1
|
Grunst ML, Grunst AS, Grémillet D, Fort J. Combined threats of climate change and contaminant exposure through the lens of bioenergetics. GLOBAL CHANGE BIOLOGY 2023; 29:5139-5168. [PMID: 37381110 DOI: 10.1111/gcb.16822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/17/2023] [Indexed: 06/30/2023]
Abstract
Organisms face energetic challenges of climate change in combination with suites of natural and anthropogenic stressors. In particular, chemical contaminant exposure has neurotoxic, endocrine-disrupting, and behavioral effects which may additively or interactively combine with challenges associated with climate change. We used a literature review across animal taxa and contaminant classes, but focused on Arctic endotherms and contaminants important in Arctic ecosystems, to demonstrate potential for interactive effects across five bioenergetic domains: (1) energy supply, (2) energy demand, (3) energy storage, (4) energy allocation tradeoffs, and (5) energy management strategies; and involving four climate change-sensitive environmental stressors: changes in resource availability, temperature, predation risk, and parasitism. Identified examples included relatively equal numbers of synergistic and antagonistic interactions. Synergies are often suggested to be particularly problematic, since they magnify biological effects. However, we emphasize that antagonistic effects on bioenergetic traits can be equally problematic, since they can reflect dampening of beneficial responses and result in negative synergistic effects on fitness. Our review also highlights that empirical demonstrations remain limited, especially in endotherms. Elucidating the nature of climate change-by-contaminant interactive effects on bioenergetic traits will build toward determining overall outcomes for energy balance and fitness. Progressing to determine critical species, life stages, and target areas in which transformative effects arise will aid in forecasting broad-scale bioenergetic outcomes under global change scenarios.
Collapse
Affiliation(s)
- Melissa L Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - Andrea S Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - David Grémillet
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
- Percy FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| |
Collapse
|
2
|
He RS, De Ruiter S, Westover T, Somarelli JA, Blawas AM, Dayanidhi DL, Singh A, Steves B, Driesinga S, Halsey LG, Fahlman A. Allometric scaling of metabolic rate and cardiorespiratory variables in aquatic and terrestrial mammals. Physiol Rep 2023; 11:e15698. [PMID: 37271741 PMCID: PMC10239733 DOI: 10.14814/phy2.15698] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 06/06/2023] Open
Abstract
While basal metabolic rate (BMR) scales proportionally with body mass (Mb ), it remains unclear whether the relationship differs between mammals from aquatic and terrestrial habitats. We hypothesized that differences in BMR allometry would be reflected in similar differences in scaling of O2 delivery pathways through the cardiorespiratory system. We performed a comparative analysis of BMR across 63 mammalian species (20 aquatic, 43 terrestrial) with a Mb range from 10 kg to 5318 kg. Our results revealed elevated BMRs in small (>10 kg and <100 kg) aquatic mammals compared to small terrestrial mammals. The results demonstrated that minute ventilation, that is, tidal volume (VT )·breathing frequency (fR ), as well as cardiac output, that is, stroke volume·heart rate, do not differ between the two habitats. We found that the "aquatic breathing strategy", characterized by higher VT and lower fR resulting in a more effective gas exchange, and by elevated blood hemoglobin concentrations resulting in a higher volume of O2 for the same volume of blood, supported elevated metabolic requirements in aquatic mammals. The results from this study provide a possible explanation of how differences in gas exchange may serve energy demands in aquatic versus terrestrial mammals.
Collapse
Affiliation(s)
- Rebecca S. He
- Duke University Marine LaboratoryNicholas School of the EnvironmentBeaufortNorth CarolinaUSA
- Department of BiologyDuke UniversityDurhamNorth CarolinaUSA
| | - Stacy De Ruiter
- Department of Mathematics and StatisticsCalvin UniversityGrand RapidsMichiganUSA
| | - Tristan Westover
- Duke University Marine LaboratoryNicholas School of the EnvironmentBeaufortNorth CarolinaUSA
- Department of BiologyDuke UniversityDurhamNorth CarolinaUSA
| | - Jason A. Somarelli
- Department of MedicineDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Ashley M. Blawas
- Duke University Marine LaboratoryNicholas School of the EnvironmentBeaufortNorth CarolinaUSA
- Department of MedicineDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Divya L. Dayanidhi
- Department of MedicineDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Ana Singh
- Department of Mathematics and StatisticsCalvin UniversityGrand RapidsMichiganUSA
| | - Benjamin Steves
- Department of Mathematics and StatisticsCalvin UniversityGrand RapidsMichiganUSA
| | - Samantha Driesinga
- Department of Mathematics and StatisticsCalvin UniversityGrand RapidsMichiganUSA
| | - Lewis G. Halsey
- School of Life and Health SciencesUniversity of RoehamptonLondonUK
| | - Andreas Fahlman
- Fundación Oceanogràfic de la Comunitat ValencianaValenciaSpain
- Kolmarden Wildlife ParkKolmardenSweden
- Linkoping University, IFMLinköpingSweden
| |
Collapse
|
3
|
Burslem A, Isojunno S, Pirotta E, Miller PJO. Modelling the impact of condition-dependent responses and lipid-store availability on the consequences of disturbance in a cetacean. CONSERVATION PHYSIOLOGY 2022; 10:coac069. [PMID: 36415287 PMCID: PMC9672687 DOI: 10.1093/conphys/coac069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Lipid-store body condition is fundamental to how animals cope with environmental fluctuations, including anthropogenic change. As it provides an energetic buffer, body condition is expected to influence risk-taking strategies, with both positive and negative relationships between body condition and risk-taking posited in the literature. Individuals in good condition may take more risks due to state-dependent safety ('ability-based' explanation), or alternatively fewer risks due to asset protection and reduced need to undertake risky foraging ('needs-based' explanation). Such state-dependent responses could drive non-linear impacts of anthropogenic activities through feedback between body condition and behavioural disturbance. Here, we present a simple bioenergetic model that explicitly incorporates hypothetical body condition-dependent response strategies for a cetacean, the sperm whale. The model considered the consequences of state-dependent foraging cessation and availability of wax ester (WE) lipids for calf provisioning and female survival. We found strikingly different consequences of disturbance depending on strategy and WE availability scenarios. Compared with the null strategy, where responses to disturbance were independent of body condition, the needs-based strategy mitigated predicted reductions in provisioning by 10%-13%, while the ability-based strategy exaggerated reductions by 63%-113%. Lower WE availability resulted in more extreme outcomes because energy stores were smaller relative to the daily energy balance. In the 0% availability scenario, while the needs-based strategy reduced deaths by 100%, the ability-based strategy increased them by 335% relative to null and by 56% relative to the same strategy under the 5%-6.7% WE availability scenario. These results highlight that state-dependent disturbance responses and energy store availability could substantially impact the population consequences of disturbance. Our ability to set appropriate precautionary disturbance thresholds therefore requires empirical tests of ability- vs needs-based response modification as a function of body condition and a clearer understanding of energy store availability.
Collapse
Affiliation(s)
- Alec Burslem
- Corresponding author: Sea Mammal Research Unit, Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, UK. Tel: +44 (0) 7984318003.
| | - Saana Isojunno
- Sea Mammal Research Unit, Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, UK
- Centre for Research into Ecological and Environmental Modelling, School of Mathematics, The Observatory, Buchanan Gardens, University of St Andrews, St Andrews, Fife KY16 9LZ, UK
| | - Enrico Pirotta
- Centre for Research into Ecological and Environmental Modelling, School of Mathematics, The Observatory, Buchanan Gardens, University of St Andrews, St Andrews, Fife KY16 9LZ, UK
| | - Patrick J O Miller
- Sea Mammal Research Unit, Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, UK
| |
Collapse
|
4
|
Soares ED, Cantor M, Bracarense APFRL, Groch KR, Domit C. Health conditions of Guiana dolphins facing cumulative anthropogenic impacts. Mamm Biol 2022. [DOI: 10.1007/s42991-022-00299-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractCoastal areas are associated with anthropogenic activities and stressors that can expose the marine fauna to negative cumulative impacts. Apex predators, such as dolphins, can flag the quality of their environment through health parameters such as cutaneous and body conditions. We examined the potential relationship between environmental conditions and health parameters of Guiana dolphins around a port and a conservation unit within the Paranaguá Estuarine Complex, southern Brazil. During boat surveys between July 2018 and April 2019 covering both areas, we measured environmental parameters, photographed dolphins to infer their health condition and the frequency of use of the estuary. In total, 204 individual Guiana dolphins were photo-identified, 52 of which were seen in both years. In general, dolphins showed poor body condition (76% classified as emaciated or thin in 2018, and 79% in 2019), diverse cutaneous conditions (four types of lesions suggestive of an infectious aetiology, two conditions suggestive of traumatic events of anthropogenic origin, and two anomalous pigmentation) and a high prevalence of such cutaneous conditions (85% in 2018, 70% in 2019). Most individuals maintained their body and cutaneous conditions between the two years. There were no clear differences between the port and the conservation areas in terms of environmental conditions, frequency of use and health conditions of individual dolphins, suggesting that dolphins inhabiting this estuarine complex are exposed to potential cumulative impacts, such as pollutants, noise and habitat degradation. This study provides baseline information on some health parameters of Guiana dolphins in southern Brazil and highlights the need for systematic, long-term health assessment of Guiana dolphin populations to guide conservation actions to safeguard this vulnerable species.
Collapse
|
5
|
Arregui M, Singleton EM, Saavedra P, Pabst DA, Moore MJ, Sierra E, Rivero MA, Câmara N, Niemeyer M, Fahlman A, McLellan WA, Bernaldo de Quirós Y. Myoglobin Concentration and Oxygen Stores in Different Functional Muscle Groups from Three Small Cetacean Species. Animals (Basel) 2021; 11:ani11020451. [PMID: 33572177 PMCID: PMC7915992 DOI: 10.3390/ani11020451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Marine mammals display several physiological adaptations to their marine environment. Higher myoglobin concentrations in their muscles compared to terrestrial mammals allow them to increase their onboard oxygen stores, enhancing the time available to dive. Most previous studies have calculated cetaceans’ onboard oxygen stores by assuming the myoglobin concentration of a single muscle to be representative of all the muscles in the body. In this study, we analyzed this assumption by comparing it to a more precise method that weighs all body muscles and measures myoglobin concentration in different functional groups. Abstract Compared with terrestrial mammals, marine mammals possess increased muscle myoglobin concentrations (Mb concentration, g Mb · 100g−1 muscle), enhancing their onboard oxygen (O2) stores and their aerobic dive limit. Although myoglobin is not homogeneously distributed, cetacean muscle O2 stores have been often determined by measuring Mb concentration from a single muscle sample (longissimus dorsi) and multiplying that value by the animal’s locomotor muscle or total muscle mass. This study serves to determine the accuracy of previous cetacean muscle O2 stores calculations. For that, body muscles from three delphinid species: Delphinus delphis, Stenella coeruleoalba, and Stenella frontalis, were dissected and weighed. Mb concentration was calculated from six muscles/muscle groups (epaxial, hypaxial and rectus abdominis; mastohumeralis; sternohyoideus; and dorsal scalenus), each representative of different functional groups (locomotion powering swimming, pectoral fin movement, feeding and respiration, respectively). Results demonstrated that the Mb concentration was heterogeneously distributed, being significantly higher in locomotor muscles. Locomotor muscles were the major contributors to total muscle O2 stores (mean 92.8%) due to their high Mb concentration and large muscle masses. Compared to this method, previous studies assuming homogenous Mb concentration distribution likely underestimated total muscle O2 stores by 10% when only considering locomotor muscles and overestimated them by 13% when total muscle mass was considered.
Collapse
Affiliation(s)
- Marina Arregui
- Atlantic Center for Cetacean Research, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, C/Transmontaña s/n, 35413 Las Palmas, Spain; (M.A.); (M.A.R.); (N.C.); (Y.B.d.Q.)
| | - Emily M. Singleton
- Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC 28403, USA; (E.M.S.); (D.A.P.); (W.A.M.)
| | - Pedro Saavedra
- Department of Mathematics, Campus de Tafira s/n, University of Las Palmas de Gran Canaria, 35017 Las Palmas, Spain;
| | - D. Ann Pabst
- Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC 28403, USA; (E.M.S.); (D.A.P.); (W.A.M.)
| | - Michael J. Moore
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA;
| | - Eva Sierra
- Atlantic Center for Cetacean Research, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, C/Transmontaña s/n, 35413 Las Palmas, Spain; (M.A.); (M.A.R.); (N.C.); (Y.B.d.Q.)
- Correspondence: ; Tel.: +34-928-4597-08
| | - Miguel A. Rivero
- Atlantic Center for Cetacean Research, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, C/Transmontaña s/n, 35413 Las Palmas, Spain; (M.A.); (M.A.R.); (N.C.); (Y.B.d.Q.)
| | - Nakita Câmara
- Atlantic Center for Cetacean Research, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, C/Transmontaña s/n, 35413 Las Palmas, Spain; (M.A.); (M.A.R.); (N.C.); (Y.B.d.Q.)
| | - Misty Niemeyer
- International Fund for Animal Welfare, Yarmouth Port, MA 02675, USA;
| | - Andreas Fahlman
- Global Diving Research Inc., Ottawa, ON K2J 5E8, Canada;
- Fundación Oceanogràphic, Department of Research, Ciutat de les Arts i de les Ciències, Carrer d’Eduardo Primo Yúfera, 1B, 46013 Valencia, Spain
- Department of Life Sciences, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Unit 5892, Corpus Christi, TX 78412, USA
| | - William A. McLellan
- Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC 28403, USA; (E.M.S.); (D.A.P.); (W.A.M.)
| | - Yara Bernaldo de Quirós
- Atlantic Center for Cetacean Research, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, C/Transmontaña s/n, 35413 Las Palmas, Spain; (M.A.); (M.A.R.); (N.C.); (Y.B.d.Q.)
- Department of Life Sciences, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Unit 5892, Corpus Christi, TX 78412, USA
| |
Collapse
|