only demonstrated significant correlations in 3 out of 10 participants at the individual level. Therefore, the sEMG shorts-derived training load was sensitive in detecting a work rate difference of at least 2 km·h-1. sEMG-TL may be an acceptable metric for the measurement of internal loads and could potentially be used as a surrogate for oxygen consumption.
Collapse
Affiliation(s)
- Kurtis Ashcroft
- Faculty of Computing, Engineering and the Built Environment, Ulster University, Derry BT48 7JL, UK; (T.R.); (J.C.)
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; (V.P.); (A.W.)
| | - Tony Robinson
- Faculty of Computing, Engineering and the Built Environment, Ulster University, Derry BT48 7JL, UK; (T.R.); (J.C.)
| | - Joan Condell
- Faculty of Computing, Engineering and the Built Environment, Ulster University, Derry BT48 7JL, UK; (T.R.); (J.C.)
| | - Victoria Penpraze
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; (V.P.); (A.W.)
| | - Andrew White
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; (V.P.); (A.W.)
| | - Stephen P. Bird
- School of Health and Medical Sciences, University of Southern Queensland, Ipswich, QLD 4305, Australia;
| |
Collapse
|
5
|
Papachatzis N, Ray SF, Takahashi KZ. Does human foot anthropometry relate to plantar flexor fascicle mechanics and metabolic energy cost across various walking speeds? J Exp Biol 2023; 226:jeb245113. [PMID: 37092255 PMCID: PMC10226764 DOI: 10.1242/jeb.245113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
Foot structures define the leverage in which the ankle muscles push off against the ground during locomotion. While prior studies have indicated that inter-individual variation in anthropometry (e.g. heel and hallux lengths) can directly affect force production of ankle plantar flexor muscles, its effect on the metabolic energy cost of locomotion has been inconclusive. Here, we tested the hypotheses that shorter heels and longer halluces are associated with slower plantar flexor (soleus) shortening velocity and greater ankle plantar flexion moment, indicating enhanced force potential as a result of the force-velocity relationship. We also hypothesized that such anthropometry profiles would reduce the metabolic energy cost of walking at faster walking speeds. Healthy young adults (N=15) walked at three speeds (1.25, 1.75 and 2.00 m s-1), and we collected in vivo muscle mechanics (via ultrasound), activation (via electromyography) and whole-body metabolic energy cost of transport (via indirect calorimetry). Contrary to our hypotheses, shorter heels and longer halluces were not associated with slower soleus shortening velocity or greater plantar flexion moment. Additionally, longer heels were associated with reduced metabolic cost of transport, but only at the fastest speed (2.00 m s-1, R2=0.305, P=0.033). We also found that individuals with longer heels required less increase in plantar flexor (soleus and gastrocnemius) muscle activation to walk at faster speeds, potentially explaining the reduced metabolic cost.
Collapse
Affiliation(s)
- Nikolaos Papachatzis
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE 68182, USA
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, CT 06520, USA
| | - Samuel F. Ray
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Kota Z. Takahashi
- Department of Health & Kinesiology, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
6
|
Hébert-Losier K, Pamment M. Advancements in running shoe technology and their effects on running economy and performance - a current concepts overview. Sports Biomech 2023; 22:335-350. [PMID: 35993160 DOI: 10.1080/14763141.2022.2110512] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Advancements in running shoe technology over the last 5 years have sparked controversy in athletics as linked with clear running economy and performance enhancements. Early debates mainly surrounded 'super shoes' in long-distance running, but more recently, the controversy has filtered through to sprint and middle-distance running with the emergence of 'super spikes'. This Current Concepts paper provides a brief overview on the controversial topic of super shoes and super spikes. The defining features of technologically advanced shoes are a stiff plate embedded within the midsole, curved plate and midsole geometry, and lightweight, resilient, high-energy returning foam that - in combination - enhance running performance. Since the launch of the first commercially available super shoe, all world records from the 5 km to the marathon have been broken by athletes wearing super shoes or super spikes, with a similar trend observed in middle-distance running. The improvements in super shoes are around 4% for running economy and 2% for performance, and speculatively around 1% to 1.5% for super spikes. These enhancements are believed multifactorial in nature and difficult to parse, although involve longitudinal bending stiffness, the 'teeter-totter effect', the high-energy return properties of the midsole material, enhanced stack height and lightweight characteristic of shoes.
Collapse
Affiliation(s)
- Kim Hébert-Losier
- Division of Health, Engineering, Computing and Science, Te Huataki Waiora School of Health, Adams Centre for High Performance, University of Waikato, Tauranga, New Zealand
| | - Milly Pamment
- National Performance Institute, British Athletics, Loughborough University, Loughborough, UK.,School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
7
|
Rodrigo-Carranza V, González-Mohíno F, Casado A, Santos-Concejero J, Galán-Rioja MÁ, González-Ravé JM. Impact of advanced footwear technology on critical speed and performance in elite runners. FOOTWEAR SCIENCE 2023. [DOI: 10.1080/19424280.2022.2164624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
| | - Fernando González-Mohíno
- Sport Training Lab. University of Castilla-La Mancha, Toledo, Spain
- Facultad de Ciencias de la Vida y de la Naturaleza, Universidad Nebrija, Madrid, Spain
| | - Arturo Casado
- Centre for Sport Studies, Rey Juan Carlos University, Madrid, Spain
| | - Jordan Santos-Concejero
- Department of Physical Education and Sport, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | | | | |
Collapse
|
8
|
Swinnen W, Hoogkamer W, De Groote F, Vanwanseele B. Faster triceps surae muscle cyclic contractions alter muscle activity and whole body metabolic rate. J Appl Physiol (1985) 2023; 134:395-404. [PMID: 36603047 DOI: 10.1152/japplphysiol.00575.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Hundred years ago, Fenn demonstrated that when a muscle shortens faster, its energy liberation increases. Fenn's results were the first of many that led to the general understanding that isometric muscle contractions are energetically cheaper than concentric contractions. However, this evidence is still primarily based on single fiber or isolated (ex vivo) muscle studies and it remains unknown whether this translates to whole body metabolic rate. In this study, we specifically changed the contraction velocity of the ankle plantar flexors and quantified the effects on triceps surae muscle activity and whole body metabolic rate during cyclic plantar flexion (PF) contractions. Fifteen participants performed submaximal ankle plantar flexions (∼1/3 s activation and ∼2/3 s relaxation) on a dynamometer at three different ankle angular velocities: isometric (10° PF), isokinetic at 30°/s (5-15° PF), and isokinetic at 60°/s (0-20° PF) while target torque (25% MVC) and cycle frequency were kept constant. In addition, to directly determine the effect of ankle angular velocity on muscle kinematics we collected gastrocnemius medialis muscle fascicle ultrasound data. As expected, increasing ankle angular velocity increased gastrocnemius medialis muscle fascicle contraction velocity and positive mechanical work (P < 0.01), increased mean and peak triceps surae muscle activity (P < 0.01), and considerably increased net whole body metabolic rate (P < 0.01). Interestingly, the increase in triceps surae muscle activity with fast ankle angular velocities was most pronounced in the gastrocnemius lateralis (P < 0.05). Overall, our results support the original findings from Fenn in 1923 and we demonstrated that greater triceps surae muscle contraction velocities translate to increased whole body metabolic rate.NEW & NOTEWORTHY Single muscle fiber studies or research on isolated (ex vivo) muscles demonstrated that faster concentric muscle contractions yield increased energy consumption. Here we translated this knowledge to muscle activation and whole body metabolic rate. Increasing ankle angular velocity increased triceps surae contraction velocity and mechanical work, increasing triceps surae muscle activity and substantially elevating whole body metabolic rate. Additionally, we demonstrated that triceps surae muscle activation strategy depends on the mechanical demands of the task.
Collapse
Affiliation(s)
- Wannes Swinnen
- Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Wouter Hoogkamer
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
| | | | | |
Collapse
|
9
|
Ardigò LP, Buglione A, Russo L, Cular D, Esposito F, Doria C, Padulo J. Marathon shoes vs. track spikes: a crossover pilot study on metabolic demand at different speeds in experienced runners. Res Sports Med 2023; 31:13-20. [PMID: 33988477 DOI: 10.1080/15438627.2021.1929225] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The aim of this study was to assess the metabolic cost (Cr) with marathon shoes (Adidas Adizero 3 [AA]) vs. track spikes (Nike Zoom Matumbo 3 [NZM]) on track. For this, five experienced runners were randomly assessed (NZM/AA) on a running track at 73% and 85% of best performance speed on 1500-m race. At first, speed (4.39 ± 0.53 m·s-1), Crs with AA and NZM resulted 3.63 ± 0.29 and 3.64 ± 0.43 J·kg-1·m-1 (+0.3% with NZM, effect size [ES] small and p = 0.951), respectively. Besides, at second speed (5.20 ± 0.18 m·s-1), Crs were 4.09 ± 0.28 and 4.07 ± 0.22 J·kg-1·m-1 (-0.5% with NZM, ES small and p = 0.919) with AA and NZM, respectively. It resulted in an increased Cr (+12.2%) between s1 and s2 with both shoe conditions (ES large and p = 0.009 and 0.011 with AA and NZM, respectively). There is a pattern yet to be confirmed for track spikes to become more beneficial at higher speeds (when duty factor becomes lower and therefore grip on track is crucial).
Collapse
Affiliation(s)
- Luca Paolo Ardigò
- School of Exercise and Sport Science, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Antonio Buglione
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| | - Luca Russo
- Department of Biotechnology and Applied Clinical Science, University of L'Aquila, L'Aquila, Italy
| | - Drazen Cular
- Faculty of Kinesiology, University of Split, Split, Croatia.,"Einstein" Craft for Research, Development, Education, Trade and Services, Split, Croatia
| | - Fabio Esposito
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Milan, Italy.,IRCSS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Christian Doria
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Milan, Italy
| | - Johnny Padulo
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Milan, Italy
| |
Collapse
|
10
|
Bennett EC, Machado E, Fletcher JR. How do differences in Achilles' tendon moment arm lengths affect muscle-tendon dynamics and energy cost during running? Front Sports Act Living 2023; 5:1125095. [PMID: 37139299 PMCID: PMC10150092 DOI: 10.3389/fspor.2023.1125095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/24/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction The relationship between the Achilles tendon moment arm length (ATMA) and the energy cost of running (Erun) has been disputed. Some studies suggest a short ATMA reduces Erun while others claim a long ATMA reduces Erun. For a given ankle joint moment, a short ATMA permits a higher tendon strain energy storage, whereas a long ATMA reduces muscle fascicle force and muscle energy cost but shortening velocity is increased, elevating the metabolic cost. These are all conflicting mechanisms to reduce Erun, since AT energy storage comes at a metabolic cost. Neither of these proposed mechanisms have been examined together. Methods We measured ATMA using the tendon travel method in 17 males and 3 females (24 ± 3 years, 75 ± 11 kg, 177 ± 7 cm). They ran on a motorized treadmill for 10 min at 2.5 m · s-1 while Erun was measured. AT strain energy storage, muscle lengths, velocities and muscle energy cost were calculated during time-normalized stance from force and ultrasound data. A short (SHORT n = 11, ATMA = 29.5 ± 2.0 mm) and long (LONG, n = 9, ATMA = 36.6 ± 2.5 mm) ATMA group was considered based on a bimodal distribution of measured ATMA. Results Mean Erun was 4.9 ± 0.4 J · kg-1 · m-1. The relationship between ATMA and Erun was not significant (r 2 = 0.13, p = 0.12). Maximum AT force during stance was significantly lower in LONG (5,819 ± 1,202 N) compared to SHORT (6,990 ± 920 N, p = 0.028). Neither AT stretch nor AT strain energy storage was different between groups (mean difference: 0.3 ± 1 J · step-1, p = 0.84). Fascicle force was significantly higher in SHORT (508 ± 93 N) compared to LONG (468 ± 84 N. p = 0.02). Fascicle lengths and velocities were similar between groups (p > 0.72). Muscle energy cost was significantly lower in LONG (0.028 ± 0.08 J · kg · step-1) compared to SHORT (0.045 ± 0.14 J · kg · step-1 p = 0.004). There was a significant negative relationship between ATMA and total muscle energy cost relative to body mass across the stance phase (r = -0.699, p < 0.001). Discussion Together these results suggest that a LONG ATMA serves to potentially reduce Erun by reducing the muscle energy cost of the plantarflexors during stance. The relative importance of AT energy storage and return in reducing Erun should be re-considered.
Collapse
|
11
|
Monte A, Tecchio P, Nardello F, Bachero‐Mena B, Ardigò LP, Zamparo P. The interplay between gastrocnemius medialis force-length and force-velocity potentials, cumulative EMG activity and energy cost at speeds above and below the walk to run transition speed. Exp Physiol 2023; 108:90-102. [PMID: 36394370 PMCID: PMC10103772 DOI: 10.1113/ep090657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/19/2022] [Indexed: 11/19/2022]
Abstract
NEW FINDINGS What is the central question of the study? Are the changes in force potentials (at the muscle level) related with metabolic changes at speeds above and below the walk-to-run transition? What is the main finding and its importance? The force-length and force-velocity potentials of gastrocnemius medialis during human walking decrease as a function of speed; this decrease is associated with an increase in cumulative EMG activity and in the energy cost of locomotion. Switching from fast walking to running is associated to an increase in the force potentials, supporting the idea that the 'metabolic trigger' that determines the transition from walking to running is ultimately driven by a reduction of the muscle's contractile capacity. ABSTRACT The aim of this study was to investigate the interplay between the force-length (F-L) and force-velocity (F-V) potentials of gastrocnemius medialis (GM) muscle fascicles, the cumulative muscle activity per distance travelled (CMAPD) of the lower limb muscles (GM, vastus lateralis, biceps femori, tibialis anterior) and net energy cost (Cnet ) during walking and running at speeds above and below the walk-to-run transition speed (walking: 2-8 km h-1 ; running: 6-10 km h-1 ). A strong association was observed between Cnet and CMAPD: both changed significantly with walking speed but were unaffected by speed in running. The F-L and F-V potentials decreased with speed in both gaits and, at 6-8 km h-1 , were significantly larger in running. At low to moderate walking speeds (2-6 km h-1 ), the changes in GM force potentials were not associated with substantial changes in CMAPD (and Cnet ), whereas at walking speeds of 7-8 km h-1 , even small changes in force potentials were associated with steep increases in CMAPD (and Cnet ). These data suggest that: (i) the walk to run transition could be explained by an abrupt increase in Cnet driven by an upregulation of the EMG activity (e.g., in CMAPD) at sustained walking speeds (>7 km h-1 ) and (ii) the reduction in the muscle's ability to produce force (e.g., in the F-L and F-V potentials) contributes to the increase in CMAPD (and Cnet ). Switching to running allows regaining of high force potentials, thus limiting the increase in CMAPD (and Cnet ) that would otherwise occur to sustain the increase in locomotion speed.
Collapse
Affiliation(s)
- Andrea Monte
- Department of NeurosciencesBiomedicine and Movement SciencesUniversity of VeronaVeronaItaly
| | - Paolo Tecchio
- Department of NeurosciencesBiomedicine and Movement SciencesUniversity of VeronaVeronaItaly
- Human Movement ScienceFaculty of Sports ScienceRuhr University BochumBochumGermany
| | - Francesca Nardello
- Department of NeurosciencesBiomedicine and Movement SciencesUniversity of VeronaVeronaItaly
| | | | | | - Paola Zamparo
- Department of NeurosciencesBiomedicine and Movement SciencesUniversity of VeronaVeronaItaly
| |
Collapse
|
12
|
Kram R. Ergogenic distance running shoes: how do we think they work and how can we understand them better? FOOTWEAR SCIENCE 2022. [DOI: 10.1080/19424280.2022.2127545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rodger Kram
- Locomotion Lab, Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| |
Collapse
|
13
|
Allen SP, Beck ON, Grabowski AM. Evaluating the “cost of generating force” hypothesis across frequency in human running and hopping. J Exp Biol 2022; 225:276655. [DOI: 10.1242/jeb.244755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/01/2022] [Indexed: 11/20/2022]
Abstract
The volume of active muscle and duration of extensor muscle force well-explain the associated metabolic energy expenditure across body mass and velocity during level-ground running and hopping. However, if these parameters fundamentally drive metabolic energy expenditure, then they should pertain to multiple modes of locomotion and provide a simple framework for relating biomechanics to metabolic energy expenditure in bouncing gaits. Therefore, we evaluated the ability of the ‘cost of generating force’ hypothesis to link biomechanics and metabolic energy expenditure during human running and hopping across step frequencies. We asked participants to run and hop at 85%, 92%, 100%, 108% and 115% of preferred running step frequency. We calculated changes in active muscle volume, duration of force production, and metabolic energy expenditure. Overall, as step frequency increased, active muscle volume decreased due to postural changes via effective mechanical advantage (EMA) or duty factor. Accounting for changes in EMA and muscle volume better related to metabolic energy expenditure during running and hopping at different step frequencies than assuming a constant EMA and muscle volume. Thus, to ultimately develop muscle mechanics models that can explain metabolic energy expenditure across different modes of locomotion, we suggest more precise measures of muscle force production that include the effects of EMA.
Collapse
Affiliation(s)
- Stephen P. Allen
- 1 Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Owen N. Beck
- 2 The Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Institute of Technology, USA
| | - Alena M. Grabowski
- 1 Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
- 3 Department of Veterans Affairs, Eastern Colorado Healthcare System, Denver, CO, USA
| |
Collapse
|
14
|
Beck ON, Trejo LH, Schroeder JN, Franz JR, Sawicki GS. Shorter muscle fascicle operating lengths increase the metabolic cost of cyclic force production. J Appl Physiol (1985) 2022; 133:524-533. [PMID: 35834625 PMCID: PMC9558570 DOI: 10.1152/japplphysiol.00720.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/22/2022] Open
Abstract
During locomotion, force-producing limb muscles are predominantly responsible for an animal's whole body metabolic energy expenditure. Animals can change the length of their force-producing muscle fascicles by altering body posture (e.g., joint angles), the structural properties of their biological tissues over time (e.g., tendon stiffness), or the body's kinetics (e.g., body weight). Currently, it is uncertain whether relative muscle fascicle operating lengths have a measurable effect on the metabolic energy expended during cyclic locomotion-like contractions. To address this uncertainty, we quantified the metabolic energy expenditure of human participants, as they cyclically produced two distinct ankle moments at three ankle angles (90°, 105°, and 120°) on a fixed-position dynamometer using their soleus. Overall, increasing participant ankle angle from 90° to 120° (more plantar flexion) reduced minimum soleus fascicle length by 17% (both moment levels, P < 0.001) and increased metabolic energy expenditure by an average of 208% across both moment levels (both P < 0.001). For both moment levels, the increased metabolic energy expenditure was not related to greater fascicle positive mechanical work (higher moment level, P = 0.591), fascicle force rate (both P ≥ 0.235), or model-estimated active muscle volume (both P ≥ 0.122). Alternatively, metabolic energy expenditure correlated with average relative soleus fascicle length (r = -0.72, P = 0.002) and activation (r = 0.51, P < 0.001). Therefore, increasing active muscle fascicle operating lengths may reduce metabolic energy expended during locomotion.NEW & NOTEWORTHY During locomotion, active muscles undergo cyclic length-changing contractions. In this study, we isolated confounding variables and revealed that cyclically producing force at relatively shorter fascicle lengths increases metabolic energy expenditure. Therefore, muscle fascicle operating lengths likely have a measurable effect on the metabolic energy expenditure during locomotion.
Collapse
Affiliation(s)
- Owen N Beck
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Lindsey H Trejo
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Jordyn N Schroeder
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Jason R Franz
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina
| | - Gregory S Sawicki
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
15
|
Honert EC, Ostermair F, von Tscharner V, Nigg BM. Changes in ankle work, foot work, and tibialis anterior activation throughout a long run. JOURNAL OF SPORT AND HEALTH SCIENCE 2022; 11:330-338. [PMID: 33662603 PMCID: PMC9189696 DOI: 10.1016/j.jshs.2021.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/19/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND The ankle and foot together contribute to over half of the positive and negative work performed by the lower limbs during running. Yet, little is known about how foot kinetics change throughout a run. The amount of negative foot work may decrease as tibialis anterior (TA) electromyography (EMG) changes throughout longer-duration runs. Therefore, we examined ankle and foot work as well as TA EMG changes throughout a changing-speed run. METHODS Fourteen heel-striking subjects ran on a treadmill for 58 min. We collected ground reaction forces, motion capture, and EMG. Subjects ran at 110%, 100%, and 90% of their 10-km running speed and 2.8 m/s multiple times throughout the run. Foot work was evaluated using the distal rearfoot work, which provides a net estimate of all work contributors within the foot. RESULTS Positive foot work increased and positive ankle work decreased throughout the run at all speeds. At the 110% 10-km running speed, negative foot work decreased and TA EMG frequency shifted lower throughout the run. The increase in positive foot work may be attributed to increased foot joint work performed by intrinsic foot muscles. Changes in negative foot work and TA EMG frequency may indicate that the TA plays a role in negative foot work in the early stance of a run. CONCLUSION This study is the first to examine how the kinetic contributions of the foot change throughout a run. Future studies should investigate how increases in foot work affect running performance.
Collapse
Affiliation(s)
- Eric C Honert
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| | - Florian Ostermair
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta T2N 1N4, Canada; Institute of Sports and Sports Science, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany; Department of Sports Science and Sports, Friedrich Alexander University Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Vinzenz von Tscharner
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Benno M Nigg
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
16
|
Whiting CS, Hoogkamer W, Kram R. Metabolic cost of level, uphill, and downhill running in highly cushioned shoes with carbon-fiber plates. JOURNAL OF SPORT AND HEALTH SCIENCE 2022; 11:303-308. [PMID: 34740871 PMCID: PMC9189710 DOI: 10.1016/j.jshs.2021.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/02/2021] [Accepted: 09/26/2021] [Indexed: 05/31/2023]
Abstract
BACKGROUND Compared to conventional racing shoes, Nike Vaporfly 4% running shoes reduce the metabolic cost of level treadmill running by 4%. The reduction is attributed to their lightweight, highly compliant, and resilient midsole foam and a midsole-embedded curved carbon-fiber plate. We investigated whether these shoes also could reduce the metabolic cost of moderate uphill (+3°) and downhill (-3°) grades. We tested the null hypothesis that, compared to conventional racing shoes, highly cushioned shoes with carbon-fiber plates would impart the same ∼4% metabolic power (W/kg) savings during uphill and downhill running as they do during level running. METHODS After familiarization, 16 competitive male runners performed six 5-min trials (2 shoes × 3 grades) in 2 Nike marathon racing-shoe models (Streak 6 and Vaporfly 4%) on a level, uphill (+3°), and downhill (-3°) treadmill at 13 km/h (3.61 m/s). We measured submaximal oxygen uptake and carbon dioxide production during Minutes 4-5 and calculated metabolic power (W/kg) for each shoe model and grade combination. RESULTS Compared to the conventional shoes (Streak 6), the metabolic power in the Vaporfly 4% shoes was 3.83% (level), 2.82% (uphill), and 2.70% (downhill) less (all p < 0.001). The percent of change in metabolic power for uphill running was less compared to level running (p = 0.04; effect size (ES) = 0.561) but was not statistically different between downhill and level running (p = 0.17; ES = 0.356). CONCLUSION On a running course with uphill and downhill sections, the metabolic savings and hence performance enhancement provided by Vaporfly 4% shoes would likely be slightly less overall, compared to the savings on a perfectly level race course.
Collapse
Affiliation(s)
- Clarissa S Whiting
- Locomotion Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, CO 80309, USA.
| | - Wouter Hoogkamer
- Integrative Locomotion Lab, Department of Kinesiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Rodger Kram
- Locomotion Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
17
|
Cigoja S, Fletcher JR, Nigg BM. Can changes in midsole bending stiffness of shoes affect the onset of joint work redistribution during a prolonged run? JOURNAL OF SPORT AND HEALTH SCIENCE 2022; 11:293-302. [PMID: 33359799 PMCID: PMC9189708 DOI: 10.1016/j.jshs.2020.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/23/2020] [Accepted: 11/27/2020] [Indexed: 05/14/2023]
Abstract
PURPOSE This study aimed to investigate if changing the midsole bending stiffness of athletic footwear can affect the onset of lower limb joint work redistribution during a prolonged run. METHODS Fifteen trained male runners (10-km time of <44 min) performed 10-km runs at 90% of their individual speed at lactate threshold (i.e., when change in lactate exceeded 1 mmol/L during an incremental running test) in a control and stiff shoe condition on 2 occasions. Lower limb joint kinematics and kinetics were measured using a motion capture system and a force-instrumented treadmill. Data were acquired every 500 m. RESULTS Prolonged running resulted in a redistribution of positive joint work from distal to proximal joints in both shoe conditions. Compared to the beginning of the run, less positive work was performed at the ankle (approximately 9%; p ≤ 0.001) and more positive work was performed at the knee joint (approximately 17%; p ≤ 0.001) at the end of the run. When running in the stiff shoe condition, the onset of joint work redistribution at the ankle and knee joints occurred at a later point during the run. CONCLUSION A delayed onset of joint work redistribution in the stiff condition may result in less activated muscle volume, because ankle plantar flexor muscles have shorter muscles fascicles and smaller cross-sectional areas compared to knee extensor muscles. Less active muscle volume could be related to previously reported decreases in metabolic cost when running in stiff footwear. These results contribute to the notion that footwear with increased stiffness likely results in reductions in metabolic cost by delaying joint work redistribution from distal to proximal joints.
Collapse
Affiliation(s)
- Sasa Cigoja
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | - Jared R Fletcher
- Department of Health and Physical Education, Mount Royal University, Calgary, AB T3E 6K6, Canada
| | - Benno M Nigg
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
18
|
Beck ON, Taboga P, Grabowski AM. Sprinting with prosthetic versus biological legs: insight from experimental data. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211799. [PMID: 35070345 PMCID: PMC8728174 DOI: 10.1098/rsos.211799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/06/2021] [Indexed: 05/09/2023]
Abstract
Running-prostheses have enabled exceptional athletes with bilateral leg amputations to surpass Olympic 400 m athletics qualifying standards. Due to the world-class performances and relatively fast race finishes of these athletes, many people assume that running-prostheses provide users an unfair advantage over biologically legged competitors during long sprint races. These assumptions have led athletics governing bodies to prohibit the use of running-prostheses in sanctioned non-amputee (NA) competitions, such as at the Olympics. However, here we show that no athlete with bilateral leg amputations using running-prostheses, including the fastest such athlete, exhibits a single 400 m running performance metric that is better than those achieved by NA athletes. Specifically, the best experimentally measured maximum running velocity and sprint endurance profile of athletes with prosthetic legs are similar to, but not better than those of NA athletes. Further, the best experimentally measured initial race acceleration (from 0 to 20 m), maximum velocity around curves, and velocity at aerobic capacity of athletes with prosthetic legs were 40%, 1-3% and 19% slower compared to NA athletes, respectively. Therefore, based on these 400 m performance metrics, use of prosthetic legs during 400 m running races is not unequivocally advantageous compared to the use of biological legs.
Collapse
Affiliation(s)
- Owen N. Beck
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Paolo Taboga
- Department of Kinesiology, California State University, Sacramento, CA, USA
| | - Alena M. Grabowski
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
- Department of Veterans Affairs, Eastern Colorado Healthcare System, Denver, CO, USA
| |
Collapse
|
19
|
Schroeder RT, Kuo AD. Elastic energy savings and active energy cost in a simple model of running. PLoS Comput Biol 2021; 17:e1009608. [PMID: 34813593 PMCID: PMC8651147 DOI: 10.1371/journal.pcbi.1009608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 12/07/2021] [Accepted: 11/02/2021] [Indexed: 11/18/2022] Open
Abstract
The energetic economy of running benefits from tendon and other tissues that store and return elastic energy, thus saving muscles from costly mechanical work. The classic "Spring-mass" computational model successfully explains the forces, displacements and mechanical power of running, as the outcome of dynamical interactions between the body center of mass and a purely elastic spring for the leg. However, the Spring-mass model does not include active muscles and cannot explain the metabolic energy cost of running, whether on level ground or on a slope. Here we add explicit actuation and dissipation to the Spring-mass model, and show how they explain substantial active (and thus costly) work during human running, and much of the associated energetic cost. Dissipation is modeled as modest energy losses (5% of total mechanical energy for running at 3 m s-1) from hysteresis and foot-ground collisions, that must be restored by active work each step. Even with substantial elastic energy return (59% of positive work, comparable to empirical observations), the active work could account for most of the metabolic cost of human running (about 68%, assuming human-like muscle efficiency). We also introduce a previously unappreciated energetic cost for rapid production of force, that helps explain the relatively smooth ground reaction forces of running, and why muscles might also actively perform negative work. With both work and rapid force costs, the model reproduces the energetics of human running at a range of speeds on level ground and on slopes. Although elastic return is key to energy savings, there are still losses that require restorative muscle work, which can cost substantial energy during running.
Collapse
Affiliation(s)
| | - Arthur D. Kuo
- Faculty of Kinesiology, University of Calgary, Alberta, Canada
- Biomedical Engineering Program, University of Calgary, Alberta, Canada
| |
Collapse
|
20
|
Wheatley MGA, Thelen DG, Deluzio KJ, Rainbow MJ. Knee extension moment arm variations relate to mechanical function in walking and running. J R Soc Interface 2021; 18:20210326. [PMID: 34404228 PMCID: PMC8371375 DOI: 10.1098/rsif.2021.0326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/22/2021] [Indexed: 11/12/2022] Open
Abstract
The patellofemoral joint plays a crucial mechanical role during walking and running. It increases the knee extensor mechanism's moment arm and reduces the knee extension muscle forces required to generate the extension moment that supports body weight, prevents knee buckling and propels the centre of mass. However, the mechanical implications of moment arm variation caused by patellofemoral and tibiofemoral motion remain unclear. We used a data-driven musculoskeletal model with a 12-degree-of-freedom knee to simulate the knee extension moment arm during walking and running. Using a geometric method to calculate the moment arm, we found smaller moment arms during running than during walking in the swing phase. Overall, knee flexion causes differences between running and walking moment arms as increased flexion causes a posterior shift in the tibiofemoral rotation axis and patella articulation with the distal femur. Moment arms were also affected by knee motion direction and best predicted by separating by direction instead of across the entire gait cycle. Furthermore, we found high inter-subject variation in the moment arm that was largely explained by out-of-plane motion. Our results are consistent with the concept that shorter moment arms increase the effective mechanical advantage of the knee and may contribute to increased running velocity.
Collapse
Affiliation(s)
- Mitchell G. A. Wheatley
- Department of Mechanical and Materials Engineering, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Darryl G. Thelen
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kevin J. Deluzio
- Department of Mechanical and Materials Engineering, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Michael J. Rainbow
- Department of Mechanical and Materials Engineering, Queen's University, Kingston, Ontario, Canada K7L 3N6
| |
Collapse
|
21
|
Shepertycky M, Burton S, Dickson A, Liu YF, Li Q. Removing energy with an exoskeleton reduces the metabolic cost of walking. Science 2021; 372:957-960. [PMID: 34045349 DOI: 10.1126/science.aba9947] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 10/27/2020] [Accepted: 03/08/2021] [Indexed: 12/23/2022]
Abstract
Evolutionary pressures have led humans to walk in a highly efficient manner that conserves energy, making it difficult for exoskeletons to reduce the metabolic cost of walking. Despite the challenge, some exoskeletons have managed to lessen the metabolic expenditure of walking, either by adding or storing and returning energy. We show that the use of an exoskeleton that strategically removes kinetic energy during the swing period of the gait cycle reduces the metabolic cost of walking by 2.5 ± 0.8% for healthy male users while converting the removed energy into 0.25 ± 0.02 watts of electrical power. By comparing two loading profiles, we demonstrate that the timing and magnitude of energy removal are vital for successful metabolic cost reduction.
Collapse
Affiliation(s)
- Michael Shepertycky
- Department of Mechanical and Materials Engineering, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Sarah Burton
- Department of Electrical and Computer Engineering, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Andrew Dickson
- Department of Electrical and Computer Engineering, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Yan-Fei Liu
- Department of Electrical and Computer Engineering, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Qingguo Li
- Department of Mechanical and Materials Engineering, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
22
|
Monte A, Nardello F, Zamparo P. Mechanical advantage and joint function of the lower limb during hopping at different frequencies. J Biomech 2021; 118:110294. [PMID: 33581440 DOI: 10.1016/j.jbiomech.2021.110294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 01/18/2021] [Accepted: 01/23/2021] [Indexed: 11/29/2022]
Abstract
Mechanical output at a joint level could be influenced by its leverage characteristics and by its functional behaviour and both could change to accommodate the demands of a given locomotor task. In this study, the mechanical power generated at the knee and ankle joints and their functional indexes (i.e. damper, strut, spring and motor like-function) were calculated by using 3D kinematic and kinetic data during hopping at 2, 2.5, 3 and 3.5 Hz. The effective mechanical advantage (i.e. the ratio between internal and external moment arm) of the knee (EMAK) and ankle (EMAA) and joint stiffness were calculated as well. Joint stiffness increased with frequency whereas positive and negative joint power decreased with it, the ankle power values being always larger (20-50%) than those at the knee. EMAA reached its highest value (0.4) during the propulsive phase at 3 Hz whereas no significant changes in EMAK were observed as a function of frequency in both the absorption and propulsive phases. Knee joint-functional index shifted from a spring to a strut-like function with increasing frequency (from 56 to 8% and from 4 to 51%, respectively) while the ankle operated mainly as a spring (from 90 to 53%), its damper and motor-like indexes being negligible at all frequencies (<5%). Therefore, in hopping, the knee works to dissipate mechanical energy (the combination of its damper and strut indexes increase from 23 to 72% at these frequencies) and the primary source of mechanical power is attributable to the elastic function of the ankle.
Collapse
Affiliation(s)
- Andrea Monte
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Via Felice Casorati, 43, 37131 Verona, Italy
| | - Francesca Nardello
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Via Felice Casorati, 43, 37131 Verona, Italy
| | - Paola Zamparo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Via Felice Casorati, 43, 37131 Verona, Italy.
| |
Collapse
|
23
|
Beck ON, Golyski PR, Sawicki GS. Adding carbon fiber to shoe soles may not improve running economy: a muscle-level explanation. Sci Rep 2020; 10:17154. [PMID: 33051532 PMCID: PMC7555508 DOI: 10.1038/s41598-020-74097-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 09/21/2020] [Indexed: 01/13/2023] Open
Abstract
In an attempt to improve their distance-running performance, many athletes race with carbon fiber plates embedded in their shoe soles. Accordingly, we sought to establish whether, and if so how, adding carbon fiber plates to shoes soles reduces athlete aerobic energy expenditure during running (improves running economy). We tested 15 athletes as they ran at 3.5 m/s in four footwear conditions that varied in shoe sole bending stiffness, modified by carbon fiber plates. For each condition, we quantified athlete aerobic energy expenditure and performed biomechanical analyses, which included the use of ultrasonography to examine soleus muscle dynamics in vivo. Overall, increased footwear bending stiffness lengthened ground contact time (p = 0.048), but did not affect ankle (p ≥ 0.060), knee (p ≥ 0.128), or hip (p ≥ 0.076) joint angles or moments. Additionally, increased footwear bending stiffness did not affect muscle activity (all seven measured leg muscles (p ≥ 0.146)), soleus active muscle volume (p = 0.538; d = 0.241), or aerobic power (p = 0.458; d = 0.04) during running. Hence, footwear bending stiffness does not appear to alter the volume of aerobic energy consuming muscle in the soleus, or any other leg muscle, during running. Therefore, adding carbon fiber plates to shoe soles slightly alters whole-body and calf muscle biomechanics but may not improve running economy.
Collapse
Affiliation(s)
- Owen N Beck
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA. .,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Pawel R Golyski
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.,Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gregory S Sawicki
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.,Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
24
|
Beck ON, Gosyne J, Franz JR, Sawicki GS. Cyclically producing the same average muscle-tendon force with a smaller duty increases metabolic rate. Proc Biol Sci 2020; 287:20200431. [PMID: 32811308 DOI: 10.1098/rspb.2020.0431] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ground contact duration and stride frequency each affect muscle metabolism and help scientists link walking and running biomechanics to metabolic energy expenditure. While these parameters are often used independently, the product of ground contact duration and stride frequency (i.e. duty factor) may affect muscle contractile mechanics. Here, we sought to separate the metabolic influence of the duration of active force production, cycle frequency and duty factor. Human participants produced cyclic contractions using their soleus (which has a relatively homogeneous fibre type composition) at prescribed cycle-average ankle moments on a fixed dynamometer. Participants produced these ankle moments over short, medium and long durations while maintaining a constant cycle frequency. Overall, decreased duty factor did not affect cycle-average fascicle force (p ≥ 0.252) but did increase net metabolic power (p ≤ 0.022). Mechanistically, smaller duty factors increased maximum muscle-tendon force (p < 0.001), further stretching in-series tendons and shifting soleus fascicles to shorter lengths and faster velocities, thereby increasing soleus total active muscle volume (p < 0.001). Participant soleus total active muscle volume well-explained net metabolic power (r = 0.845; p < 0.001). Therefore, cyclically producing the same cycle-average muscle-tendon force using a decreased duty factor increases metabolic energy expenditure by eliciting less economical muscle contractile mechanics.
Collapse
Affiliation(s)
- Owen N Beck
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 455 Callaway Manufacturing Research Center Building, 813 Ferst Drive NW, Atlanta, GA 30332, USA.,The School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jonathan Gosyne
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 455 Callaway Manufacturing Research Center Building, 813 Ferst Drive NW, Atlanta, GA 30332, USA
| | - Jason R Franz
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Gregory S Sawicki
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 455 Callaway Manufacturing Research Center Building, 813 Ferst Drive NW, Atlanta, GA 30332, USA.,The School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
25
|
Nigg BM, Cigoja S, Nigg SR. Effects of running shoe construction on performance in long distance running. FOOTWEAR SCIENCE 2020. [DOI: 10.1080/19424280.2020.1778799] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Benno M. Nigg
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Sasa Cigoja
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Sandro R. Nigg
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
| |
Collapse
|
26
|
Nuckols RW, Sawicki GS. Impact of elastic ankle exoskeleton stiffness on neuromechanics and energetics of human walking across multiple speeds. J Neuroeng Rehabil 2020; 17:75. [PMID: 32539840 PMCID: PMC7294672 DOI: 10.1186/s12984-020-00703-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/21/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Elastic ankle exoskeletons with intermediate stiffness springs in parallel with the human plantarflexors can reduce the metabolic cost of walking by ~ 7% at 1.25 m s- 1. In a move toward 'real-world' application, we examined whether the unpowered approach has metabolic benefit across a range of walking speeds, and if so, whether the optimal exoskeleton stiffness was speed dependent. We hypothesized that, for any walking speed, there would be an optimal ankle exoskeleton stiffness - not too compliant and not too stiff - that minimizes the user's metabolic cost. In addition, we expected the optimal stiffness to increase with walking speed. METHODS Eleven participants walked on a level treadmill at 1.25, 1.50, and 1.75 m s- 1 while we used a state-of-the-art exoskeleton emulator to apply bilateral ankle exoskeleton assistance at five controlled rotational stiffnesses (kexo = 0, 50, 100, 150, 250 Nm rad- 1). We measured metabolic cost, lower-limb joint mechanics, and EMG of muscles crossing the ankle, knee, and hip. RESULTS Metabolic cost was significantly reduced at the lowest exoskeleton stiffness (50 Nm rad- 1) for assisted walking at both 1.25 (4.2%; p = 0.0162) and 1.75 m s- 1 (4.7%; p = 0.0045). At these speeds, the metabolically optimal exoskeleton stiffness provided peak assistive torques of ~ 0.20 Nm kg- 1 that resulted in reduced biological ankle moment of ~ 12% and reduced soleus muscle activity of ~ 10%. We found no stiffness that could reduce the metabolic cost of walking at 1.5 m s- 1. Across all speeds, the non-weighted sum of soleus and tibialis anterior activation rate explained the change in metabolic rate due to exoskeleton assistance (p < 0.05; R2 > 0.56). CONCLUSIONS Elastic ankle exoskeletons with low rotational stiffness reduce users' metabolic cost of walking at slow and fast but not intermediate walking speed. The relationship between the non-weighted sum of soleus and tibialis activation rate and metabolic cost (R2 > 0.56) indicates that muscle activation may drive metabolic demand. Future work using simulations and ultrasound imaging will get 'under the skin' and examine the interaction between exoskeleton stiffness and plantarflexor muscle dynamics to better inform stiffness selection in human-machine systems.
Collapse
Affiliation(s)
- Richard W Nuckols
- Joint Department of Biomedical Engineering, UNC Chapel Hill and NC State University, Raleigh, NC, USA.
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA.
| | - Gregory S Sawicki
- Joint Department of Biomedical Engineering, UNC Chapel Hill and NC State University, Raleigh, NC, USA.
- George W. Woodruff School of Mechanical Engineering and School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
27
|
Ray SF, Takahashi KZ. Gearing Up the Human Ankle-Foot System to Reduce Energy Cost of Fast Walking. Sci Rep 2020; 10:8793. [PMID: 32472010 PMCID: PMC7260196 DOI: 10.1038/s41598-020-65626-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 05/04/2020] [Indexed: 01/03/2023] Open
Abstract
During locomotion, the human ankle-foot system dynamically alters its gearing, or leverage of the ankle joint on the ground. Shifting ankle-foot gearing regulates speed of plantarflexor (i.e., calf muscle) contraction, which influences economy of force production. Here, we tested the hypothesis that manipulating ankle-foot gearing via stiff-insoled shoes will change the force-velocity operation of plantarflexor muscles and influence whole-body energy cost differently across walking speeds. We used in vivo ultrasound imaging to analyze fascicle contraction mechanics and whole-body energy expenditure across three walking speeds (1.25, 1.75, and 2.0 m/s) and three levels of foot stiffness. Stiff insoles increased leverage of the foot upon the ground (p < 0.001), and increased dorsiflexion range-of-motion (p < 0.001). Furthermore, stiff insoles resulted in a 15.9% increase in average force output (p < 0.001) and 19.3% slower fascicle contraction speed (p = 0.002) of the major plantarflexor (Soleus) muscle, indicating a shift in its force-velocity operating region. Metabolically, the stiffest insoles increased energy cost by 9.6% at a typical walking speed (1.25 m/s, p = 0.026), but reduced energy cost by 7.1% at a fast speed (2.0 m/s, p = 0.040). Stiff insoles appear to add an extra gear unavailable to the human foot, which can enhance muscular performance in a specific locomotion task.
Collapse
Affiliation(s)
- Samuel F Ray
- Department of Biomechanics, University of Nebraska at Omaha, 6160 University Dr. South, Omaha, NE, 68182, USA
| | - Kota Z Takahashi
- Department of Biomechanics, University of Nebraska at Omaha, 6160 University Dr. South, Omaha, NE, 68182, USA.
| |
Collapse
|
28
|
|
29
|
The Biomechanics of Competitive Male Runners in Three Marathon Racing Shoes: A Randomized Crossover Study. Sports Med 2020; 49:133-143. [PMID: 30460454 DOI: 10.1007/s40279-018-1024-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND We have shown that a prototype marathon racing shoe reduced the metabolic cost of running for all 18 participants in our sample by an average of 4%, compared to two well-established racing shoes. Gross measures of biomechanics showed minor differences and could not explain the metabolic savings. OBJECTIVE To explain the metabolic savings by comparing the mechanics of the shoes, leg, and foot joints during the stance phase of running. METHODS Ten male competitive runners, who habitually rearfoot strike ran three 5-min trials in prototype shoes (NP) and two established marathon shoes, the Nike Zoom Streak 6 (NS) and the adidas adizero Adios BOOST 2 (AB), at 16 km/h. We measured ground reaction forces and 3D kinematics of the lower limbs. RESULTS Hip and knee joint mechanics were similar between the shoes, but peak ankle extensor moment was smaller in NP versus AB shoes. Negative and positive work rates at the ankle were lower in NP shoes versus the other shoes. Dorsiflexion and negative work at the metatarsophalangeal (MTP) joint were reduced in the NP shoes versus the other shoes. Substantial mechanical energy was stored/returned in compressing the NP midsole foam, but not in bending the carbon-fiber plate. CONCLUSION The metabolic savings of the NP shoes appear to be due to: (1) superior energy storage in the midsole foam, (2) the clever lever effects of the carbon-fiber plate on the ankle joint mechanics, and (3) the stiffening effects of the plate on the MTP joint.
Collapse
|
30
|
McLeod AR, Bruening D, Johnson AW, Ward J, Hunter I. Improving running economy through altered shoe bending stiffness across speeds. FOOTWEAR SCIENCE 2020. [DOI: 10.1080/19424280.2020.1734870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
| | | | | | - Jared Ward
- Exercise Sciences, Brigham Young University, Provo, UT, USA
| | - Iain Hunter
- Exercise Sciences, Brigham Young University, Provo, UT, USA
| |
Collapse
|
31
|
Nuckols RW, Dick TJM, Beck ON, Sawicki GS. Ultrasound imaging links soleus muscle neuromechanics and energetics during human walking with elastic ankle exoskeletons. Sci Rep 2020; 10:3604. [PMID: 32109239 PMCID: PMC7046782 DOI: 10.1038/s41598-020-60360-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/07/2020] [Indexed: 11/16/2022] Open
Abstract
Unpowered exoskeletons with springs in parallel to human plantar flexor muscle-tendons can reduce the metabolic cost of walking. We used ultrasound imaging to look 'under the skin' and measure how exoskeleton stiffness alters soleus muscle contractile dynamics and shapes the user's metabolic rate during walking. Eleven participants (4F, 7M; age: 27.7 ± 3.3 years) walked on a treadmill at 1.25 m s-1 and 0% grade with elastic ankle exoskeletons (rotational stiffness: 0-250 Nm rad-1) in one training and two testing days. Metabolic savings were maximized (4.2%) at a stiffness of 50 Nm rad-1. As exoskeleton stiffness increased, the soleus muscle operated at longer lengths and improved economy (force/activation) during early stance, but this benefit was offset by faster shortening velocity and poorer economy in late stance. Changes in soleus activation rate correlated with changes in users' metabolic rate (p = 0.038, R2 = 0.44), highlighting a crucial link between muscle neuromechanics and exoskeleton performance; perhaps informing future 'muscle-in-the loop' exoskeleton controllers designed to steer contractile dynamics toward more economical force production.
Collapse
Affiliation(s)
- R W Nuckols
- Joint Department of Biomedical Engineering, UNC Chapel Hill and NC State University, Raleigh, NC, 27607, USA.
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA.
| | - T J M Dick
- Joint Department of Biomedical Engineering, UNC Chapel Hill and NC State University, Raleigh, NC, 27607, USA
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - O N Beck
- George W. Woodruff School of Mechanical Engineering and School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - G S Sawicki
- Joint Department of Biomedical Engineering, UNC Chapel Hill and NC State University, Raleigh, NC, 27607, USA.
- George W. Woodruff School of Mechanical Engineering and School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
32
|
Cigoja S, Asmussen MJ, Firminger CR, Fletcher JR, Edwards WB, Nigg BM. The Effects of Increased Midsole Bending Stiffness of Sport Shoes on Muscle-Tendon Unit Shortening and Shortening Velocity: a Randomised Crossover Trial in Recreational Male Runners. SPORTS MEDICINE - OPEN 2020; 6:9. [PMID: 32030489 PMCID: PMC7005237 DOI: 10.1186/s40798-020-0241-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/31/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Individual compliances of the foot-shoe interface have been suggested to store and release elastic strain energy via ligamentous and tendinous structures or by increased midsole bending stiffness (MBS), compression stiffness, and resilience of running shoes. It is unknown, however, how these compliances interact with each other when the MBS of a running shoe is increased. The purpose of this study was to investigate how structures of the foot-shoe interface are influenced during running by changes to the MBS of sport shoes. METHODS A randomised crossover trial was performed, where 13 male, recreational runners ran on an instrumented treadmill at 3.5 m·s-1 while motion capture was used to estimate foot arch, plantar muscle-tendon unit (pMTU), and shank muscle-tendon unit (sMTU) behaviour in two conditions: (1) control shoe and (2) the same shoe with carbon fibre plates inserted to increase the MBS. RESULTS Running in a shoe with increased MBS resulted in less deformation of the arch (mean ± SD; stiff, 7.26 ± 1.78°; control, 8.84 ± 2.87°; p ≤ 0.05), reduced pMTU shortening (stiff, 4.39 ± 1.59 mm; control, 6.46 ± 1.42 mm; p ≤ 0.01), and lower shortening velocities of the pMTU (stiff, - 0.21 ± 0.03 m·s-1; control, - 0.30 ± 0.05 m·s-1; p ≤ 0.01) and sMTU (stiff, - 0.35 ± 0.08 m·s-1; control, - 0.45 ± 0.11 m·s-1; p ≤ 0.001) compared to a control condition. The positive and net work performed at the arch and pMTU, and the net work at the sMTU were significantly lower in the stiff compared to the control condition. CONCLUSION The findings of this study showed that if a compliance of the foot-shoe interface is altered during running (e.g. by increasing the MBS of a shoe), the mechanics of other structures change as well. This could potentially affect long-distance running performance.
Collapse
Affiliation(s)
- Sasa Cigoja
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.
| | - Michael J Asmussen
- Department of Biology, Faculty of Science & Technology, Mount Royal University, Calgary, AB, Canada
| | - Colin R Firminger
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| | - Jared R Fletcher
- Department of Health and Physical Education, Mount Royal University, Calgary, AB, Canada
| | - W Brent Edwards
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| | - Benno M Nigg
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
33
|
Taboga P, Drees EK, Beck ON, Grabowski AM. Prosthetic model, but not stiffness or height, affects maximum running velocity in athletes with unilateral transtibial amputations. Sci Rep 2020; 10:1763. [PMID: 32019938 PMCID: PMC7000778 DOI: 10.1038/s41598-019-56479-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/11/2019] [Indexed: 11/09/2022] Open
Abstract
The running-specific prosthetic (RSP) configuration used by athletes with transtibial amputations (TTAs) likely affects performance. Athletes with unilateral TTAs are prescribed C- or J-shaped RSPs with a manufacturer-recommended stiffness category based on body mass and activity level, and height based on unaffected leg and residual limb length. We determined how 15 different RSP model, stiffness, and height configurations affect maximum running velocity (vmax) and the underlying biomechanics. Ten athletes with unilateral TTAs ran at 3 m/s to vmax on a force-measuring treadmill. vmax was 3.8-10.7% faster when athletes used J-shaped versus C-shaped RSP models (p < 0.05), but was not affected by stiffness category, actual stiffness (kN/m), or height (p = 0.72, p = 0.37, and p = 0.11, respectively). vmax differences were explained by vertical ground reaction forces (vGRFs), stride kinematics, leg stiffness, and symmetry. While controlling for velocity, use of J-shaped versus C-shaped RSPs resulted in greater stance average vGRFs, slower step frequencies, and longer step lengths (p < 0.05). Stance average vGRFs were less asymmetric using J-shaped versus C-shaped RSPs (p < 0.05). Contact time and leg stiffness were more asymmetric using the RSP model that elicited the fastest vmax (p < 0.05). Thus, RSP geometry (J-shape versus C-shape), but not stiffness or height, affects vmax in athletes with unilateral TTAs.
Collapse
Affiliation(s)
- Paolo Taboga
- California State University, Sacramento, CA, USA
| | | | - Owen N Beck
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Alena M Grabowski
- University of Colorado Boulder, Boulder, CO, USA. .,VA Eastern Colorado Healthcare System, Denver, CO, USA.
| |
Collapse
|
34
|
Taboga P, Kram R. Modelling the effect of curves on distance running performance. PeerJ 2019; 7:e8222. [PMID: 31879575 PMCID: PMC6927354 DOI: 10.7717/peerj.8222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/15/2019] [Indexed: 11/20/2022] Open
Abstract
Background Although straight ahead running appears to be faster, distance running races are predominately contested on tracks or roads that involve curves. How much faster could world records be run on straight courses? Methods Here,we propose a model to explain the slower times observed for races involving curves compared to straight running. For a given running velocity, on a curve, the average axial leg force (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${\overline{F}}_{a}$\end{document}F¯a) of a runner is increased due to the need to exert centripetal force. The increased \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${\overline{F}}_{a}$\end{document}F¯a presumably requires a greater rate of metabolic energy expenditure than straight running at the same velocity. We assumed that distance runners maintain a constant metabolic rate and thus slow down on curves accordingly. We combined published equations to estimate the change in the rate of gross metabolic energy expenditure as a function of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${\overline{F}}_{a}$\end{document}F¯a, where \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${\overline{F}}_{a}$\end{document}F¯a depends on curve radius and velocity, with an equation for the gross rate of oxygen uptake as a function of velocity. We compared performances between straight courses and courses with different curve radii and geometries. Results The differences between our model predictions and the actual indoor world records, are between 0.45% in 3,000 m and 1.78% in the 1,500 m for males, and 0.59% in the 5,000 m and 1.76% in the 3,000 m for females. We estimate that a 2:01:39 marathon on a 400 m track, corresponds to 2:01:32 on a straight path and to 2:02:00 on a 200 m track. Conclusion Our model predicts that compared to straight racecourses, the increased time due to curves, is notable for smaller curve radii and for faster velocities. But, for larger radii and slower speeds, the time increase is negligible and the general perception of the magnitude of the effects of curves on road racing performance is not supported by our calculations.
Collapse
Affiliation(s)
- Paolo Taboga
- Kinesiology Department, California State University, Sacramento, CA, United States of America
| | - Rodger Kram
- Integrative Physiology Department, University of Colorado, Boulder, CO, United States of America
| |
Collapse
|
35
|
Swinnen W, Hoogkamer W, De Groote F, Vanwanseele B. Habitual foot strike pattern does not affect simulated triceps surae muscle metabolic energy consumption during running. ACTA ACUST UNITED AC 2019; 222:jeb.212449. [PMID: 31704899 DOI: 10.1242/jeb.212449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/02/2019] [Indexed: 12/26/2022]
Abstract
Foot strike pattern affects ankle joint work and triceps surae muscle-tendon dynamics during running. Whether these changes in muscle-tendon dynamics also affect triceps surae muscle energy consumption is still unknown. In addition, as the triceps surae muscle accounts for a substantial amount of the whole-body metabolic energy consumption, changes in triceps surae energy consumption may affect whole-body metabolic energy consumption. However, direct measurements of muscle metabolic energy consumption during dynamic movements is difficult. Model-based approaches can be used to estimate individual muscle and whole-body metabolic energy consumption based on Hill type muscle models. In this study, we use an integrated experimental and dynamic optimization approach to compute muscle states (muscle forces, lengths, velocities, excitations and activations) of 10 habitual midfoot/forefoot striking and nine habitual rearfoot striking runners while running at 10 and 14 km h-1 The Achilles tendon stiffness of the musculoskeletal model was adapted to fit experimental ultrasound data of the gastrocnemius medialis muscle during ground contact. Next, we calculated triceps surae muscle and whole-body metabolic energy consumption using four different metabolic energy models provided in the literature. Neither triceps surae metabolic energy consumption (P>0.35) nor whole-body metabolic energy consumption (P>0.14) was different between foot strike patterns, regardless of the energy model used or running speed tested. Our results provide new evidence that midfoot/forefoot and rearfoot strike patterns are metabolically equivalent.
Collapse
Affiliation(s)
- Wannes Swinnen
- Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven, 3001 Leuven, Belgium
| | - Wouter Hoogkamer
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Friedl De Groote
- Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven, 3001 Leuven, Belgium
| | - Benedicte Vanwanseele
- Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
36
|
Moore IS, Ashford KJ, Cross C, Hope J, Jones HSR, McCarthy-Ryan M. Humans Optimize Ground Contact Time and Leg Stiffness to Minimize the Metabolic Cost of Running. Front Sports Act Living 2019; 1:53. [PMID: 33344976 PMCID: PMC7739683 DOI: 10.3389/fspor.2019.00053] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022] Open
Abstract
Trained endurance runners appear to fine-tune running mechanics to minimize metabolic cost. Referred to as self-optimization, the support for this concept has primarily been collated from only a few gait (e.g., stride frequency, length) and physiological (e.g., oxygen consumption, heart rate) characteristics. To extend our understanding, the aim of this study was to examine the effect of manipulating ground contact time on the metabolic cost of running in trained endurance runners. Additionally, the relationships between metabolic cost, and leg stiffness and perceived effort were examined. Ten participants completed 5 × 6-min treadmill running conditions. Self-selected ground contact time and step frequency were determined during habitual running, which was followed by ground contact times being increased or decreased in four subsequent conditions whilst maintaining step frequency (2.67 ± 0.15 Hz). The same self-selected running velocity was used across all conditions for each participant (12.7 ± 1.6 km · h-1). Oxygen consumption was used to compute the metabolic cost of running and ratings of perceived exertion (RPE) were recorded for each run. Ground contact time and step frequency were used to estimate leg stiffness. Identifiable minimums and a curvilinear relationship between ground contact time and metabolic cost was found for all runners (r 2 = 0.84). A similar relationship was observed between leg stiffness and metabolic cost (r 2 = 0.83). Most (90%) runners self-selected a ground contact time and leg stiffness that produced metabolic costs within 5% of their mathematical optimal. The majority (n = 6) of self-selected ground contact times were shorter than mathematical optimals, whilst the majority (n = 7) of self-selected leg stiffness' were higher than mathematical optimals. Metabolic cost and RPE were moderately associated (r s = 0.358 p = 0.011), but controlling for condition (habitual/manipulated) weakened this relationship (r s = 0.302, p = 0.035). Both ground contact time and leg stiffness appear to be self-optimized characteristics, as trained runners were operating at or close to their mathematical optimal. The majority of runners favored a self-selected gait that may rely on elastic energy storage and release due to shorter ground contact times and higher leg stiffness's than optimal. Using RPE as a surrogate measure of metabolic cost during manipulated running gait is not recommended.
Collapse
Affiliation(s)
- Isabel S Moore
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Kelly J Ashford
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Charlotte Cross
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Jack Hope
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Holly S R Jones
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Molly McCarthy-Ryan
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| |
Collapse
|
37
|
Allen SP, Grabowski AM. Hopping with degressive spring stiffness in a full-leg exoskeleton lowers metabolic cost compared with progressive spring stiffness and hopping without assistance. J Appl Physiol (1985) 2019; 127:520-530. [PMID: 31219770 DOI: 10.1152/japplphysiol.01003.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
When humans hop with a passive-elastic exoskeleton with springs in parallel with both legs, net metabolic power (Pmet) decreases compared with normal hopping (NH). Furthermore, humans retain near-constant total vertical stiffness (ktot) when hopping with such an exoskeleton. To determine how spring stiffness profile affects Pmet and biomechanics, 10 subjects hopped on both legs normally and with three full-leg exoskeletons that each used a different spring stiffness profile at 2.4, 2.6, 2.8, and 3.0 Hz. Each subject hopped with an exoskeleton that had a degressive spring stiffness (DGexo), where stiffness, the slope of force vs. displacement, is initially high but decreases with greater displacement, linear spring stiffness (LNexo), where stiffness is constant, or progressive spring stiffness (PGexo), where stiffness is initially low but increases with greater displacement. Compared with NH, use of the DGexo, LNexo, and PGexo numerically resulted in 13-24% lower, 4-12% lower, and 0-8% higher Pmet, respectively, at 2.4-3.0 Hz. Hopping with the DGexo reduced Pmet compared with NH at 2.4-2.6 Hz (P ≤ 0.0457) and reduced Pmet compared with the PGexo at 2.4-2.8 Hz (P < 0.001). ktot while hopping with each exoskeleton was not different compared with NH, suggesting that humans adjust leg stiffness to maintain overall stiffness regardless of the spring stiffness profile in an exoskeleton. Furthermore, the DGexo provided the greatest elastic energy return, followed by LNexo and PGexo (P ≤ 0.001). Future full-leg, passive-elastic exoskeleton designs for hopping, and presumably running, should use a DGexo rather than an LNexo or a PGexo to minimize metabolic demand.NEW & NOTEWORTHY When humans hop at 2.4-3.0 Hz normally and with an exoskeleton with different spring stiffness profiles in parallel to the legs, net metabolic power is lowest when hopping with an exoskeleton with degressive spring stiffness. Total vertical stiffness is constant when using an exoskeleton with linear or nonlinear spring stiffness compared with normal hopping. In-parallel spring stiffness influences net metabolic power and biomechanics and should be considered when designing passive-elastic exoskeletons for hopping and running.
Collapse
Affiliation(s)
- Stephen P Allen
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Alena M Grabowski
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado.,Department of Veterans Affairs Eastern Colorado Healthcare System, Denver, Colorado
| |
Collapse
|
38
|
Kipp S, Kram R, Hoogkamer W. Extrapolating Metabolic Savings in Running: Implications for Performance Predictions. Front Physiol 2019; 10:79. [PMID: 30804807 PMCID: PMC6378703 DOI: 10.3389/fphys.2019.00079] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/22/2019] [Indexed: 11/13/2022] Open
Abstract
Training, footwear, nutrition, and racing strategies (i.e., drafting) have all been shown to reduce the metabolic cost of distance running (i.e., improve running economy). However, how these improvements in running economy (RE) quantitatively translate into faster running performance is less established. Here, we quantify how metabolic savings translate into faster running performance, considering both the inherent rate of oxygen uptake-velocity relation and the additional cost of overcoming air resistance when running overground. We collate and compare five existing equations for oxygen uptake-velocity relations across wide velocity ranges. Because the oxygen uptake vs. velocity relation is non-linear, for velocities slower than ∼3 m/s, the predicted percent improvement in velocity is slightly greater than the percent improvement in RE. For velocities faster than ∼3 m/s, the predicted percent improvement in velocity is less than the percent improvements in RE. At 5.5 m/s, i.e., world-class marathon pace, the predicted percent improvement in velocity is ∼2/3rds of the percent improvement in RE. For example, at 2:04 marathon pace, a 3% improvement in RE translates to a 1.97% faster velocity or 2:01:36, almost exactly equal to the recently set world record.
Collapse
Affiliation(s)
- Shalaya Kipp
- Department of Integrative Physiology, University of Colorado, Boulder, CO, United States
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Rodger Kram
- Department of Integrative Physiology, University of Colorado, Boulder, CO, United States
| | - Wouter Hoogkamer
- Department of Integrative Physiology, University of Colorado, Boulder, CO, United States
| |
Collapse
|
39
|
Terrestrial locomotion energy costs vary considerably between species: no evidence that this is explained by rate of leg force production or ecology. Sci Rep 2019; 9:656. [PMID: 30679474 PMCID: PMC6345976 DOI: 10.1038/s41598-018-36565-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/14/2018] [Indexed: 12/28/2022] Open
Abstract
Inter-specifically, relative energy costs of terrestrial transport vary several-fold. Many pair-wise differences of locomotor costs between similarly-sized species are considerable, and are yet to be explained by morphology or gait kinematics. Foot contact time, a proxy for rate of force production, is a strong predictor of locomotor energy costs across species of different size and might predict variability between similarly sized species. We tested for a relationship between foot contact time and metabolic rate during locomotion from published data. We investigated the phylogenetic correlation between energy expenditure rate and foot contact time, conditioned on fixed effects of mass and speed. Foot contact time does not explain variance in rate of energy expenditure during locomotion, once speed and body size are accounted for. Thus, perhaps surprisingly, inter-specific differences in the mass-independent net cost of terrestrial transport (NCOT) are not explained by rates of force production. We also tested for relationships between locomotor energy costs and eco-physiological variables. NCOT did not relate to any of the tested eco-physiological variables; we thus conclude either that interspecific differences in transport cost have no influence on macroecological and macrophysiological patterns, or that NCOT is a poor indicator of animal energy expenditure beyond the treadmill.
Collapse
|
40
|
Carrard A, Fontana E, Malatesta D. Mechanical Determinants of the U-Shaped Speed-Energy Cost of Running Relationship. Front Physiol 2018; 9:1790. [PMID: 30618803 PMCID: PMC6305502 DOI: 10.3389/fphys.2018.01790] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/28/2018] [Indexed: 12/05/2022] Open
Abstract
Purpose: The aim of this study was to investigate the relationship between the energy cost of running (Cr) and speed and its mechanical determinants by comparing running in normal [100% body weight (BW)] and reduced (20% and 60% BW) gravity conditions at several speeds (2.25, 3.17, 4.08, and 5.00 m·s−1) in experienced runners. Methods: Twelve experienced runners (24.6 ± 5.4 year) ran on an AlterG treadmill in a partially randomized order at the four running speeds and at the three gravity conditions in order to assess Cr, spatiotemporal parameters, spring-mass characteristics and elastic energy (EL) during running. Results: For the three gravity conditions, the speed-Cr per kg of body mass relationship was curvilinear (significant speed effect: P < 0.001) and was significantly downward shifted with reduced gravity (100%>60%>20% BW; P < 0.001). EL, expressed in J·step−1, was significantly higher at 100% BW than at 60 and 20% BW and at 60% BW than at 20% BW (significant gravity effect: P < 0.001) with a significant increase in EL per step at faster speeds for the 3 gravity conditions (P < 0.001). EL, expressed in J·kg−1·m−1, was significantly downward shifted with gravity (100%>60%>20% BW; P < 0.001), with no significant speed effect (P = 0.39). Conclusions: Our findings showed that, for the three gravity conditions, the speed-Cr relationship was curvilinear, and the optimization of the stretch-shortening cycle and muscle activation in the muscle-tendon unit may be involved to explain these U-shaped relationships, especially at normal terrestrial gravitational conditions (100% BW). The U-shaped speed-Cr per kg of the body mass relationship was shifted downward in hypogravity conditions, which was characterized by decreased EL compared to 100% BW. These mechanisms may contribute to the less than proportional decrease in Cr per kg of body mass relative to gravity.
Collapse
Affiliation(s)
- Apolline Carrard
- Faculty of Biology and Medicine, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Elisa Fontana
- Faculty of Biology and Medicine, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Davide Malatesta
- Faculty of Biology and Medicine, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
41
|
Knight K. Muscles make the difference when determining runners’ energy consumption. J Exp Biol 2018. [DOI: 10.1242/jeb.188896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|