1
|
Lammers AR, Stakes SA. Kinetics of Symmetrical Versus Asymmetrical In-Phase Gaits During Arboreal Locomotion. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024. [PMID: 39469840 DOI: 10.1002/jez.2878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024]
Abstract
Quadrupedal animals traveling on arboreal supports change aspects of locomotion to avoid slipping and falls. This study compares locomotor biomechanics in two small mammals: first, the gray short-tailed opossum (Monodelphis domestica) predominantly trots, which is a symmetrical gait. The second species, the Siberian chipmunk (Tamias sibiricus), primarily bounds or half-bounds. Trotting and bounding differ fundamentally in three aspects: location and timing of hand and foot placement; in the way that the trunk bends (trotting, mediolateral bending; bounding, flexion, and extension); and in the dynamics of the center of mass. Both species ran on a flat track and a 2 cm diameter cylindrical track, instrumented with a force plate or pole. For bounding chipmunks, the force pole was modified to measure force only on the right side. We measured speed, duty factor, and force, and calculated vertical, braking, propulsive, and net mediolateral impulses. Vertical and fore-aft impulses were different between trotting opossums and bounding chipmunks, but between trackway types, these impulses were similar within each species. The modifications used by each species to travel on arboreal supports were similar, except in one important respect. Net mediolateral impulse in opossums changed from laterally directed on the flat trackway to medial on the arboreal. But in chipmunks, these impulses on the flat track were medially-directed, and on the arboreal track, the amount of variability was substantially greater. We conclude that chipmunks-and perhaps any bounding animal-are less consistent from stride to stride in their locomotion. This inconsistency requires constant medial and lateral impulses to correct their trajectory when traveling on arboreal surfaces.
Collapse
Affiliation(s)
- Andrew R Lammers
- Department of Health Sciences and Human Performance, Cleveland State University, Cleveland, Ohio, USA
| | - Sarah A Stakes
- School of Health Sciences, Cleveland State University, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Young MW, Webster C, Tanis D, Schurr AF, Hanna CS, Lynch SK, Ratkiewicz AS, Dickinson E, Kong FH, Granatosky MC. What does climbing mean exactly? Assessing spatiotemporal gait characteristics of inclined locomotion in parrots. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:19-33. [PMID: 37140643 DOI: 10.1007/s00359-023-01630-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/20/2023] [Accepted: 04/03/2023] [Indexed: 05/05/2023]
Abstract
At what inclination does climbing begin? In this paper, we investigate the transition from walking to climbing in two species of parrot (Agapornis roseicollis and Nymphicus hollandicus) that are known to incorporate both their tail and their craniocervical system into the gait cycle during vertical climbing. Locomotor behaviors ranging in inclination were observed at angles between 0° and 90° for A. roseicollis, and 45°-85° degrees for N. hollandicus. Use of the tail in both species was observed at 45° inclination, and was joined at higher inclinations (> 65°) by use of the craniocervical system. Additionally, as inclination approached (but remained below) 90°, locomotor speeds were reduced while gaits were characterized by higher duty factors and lower stride frequency. These gait changes are consistent with those thought to increase stability. At 90°, A. roseicollis significantly increased its stride length, resulting in higher overall locomotor speed. Collectively these data demonstrate that the transition between horizontal walking and vertical climbing is gradual, incrementally altering several components of gait as inclinations increase. Such data underscore the need for further investigation into how exactly "climbing" is defined and the specific locomotor characteristics that differentiate this behavior from level walking.
Collapse
Affiliation(s)
- Melody W Young
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Clyde Webster
- School of Mechanical and Mechatronic Engineering, The University of Technology Sydney (UTS), Sydney, Australia
| | - Daniel Tanis
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Alissa F Schurr
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Christopher S Hanna
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Samantha K Lynch
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Aleksandra S Ratkiewicz
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Edwin Dickinson
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Felix H Kong
- School of Mechanical and Mechatronic Engineering, The University of Technology Sydney (UTS), Sydney, Australia
| | - Michael C Granatosky
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA.
- Center for Biomedical Innovation, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA.
| |
Collapse
|
3
|
Positional Behavior of Introduced Monk Parakeets (Myiopsitta monachus) in an Urban Landscape. Animals (Basel) 2022; 12:ani12182372. [PMID: 36139232 PMCID: PMC9494974 DOI: 10.3390/ani12182372] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Positional behaviors comprise the entirety of animals’ locomotion and posture. Often, these positional behaviors are paired with information about sußbstrate characteristics (e.g., orientation, diameter, texture, height) and frequency to gain an ecological perspective of when and why an animal utilizes a particular behavior. Thus far, quantitative studies of positional behavior have been limited to mammals, leaving a major gap in our understanding of how animals utilize their environment. In this study, we present the first quantitative report of positional behavior within Aves, presenting scan sampling data from an established colony of Monk Parakeets (Myiopsitta monachus) from Brooklyn, New York City. Parrots exhibited a strong preference for small and terminal branches when perching arboreally. Such a pattern is consistent with arboreal primates. We also observed an increase in locomotor diversity on artificial versus naturally occurring substrates. This demonstrates the potential importance of a flexible behavioral repertoire in facilitating a successful transition towards an urban landscape in introduced species and underscores the need for further studies exploring positional behaviors among urban wildlife. Abstract Positional behaviors have been broadly quantified across the Order Primates, and in several other mammalian lineages, to contextualize adaptations to, and evolution within, an arboreal environment. Outside of Mammalia, however, such data are yet to be reported. In this study, we present the first quantitative report of positional behavior within Aves, presenting 11,246 observations of scan sampling data from a colony of Monk Parakeets (Myiopsitta monachus) from Brooklyn, New York City. Each scan recorded locomotor and postural behavior and information about weather condition, temperature, and substrate properties (e.g., type, size, orientation). A distinction was also recorded between natural and artificial substrates. Parrots exhibited a strong preference for small and terminal branches, a selection which may reflect targeted foraging of new fruit growth and leaf-buds. We further observed that the gait transition from walking to sidling appears primarily driven by substrate size, with the former preferred on the ground and on large, broad substrates and the latter used to navigate smaller branches. Finally, we observed an increase in locomotor diversity on artificial versus naturally occurring substrates. This demonstrates the importance of a flexible behavioral repertoire in facilitating a successful transition towards an urban landscape in introduced species.
Collapse
|
4
|
Ferry LA, Higham TE. Ecomechanics and the Rules of Life: a Critical Conduit Between the Physical and Natural Sciences. Integr Comp Biol 2022; 62:icac114. [PMID: 35878412 DOI: 10.1093/icb/icac114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nature provides the parameters, or boundaries, within which organisms must cope in order to survive. Therefore, ecological conditions have an unequivocal influence on the ability of organisms to perform the necessary functions for survival. Biomechanics brings together physics and biology to understand how an organism will function under a suite of conditions. Despite a relatively rich recent history linking physiology and morphology with ecology, less attention has been paid to the linkage between biomechanics and ecology. This linkage, however, could provide key insights into patterns and processes of evolution. Ecomechanics, also known as ecological biomechanics or mechanical ecology, is not necessarily new, but has received far less attention than ecophysiology or ecomorphology. Here, we briefly review the history of ecomechanics, and then identify what we believe are grand challenges for the discipline and how they can inform some of the most pressing questions in science today, such as how organisms will cope with global change.
Collapse
Affiliation(s)
- Lara A Ferry
- Arizona State University, School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Glendale, AZ, USA
| | - Timothy E Higham
- University of California Riverside, Department of Evolution, Ecology, and Organismal Biology, Riverside, CA, USA
| |
Collapse
|
5
|
Schapker NM, Chadwell BA, Young JW. Robust locomotor performance of squirrel monkeys (Saimiri boliviensis) in response to simulated changes in support diameter and compliance. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:417-433. [PMID: 34985803 DOI: 10.1002/jez.2574] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/05/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Arboreal environments require overcoming navigational challenges not typically encountered in other terrestrial habitats. Supports are unevenly distributed and vary in diameter, orientation, and compliance. To better understand the strategies that arboreal animals use to maintain stability in this environment, laboratory researchers must endeavor to mimic those conditions. Here, we evaluate how squirrel monkeys (Saimiri boliviensis) adjust their locomotor mechanics in response to variation in support diameter and compliance. We used high-speed cameras to film two juvenile female monkeys as they walked across poles of varying diameters (5, 2.5, and 1.25 cm). Poles were mounted on either a stiff wooden base ("stable" condition) or foam blocks ("compliant" condition). Six force transducers embedded within the pole trackway recorded substrate reaction forces during locomotion. We predicted that squirrel monkeys would walk more slowly on narrow and compliant supports and adopt more "compliant" gait mechanics, increasing stride lengths, duty factors, and an average number of limbs gripping the support, while the decreasing center of mass height, stride frequencies, and peak forces. We observed few significant adjustments to squirrel monkey locomotor kinematics in response to changes in either support diameter or compliance, and the changes we did observe were often tempered by interactions with locomotor speed. These results differ from a similar study of common marmosets (i.e., Callithrix jacchus, with relatively poor grasping abilities), where variation in diameter and compliance substantially impacted gait kinematics. Squirrel monkeys' strong grasping apparatus, long and mobile tails, and other adaptations for arboreal travel likely facilitate robust locomotor performance despite substrate precarity.
Collapse
Affiliation(s)
- Nicole M Schapker
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, Ohio, USA
- Cellular and Molecular Biology Program, School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
| | - Brad A Chadwell
- Department of Anatomy, Idaho College of Osteopathic Medicine (ICOM), Meridian, Idaho, USA
| | - Jesse W Young
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, Ohio, USA
- Cellular and Molecular Biology Program, School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
| |
Collapse
|
6
|
Yang Y, Youlatos D, Behie AM, Belbeisi RA, Huang Z, Tian Y, Wang B, Zhou L, Xiao W. Positional behavior and canopy use of black snub-nosed monkeys Rhinopithecus strykeri in the Gaoligong Mountains, Yunnan, China. Curr Zool 2021; 68:401-409. [PMID: 36090144 PMCID: PMC9450169 DOI: 10.1093/cz/zoab071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Studies on positional behavior and canopy use are essential for understanding how arboreal animals adapt their morphological characteristics and behaviors to the challenges of their environment. This study explores canopy and substrate use along with positional behavior in adult black snub-nosed monkeys Rhinopithecus strykeri, an endemic, critically endangered primate species in Gaoligong Mountains, southwest China. Using continuous focal animal sampling, we collected data over a 52-month period and found that R. strykeri is highly arboreal primarily using the high layers of the forest canopy (15–30 m), along with the terminal zone of tree crowns (52.9%), medium substrates (41.5%), and oblique substrates (56.8%). We also found sex differences in canopy and substrate use. Females use the terminal zones (56.7% versus 40.4%), small/medium (77.7% versus 60.1%), and oblique (59.9% versus 46.5%) substrates significantly more than males. On the other hand, males spend more time on large/very large (39.9% versus 22.3%) and horizontal (49.7% versus 35.2%) substrates. Whereas both sexes mainly sit (84.7%), and stand quadrupedally (9.1%), males stand quadrupedally (11.5% versus 8.3%), and bipedally (2.9% versus 0.8%) more often than females. Clamber, quadrupedalism, and leap/drop are the main locomotor modes for both sexes. Rhinopithecus strykeri populations never enter canopies of degenerated secondary forest and mainly use terminal branches in the middle and upper layers of canopies in intact mid-montane moist evergreen broadleaf forest and hemlock coniferous broadleaf mixed forests across their habitat.
Collapse
Affiliation(s)
- Yin Yang
- Institute of Eastern Himalaya Biodiversity Research, Dali University, Dali, Yunnan 671003, China
- School of Archaeology and Anthropology, Australian National University, Canberra, ACT 0200, Australia
- International Centre of Biodiversity and Primate Conservation, Dali University, Dali, Yunnan 671003, China
| | - Dionisios Youlatos
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece
| | - Alison M Behie
- School of Archaeology and Anthropology, Australian National University, Canberra, ACT 0200, Australia
| | - Roula Al Belbeisi
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece
| | - Zhipang Huang
- Institute of Eastern Himalaya Biodiversity Research, Dali University, Dali, Yunnan 671003, China
- International Centre of Biodiversity and Primate Conservation, Dali University, Dali, Yunnan 671003, China
| | - Yinping Tian
- Lushui Bureau of Gaoligongshan National Nature Reserve, Liuku, Yunnan 673229, China
| | - Bin Wang
- Lushui Bureau of Gaoligongshan National Nature Reserve, Liuku, Yunnan 673229, China
| | - Linchun Zhou
- Lushui Bureau of Gaoligongshan National Nature Reserve, Liuku, Yunnan 673229, China
| | - Wen Xiao
- Institute of Eastern Himalaya Biodiversity Research, Dali University, Dali, Yunnan 671003, China
- International Centre of Biodiversity and Primate Conservation, Dali University, Dali, Yunnan 671003, China
| |
Collapse
|
7
|
Youlatos D, Granatosky MC, Al Belbeisi R, He G, Guo S, Li B. Sex differences in habitat use, positional behavior, and gaits of Golden Snub-Nosed Monkeys (Rhinopithecus roxellana) in the Qinling Mountains, Shaanxi, China. Primates 2021; 62:507-519. [PMID: 33694095 DOI: 10.1007/s10329-021-00900-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 02/25/2021] [Indexed: 11/26/2022]
Abstract
Studies of positional behavior, gait, and habitat use are important for understanding how animals adapt to the challenges of their environment. In turn, this information is useful for advancing research on primate morphology, life history, and ecology. Data on eco-mechanical variables can be used to develop concrete conservation and management plans for understudied and threatened primate groups. The present study explores the positional behavior, gaits, and habitat use of male and female adult golden snub-nosed monkeys (Rhinopithecus roxellana), an endemic, endangered, and highly dimorphic species of central China. Using focal animal sampling and opportunistic videorecording in the Guanyinshan National Nature Reserve on the southern slopes of the Qinling Mountains, it was determined that gait parameters were largely the same between sexes. By contrast, habitat use and, to a lesser extent, positional behavior varied significantly between males and females. In general, males were more terrestrial than females. When they moved arboreally, males also used a greater proportion of horizontal and large substrates compared to females. Furthermore, males used more standing postures, forelimb suspensory positional behaviors, and quadrupedal walking. These data suggest that, when faced with the mechanical challenges of large body size, primates such as R. roxellana are more likely to respond by altering habitat use rather than positional behaviors or intrinsic kinematics and timing.
Collapse
Affiliation(s)
- Dionisios Youlatos
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | | | - Roula Al Belbeisi
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Gang He
- Shaanxi Key Laboratory for Animal Conservation and College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Songtao Guo
- Shaanxi Key Laboratory for Animal Conservation and College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Baoguo Li
- Shaanxi Key Laboratory for Animal Conservation and College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China.
- Institute of Zoology, Shaanxi Academy of Sciences, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
8
|
Wheatley R, Buettel JC, Brook BW, Johnson CN, Wilson RP. Accidents alter animal fitness landscapes. Ecol Lett 2021; 24:920-934. [PMID: 33751743 DOI: 10.1111/ele.13705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/13/2020] [Accepted: 01/25/2021] [Indexed: 01/08/2023]
Abstract
Animals alter their habitat use in response to the energetic demands of movement ('energy landscapes') and the risk of predation ('the landscape of fear'). Recent research suggests that animals also select habitats and move in ways that minimise their chance of temporarily losing control of movement and thereby suffering slips, falls, collisions or other accidents, particularly when the consequences are likely to be severe (resulting in injury or death). We propose that animals respond to the costs of an 'accident landscape' in conjunction with predation risk and energetic costs when deciding when, where, and how to move in their daily lives. We develop a novel theoretical framework describing how features of physical landscapes interact with animal size, morphology, and behaviour to affect the risk and severity of accidents, and predict how accident risk might interact with predation risk and energetic costs to dictate movement decisions across the physical landscape. Future research should focus on testing the hypotheses presented here for different real-world systems to gain insight into the relative importance of theorised effects in the field.
Collapse
Affiliation(s)
- Rebecca Wheatley
- School of Natural Sciences and the Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of Tasmania, Hobart, Tasmania, Australia
| | - Jessie C Buettel
- School of Natural Sciences and the Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of Tasmania, Hobart, Tasmania, Australia
| | - Barry W Brook
- School of Natural Sciences and the Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of Tasmania, Hobart, Tasmania, Australia
| | - Christopher N Johnson
- School of Natural Sciences and the Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of Tasmania, Hobart, Tasmania, Australia
| | - Rory P Wilson
- Department of Biosciences, Swansea University, Swansea, UK
| |
Collapse
|
9
|
Moltó IN, Albiach JP, Amer-Cuenca JJ, Segura-Ortí E, Gabriel W, Martínez-Gramage J. Wearable Sensors Detect Differences between the Sexes in Lower Limb Electromyographic Activity and Pelvis 3D Kinematics during Running. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6478. [PMID: 33198427 PMCID: PMC7697594 DOI: 10.3390/s20226478] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022]
Abstract
Each year, 50% of runners suffer from injuries. Consequently, more studies are being published about running biomechanics; these studies identify factors that can help prevent injuries. Scientific evidence suggests that recreational runners should use personalized biomechanical training plans, not only to improve their performance, but also to prevent injuries caused by the inability of amateur athletes to tolerate increased loads, and/or because of poor form. This study provides an overview of the different normative patterns of lower limb muscle activation and articular ranges of the pelvis during running, at self-selected speeds, in men and women. METHODS 38 healthy runners aged 18 to 49 years were included in this work. We examined eight muscles by applying two wearable superficial electromyography sensors and an inertial sensor for three-dimensional (3D) pelvis kinematics. RESULTS the largest differences were obtained for gluteus maximus activation in the first double float phase (p = 0.013) and second stance phase (p = 0.003), as well as in the gluteus medius in the second stance phase (p = 0.028). In both cases, the activation distribution was more homogeneous in men and presented significantly lower values than those obtained for women. In addition, there was a significantly higher percentage of total vastus medialis activation in women throughout the running cycle with the median (25th-75th percentile) for women being 12.50% (9.25-14) and 10% (9-12) for men. Women also had a greater range of pelvis rotation during running at self-selected speeds (p = 0.011). CONCLUSIONS understanding the differences between men and women, in terms of muscle activation and pelvic kinematic values, could be especially useful to allow health professionals detect athletes who may be at risk of injury.
Collapse
Affiliation(s)
- Iván Nacher Moltó
- Department of Physiotherapy, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Valencia, Spain; (J.J.A.-C.); (E.S.-O.); (J.M.-G.)
| | - Juan Pardo Albiach
- Embedded Systems and Artificial Intelligence Group, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Alfara del Patriarca, Spain;
| | - Juan José Amer-Cuenca
- Department of Physiotherapy, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Valencia, Spain; (J.J.A.-C.); (E.S.-O.); (J.M.-G.)
| | - Eva Segura-Ortí
- Department of Physiotherapy, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Valencia, Spain; (J.J.A.-C.); (E.S.-O.); (J.M.-G.)
| | - Willig Gabriel
- Laboratorio de Investigaciones Biomecánicas, Cátedra de Anatomía Funcional y Biomecánica, Universidad de Buenos Aires, Buenos Aires 1107, Argentina;
| | - Javier Martínez-Gramage
- Department of Physiotherapy, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Valencia, Spain; (J.J.A.-C.); (E.S.-O.); (J.M.-G.)
| |
Collapse
|
10
|
McElroy EJ, Sustaita D, McBrayer LD. Applied Functional Biology: Linking Ecological Morphology to Conservation and Management. Integr Comp Biol 2020. [DOI: 10.1093/icb/icaa076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Synopsis
Many researchers work at the interface of organisms and environment. Too often, the insights that organismal, or functional, biologists can bring to the understanding of natural history, ecology, and conservation of species are overlooked. Likewise, natural resource managers are frequently focused on the management of populations and communities, while ignoring key functional traits that might explain variation in abundance and shifts in species composition at these ecological levels. Our intention for this symposium is two-fold: (1) to bring to light current and future research in functional and ecological morphology applicable to concerns and goals of wildlife management and conservation and (2) to show how such studies can result in measurable benchmarks useful to regulatory agencies. Symposium topics reveal past, present, and future collaborations between functional morphologists/biomechanists and conservation/wildlife biologists. During the SICB 2020 Annual Meeting, symposium participants demonstrated how data gathered to address fundamental questions regarding the causes and consequences of organismal form and function can also help address issues of conservation and wildlife management. Here we review how these, and other, studies of functional morphology, biomechanics, ecological development morphology and performance can inform wildlife conservation and management, principally by identifying candidate functional traits that have clear fitness consequences and population level implications.
Collapse
Affiliation(s)
- Eric J McElroy
- Department of Biology, College of Charleston, Charleston, SC 29412, USA
| | - Diego Sustaita
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92096, USA
| | - Lance D McBrayer
- Department of Biology, Georgia Southern University, Statesboro, GA 30460, USA
| |
Collapse
|
11
|
Dunham NT, McNamara A, Shapiro LJ, Phelps T, Young JW. Asymmetrical gait kinematics of free-ranging callitrichines in response to changes in substrate diameter and orientation. J Exp Biol 2020; 223:jeb.217562. [DOI: 10.1242/jeb.217562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/06/2020] [Indexed: 11/20/2022]
Abstract
Arboreal environments present considerable biomechanical challenges for animals moving and foraging among substrates varying in diameter, orientation, and compliance. Most studies of quadrupedal gait kinematics in primates and other arboreal mammals have focused on symmetrical walking gaits and the significance of diagonal sequence gaits. Considerably less research has examined asymmetrical gaits, despite their prevalence in small-bodied arboreal taxa. Here we examine whether and how free-ranging callitrichine primates adjust asymmetrical gait kinematics to changes in substrate diameter and orientation, as well as how variation in gait kinematics affects substrate displacement. We used high-speed video to film free-ranging Saguinus tripartitus and Cebuella pygmaea inhabiting the Tiputini Biodiversity Station, Ecuador. We found that Saguinus used bounding and half-bounding gaits on larger substrates versus gallops and symmetrical gaits on smaller substrates, and also shifted several kinematic parameters consistent with attenuating forces transferred from the animal to the substrate. Similarly, Cebuella shifted from high impact bounding gaits on larger substrates to using more half-bounding gaits on smaller substrates; however, kinematic adjustments to substrate diameter were not as profound as in Saguinus. Both species adjusted gait kinematics to changes in substrate orientation; however, gait kinematics did not significantly affect empirical measures of substrate displacement in either species. Due to their small body size, claw-like nails, and reduced grasping capabilities, callitrichines arguably represent extant biomechanical analogues for an early stage in primate evolution. As such, greater attention should be placed on understanding asymmetrical gait dynamics for insight into hypotheses concerning early primate locomotor evolution.
Collapse
Affiliation(s)
- Noah T. Dunham
- Division of Conservation and Science, Cleveland Metroparks Zoo, 4200 Wildlife Way, Cleveland, OH, 44109, USA
- Department of Biology, Case Western Reserve University, 2080 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Allison McNamara
- Department of Anthropology, University of Texas at Austin, 2201 Speedway Stop C3200, Austin, TX, 78712, USA
| | - Liza J. Shapiro
- Department of Anthropology, University of Texas at Austin, 2201 Speedway Stop C3200, Austin, TX, 78712, USA
| | - Taylor Phelps
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 St. Rt. 44, Rootstown, OH, 44272, USA
| | - Jesse W. Young
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 St. Rt. 44, Rootstown, OH, 44272, USA
| |
Collapse
|
12
|
Gaschk JL, Frère CH, Clemente CJ. Quantifying koala locomotion strategies: implications for the evolution of arborealism in marsupials. J Exp Biol 2019; 222:222/24/jeb207506. [PMID: 31848216 DOI: 10.1242/jeb.207506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/06/2019] [Indexed: 11/20/2022]
Abstract
The morphology and locomotor performance of a species can determine their inherent fitness within a habitat type. Koalas have an unusual morphology for marsupials, with several key adaptations suggested to increase stability in arboreal environments. We quantified the kinematics of their movement over ground and along narrow arboreal trackways to determine the extent to which their locomotion resembled that of primates, occupying similar niches, or basal marsupials from which they evolved. On the ground, the locomotion of koalas resembled a combination of marsupial behaviours and primate-like mechanics. For example, their fastest strides were bounding type gaits with a top speed of 2.78 m s-1 (mean 1.20 m s-1), resembling marsupials, while the relatively longer stride length was reflective of primate locomotion. Speed was increased using equal modification of stride length and frequency. On narrow substrates, koalas took longer but slower strides (mean 0.42 m s-1), adopting diagonally coupled gaits including both lateral and diagonal sequence gaits, the latter being a strategy distinctive among arboreal primates. The use of diagonally coupled gaits in the arboreal environment is likely only possible because of the unique gripping hand morphology of both the fore and hind feet of koalas. These results suggest that during ground locomotion, they use marsupial-like strategies but alternate to primate-like strategies when moving amongst branches, maximising stability in these environments. The locomotion strategies of koalas provide key insights into an independent evolutionary branch for an arboreal specialist, highlighting how locomotor strategies can convergently evolve between distant lineages.
Collapse
Affiliation(s)
- Joshua L Gaschk
- School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Celine H Frère
- School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Christofer J Clemente
- School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| |
Collapse
|
13
|
Higham TE, Schmitz L. A Hierarchical View of Gecko Locomotion: Photic Environment, Physiological Optics, and Locomotor Performance. Integr Comp Biol 2019; 59:443-455. [DOI: 10.1093/icb/icz092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Abstract
Terrestrial animals move in complex habitats that vary over space and time. The characteristics of these habitats are not only defined by the physical environment, but also by the photic environment, even though the latter has largely been overlooked. For example, numerous studies of have examined the role of habitat structure, such as incline, perch diameter, and compliance, on running performance. However, running performance likely depends heavily on light level. Geckos are an exceptional group for analyzing the role of the photic environment on locomotion as they exhibit several independent shifts to diurnality from a nocturnal ancestor, they are visually-guided predators, and they are extremely diverse. Our initial goal is to discuss the range of photic environments that can be encountered in terrestrial habitats, such as day versus night, canopy cover in a forest, fog, and clouds. We then review the physiological optics of gecko vision with some new information about retina structures, the role of vision in motor-driven behaviors, and what is known about gecko locomotion under different light conditions, before demonstrating the effect of light levels on gecko locomotor performance. Overall, we highlight the importance of integrating sensory and motor information and establish a conceptual framework as guide for future research. Several future directions, such as understanding the role of pupil dynamics, are dependent on an integrative framework. This general framework can be extended to any motor system that relies on sensory information, and can be used to explore the impact of performance features on diversification and evolution.
Collapse
Affiliation(s)
- Timothy E Higham
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Lars Schmitz
- W.M. Keck Science Department, Claremont McKenna, Scripps, and Pitzer Colleges, Claremont, CA 91711, USA
| |
Collapse
|